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Abstract
Modern distributed systems often rely on so called weakly-consistent databases, which achieve scalability
by sacrificing the consistency guarantee of distributed transaction processing. Such databases have been
formalised in two different styles, one based on abstract executions and the other based on dependency
graphs. The choice between these styles has been made according to intended applications. The former
has been used for specifying and verifying the implementation of these databases, while the latter for prov-
ing properties of client programs of the databases. In this paper, we present a set of novel algebraic laws
(i.e. inequations) that connect these two styles of specifications. The laws relate binary relations used in
a specification based on abstract executions, to those used in a specification based on dependency graphs.
We then show that this algebraic connection gives rise to so called robustness criteria, conditions which
ensure that a client program of a weakly-consistent database does not exhibit anomalous behaviours due
to weak consistency. These criteria make it easy to reason about these client programs, and may become
a basis for dynamic or static program analyses. For a certain class of consistency models specifications,
we prove a full abstraction result that connects the two styles of specifications.

1 Introduction

Modern distributed systems often rely on databases that achieve scalability by sacrificing the consist-
ency guarantee of distributed transaction processing. These databases are said to implement weak
consistency models. Such weakly-consistent databases allow for faster transaction processing, but ex-
hibit anomalous behaviours, which do not arise under a database with a strong consistency guarantee,
such as serialisability. Two important problems for the weakly-consistent databases are: (i) to find
elegant formal specifications of their consistency models and to prove that these specifications are cor-
rectly implemented by protocols used in the databases; (ii) to develop effective reasoning techniques
for applications running on top of such databases. These problems have been tackled by using two dif-
ferent formalisms, which model the run-time behaviours of weakly-consistent databases differently.
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Figure 1 An example of abstract execution and of dependency graph.

When the goal is to verify
the correctness of a protocol im-
plementing a weak consistency
model, the run-time behaviour
of a distributed database is often
described in terms of abstract
executions [11], which abstract
away low-level implementation
details of the database (§2). An
example of abstract execution is
depicted in Figure 1; ignore the bold edges for the moment. It comprises four transactions, T0, T1,
T2, and S; transaction T0 initializes the value of an object acct to 0; transactions T1 and T2 update
the value of acct to 50 and 25, respectively, after reading its initial value; transaction S reads the
value of acct. In this abstract execution, both the updates of T1 and T2 are VISible to transaction
S, as witnessed by the two VIS-labelled edges: T1

VIS
ÝÝÑ S and T2

VIS
ÝÝÑ S. On the other hand, the
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update of T1 is not visible to T2, and vice versa, as indicated by the absence of an edge labelled with
VIS between these transactions. Intuitively, the absence of such an edge means that T1 and T2 are
executed concurrently. Because S sees T1 and T2, as indicated by VIS-labelled edges from T1 and
T2 to S, the result of reading the value of acct in S must be one of the values written by T1 and T2.
However, because these transactions are concurrent, there is a race, or conflict, between them. The
AR-labelled edge connecting T1 to T2, is used to ARbitrate the conflict: it states that the update of T1
is older than the one of T2, hence the query of acct in S returns the value written by the latter.

The style of specifications of consistency models in terms of abstract executions can be given
by imposing constraints over the relations VIS,AR (§2.1). A set of transactions T “ tT1, T2, ¨ ¨ ¨ u ,
called history, is allowed by a consistency model specification if it is possible to exhibit two witness
relations VIS,AR over T such that the resulting abstract execution satisfies the constraints imposed by
the specification. For example, serialisability can be specified by requiring that the relation VIS should
be a strict total order. The set of transactions tT0, T1, T2, Su from Figure 1 is not serialisable: it is
not possible to choose a relation VIS such that the resulting abstract execution relates the transactions
T1, T2 and the results of the reads are consistent with visible updates.

Specifications of consistency models using abstract executions have been used in the work on
proving the correctness of protocols implementing weak consistency models, as well as on justifying
operational, implementation-dependent descriptions of these models [9, 10, 11, 13].

The second formalism used to define weak consistency models is based on the notion of depend-
ency graphs [2], and it has been used for proving properties of client programs running on top of
a weakly-consistent database. Dependency graphs capture the data dependencies of transactions
at run-time (§3); the transactions tT0, T1, T2, Su depicted above, together with the bold edges but

without normal edges, constitute an example of dependency graph. The edge T2
WRpacctq
ÝÝÝÝÝÑ S1 means

that the read of acct in transaction S returns the value written by transaction T2, and the edges

T0
WRpacctq
ÝÝÝÝÝÑ T1 and T0

WRpacctq
ÝÝÝÝÝÑ T2 mean something similar. The edge T1

WWpacctq
ÝÝÝÝÝÝÑ T2 denotes a

write-write dependency, and says that the write to acct in T2 supersedes the write to the same object in

T1. The remaining edges T1
RWpacctq
ÝÝÝÝÝÑ T2 and T2

RWpacctq
ÝÝÝÝÝÑ T1 express read-write anti-dependencies.

The former means that T1 reads a value for object acct which is older than the value written by T2.
When using dependency graphs, consistency models are specified as sets of transactions (or

histories) for which there exist WR,WW,RW relations that satisfy certain properties, usually stated
as particular relations being acyclic [6, 14]. Because dependencies of transactions can be over-
approximated at the compilation time, specifications of consistency models in terms of dependency
graphs have been widely used for manually or automatically reasoning about properties of client
programs of weakly-consistent databases [2, 16, 25]. They have also been used in the complexity and
undecidability results for verifying implementations of consistency models [7].

Our ultimate aim is to reveal a deep connection between these two styles of specifying weak
consistency models, which was hinted at for specific consistent models in the literature. Such
a connection would, for instance, give us a systematic way to derive a specification of a weak
consistency model based on dependency graphs from the specification based on abstract executions,
while ensuring that the original and the derived specifications are equivalent in a sense. In doing so,
it would enable us to prove properties about client programs of a weakly-consistent database using
techniques based on dependency graphs [7, 14, 15] even when the consistency model of the database
is specified in terms of abstract executions.

In this paper, we present our first step towards this ultimate aim. We describe a novel algebraic
connection between the two styles of specifications for weak consistency models. We present algebraic

1 For simplicity, references to the object acct have been removed from the dependencies of Figure 1.
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laws (i.e. inequations) that connect the VIS,AR relations for abstract executions, to dependencies
and anti-dependencies for dependency graphs (§4). For several consistency models, these laws
give rise to so called robustness criteria for client programs, conditions ensuring that a program
only exhibits serialisable behaviours even when it runs under a weak consistency model [6, 8, 16].
These criteria are derived as follows: using our algebraic laws, we derive for a given consistency
model, a property of the form RX Id Ď H, where R is an expression from the Kleene Algebra with
Tests [20] whose ground terms are run-time dependencies of transactions, and tests are properties
over transactions. These properties in turn give a necessary condition for the presence of cycles in
dependency graphs in the model. We can then check for the absence of such cycles in an application
at compile time: because dependency graphs of serialisable databases are always acyclic, this ensures
that said application only exhibits serialisable behaviours.

As another contribution, we devise a proof technique for inferring, given a consistency model
specified using abstract executions, an equivalent specification in terms of dependency graphs (§5).
This proof technique is sound for a restricted, yet meaningful class of consistency model specifications,
which we call simple. The technique works as follows. For each simple specification of consistency
model, we define a system of inequations over run-time dependencies of transactions; there the
unknowns embed a relation R whose acyclicity represents a necessary and sufficient condition of
dependency graphs allowed by the consistency model. By solving said system of inequations, one
immediately obtains an equivalent specification of the consistency model using dependency graphs.

One key insight in our algebraic laws is that there is a correspondence between the AR relation
and a novel relation that we call anti-visibility, which encompasses anti-dependencies. The exact
nature of this relation depends from the specification of a particular consistency model. To keep the
discussion simple, we adopt causal consistency [22] as the weakest consistency model; we discuss a
possible generalisation to a wider class of consistency models in Appendix (§B).

2 Abstract Executions

We consider a database storing objects in Obj “ tx, y, ¨ ¨ ¨ u, which for simplicity we assume to be
integer-valued. Client programs can interact with the database by executing operations from a set Op,
grouped inside transactions. We leave the set Op unspecified, apart from requiring that it contains
read and write operations over objects: twritepx, nq, readpx, nq | x P Obj, n P Nu Ď Op.

Histories. To specify a consistency model, we first define the set of all client-database interactions
allowed by the model. We start by introducing (run-time) transactions and histories, which record
such interactions in a single computation. Transactions are elements from a set T “ tT, S, ¨ ¨ ¨ u;
the operations executed by transactions are given by a function behav : T Ñ 2Op, which maps a
transaction T to a set of operations that are performed by the transaction and can be observed by other
transactions. We often abuse notations and just write o P T (or T Q o) instead of o P behavpT q. We
adopt similar conventions for O Ď behavpT q and O “ behavpT q where O is a subset of operations.

We assume that transactions enjoy atomic visibility : for each object x, (i) a transaction S never
observes two different writes to x from a single transaction T and (ii) it never reads two different
values of x. Formally, the requirements are that if T Q pwrite x : nq and T Q pwrite x : mq,
or T Q pread x : nq and T Q pread x : mq, then n “ m. Our treatment of atomic visibility
is taken from our previous work on transactional consistency models [13]. Atomic visibility is
guaranteed by many consistency models [4, 19, 26]. We point out that although we focus on
transactions in distributed systems in the paper, our results apply to weak shared-memory models
[3]; there a transaction T is the singleton set of a read operation (T “ tread x : nu), that of a write
operation (T “ twrite x : nu), or the set of read and write representing a compare and set operation
(T “ tread x : n, write x : mu).
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For each object x, we let Writesx :“ tT | Dn. pwrite x : nq P T u and Readsx :“ tT |

Dn, pread x : nq P T u be the sets of transactions that write to and read from x, respectively.

§ Definition 1. A history T is a set of transactions tT1, T2, ¨ ¨ ¨ , Tnu.

Consistency Models. A consistency model Γ is a set of histories that may arise when client
programs interact with the database. To define Γ formally, we use the notion of abstract executions:
these are histories augmented with two relations, called visibility and arbitration.

§ Definition 2. An abstract execution X is a tuple pT ,VIS,ARq consisting of a history T and
relations VIS,AR Ď pT ˆ T q on transactions such that VIS Ď AR and AR is a strict total order2.

We often write T VIS
ÝÝÑ S for pT, Sq P VIS, and similarly for other relations. For each abstract

execution X “ pT ,VIS,ARq, we let TX :“ T , VISX :“ VIS, and ARX :“ AR. We denote the set of
abstract executions by Executions.

In an abstract execution X , T VISX
ÝÝÝÑ S means that the read operations in S may depend on the

updates of T , while T ARX
ÝÝÝÑ S means that the update operations of S supersede those performed by

T . Naturally, one would expect that the value fetched by read operations in a transaction T is the
most up-to-date one among all the values written by transactions visible to T . For simplicity, we
assume that such a transaction always exists.

§ Definition 3. An abstract execution X “ pT ,VIS,ARq respects the Last Write Win (LWW)
policy, if for all T P T and all pread x : nq P T , the set T 1 :“

`

VIS´1
pT q XWritesx

˘

is not empty,
and maxARpT 1q Q write x : n where maxARpT 1q is the AR-supremum of T 1.
§ Definition 4. An abstract execution X “ pT ,VIS,ARq respects causality if VIS is transitive. Any
abstract execution that respects both causality and the LWW policy is said to be valid.

We always assume an abstract execution to be valid, unless otherwise stated. Causality is respected
by all abstract executions allowed by several interesting consistency models. They also simplify the
mathematical development of our results. In (§B), we explain how our results can be generalised for
consistency models that do not respect causality. We also discuss how the model can be generalised
to account for sessions and session guarantees [27].

We can specify a consistency model using abstract executions in two steps. First, we identify
properties on abstract executions, or axioms, that formally express an informal consistency guarantee,
and form a set with the abstract executions satisfying the properties. Next, we project abstract
executions in this set to underlying histories, and define a consistency model Γ to be the set of
resulting histories.

Abstract executions hide low-level operational details of the interaction between client programs
and weakly-consistent databases. This benefit has been exploited for proving that such databases
implement intended consistency models [9, 10, 11, 13, 17].

2.1 Specification of Weak Consistency Models

In this section we introduce a simple framework for specifying consistency models using the style of
specification discussed above. In our framework, axioms of consistency models relate the visibility
and arbitration relations via inequations of the form R1 ; ARX ; R2 Ď VISX , where R1 and R2
are particular relations over transactions, and X is an abstract executions. As we will explain later,
axioms of this form establish a necessary condition for two transactions in an abstract execution X to
be related by VISX , i.e. they cannot be executed concurrently. Despite its simplicity, the framework is

2 A relation R Ď T ˆ T is a strict (partial) order if it is transitive and irreflexive; it is total if for any T, S P T , either
T “ S, pT, Sq P R or pS, T q P R.
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expressive enough to capture several consistency models for distributed databases [13, 21]; as we will
show in §4, one of the benefits of this simplicity is that we can infer robustness criteria of consistency
models in a systematic way.

As we will see, the relations R1, R2 in axioms of the form above, may depend on the visibility
relation of the abstract execution X . To define such relations, we introduce the notion of specification
function.

§ Definition 5. A function ρ : 2pTˆTq Ñ 2pTˆTq is a specification function if for every relation
R Ď T ˆ T , we have that ρpRq “ ρpT ˆ T q X R?, where R? is the reflexive closure of R. A
consistency guarantee or simply guarantee is a pair of specification functions pρ, πq.

Definition 5 ensures that specification functions are defined locally: for any R1, R2 P T ˆT , ρpR1Y

R2q “ ρpR1q Y ρpR2q, and in particular for any R Ď T ˆ T , ρpRq “
´

Ť

T,SPT ρptpT, Squq
¯

XR?.
The reflexive closure in Definition 5 is needed because we will always apply specification functions
to irreflexive relations (namely, the visibility relation of abstract executions), although the result of
this application need not be irreflexive. For example, ρIdpRq :“ Id is a valid specification function.

Each consistency guarantee pρ, πq defines, for each abstract execution X , an inequation of the
form ρpVISX q ; ARX ; πpVISX q Ď VISX : if this inequation is satisfied by X , we say that X
satisfies the consistency guarantee pρ, πq. Consistency guarantees impose a condition on when
two transactions T, S in an abstract execution X are not allowed to execute concurrently, i.e. they
must be related by a VISX edge. By definition of abstract executions, visibility edges in abstract
execution cannot contradict arbitration edges, hence it is only natural that the order in which the
transactions T, S above are executed is determined by the arbitration order: in fact, the definition
of specification function ensures that ρpVISX q Ď VISX ? and πpVISX q Ď VISX ?, so that pρpVISX q ;
ARX ; πpVISX qq Ď ARX for all abstract executions X .

§ Definition 6. A consistency model specification Σ or x-specification is a set of consistency
guarantees tpρi, πiquiPI for some index set I .

We define ExecutionspΣq to be the set of abstract executions that satisfy all the consistency
guarantees of Σ. We let modelOfpΣq :“ tTX | X P ExecutionspΣqu.

Examples of Consistency Model Specifications. Figure 2 shows several examples of specific-
ation functions and consistency guarantees. In the figure, Id is the identity relation over transactions,
and we use the relations rT s :“ tpT, T q | T P T u and ros :“ tpT, T q | T Q ou for T Ď T and
o P Op. The guarantees in the figure can be composed together to specify several consistency models:

Function Definition
ρIdpRq = Id
ρSIpRq “ RzId
ρxpRq “ rWritesxs
ρSpRq “ rSerTxs
Guarantee Associated Axiom
pρId, ρIdq AR Ď VIS
pρId, ρSIq AR ; VIS Ď VIS
pρx, ρxq rWritesxs ; AR ; rWritesxs Ď VIS
pρS , ρSq rSerTxs ; AR ; rSerTxs Ď VIS

Figure 2 Some Specification Functions and Con-
sistency Guarantees

we give some examples of them below. Each of
these consistency models allows different kinds
of anomalies: due to lack of space, these are illus-
trated in (§A).
Causal Consistency: This is the weakest con-
sistency model in the paper. It is specified by
ΣCC “ H. In this case, all abstract executions
in ExecutionspΣCCq respect causality. The execu-
tion in Figure 1 is an example in ExecutionspΣCCq.
Causal consistency has been implemented for geo-
replicated databases [22]. Our specification coin-
cides with the one given in [13].
Red-Blue Consistency: This model extends causal consistency by marking a subset of transactions
as serialisable, and ensuring that no two such transactions appear to execute concurrently. It is
implemented in [21]. We model red-blue consistency via the x-specification ΣRB “ tpρS , ρSqu. In
the definition of ρS , an element SerTx P Op is used to mark transactions as serialisable, and the spe-
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cification requires that in every execution X P ExecutionspΣRBq, any two transactions T, S Q SerTx
in X be compared by VISX . The abstract execution from Figure 1 is included in ExecutionspΣRBq,
but if it were modified so that transactions T1, T2 were marked as serialisable, then the result would
not belong to ExecutionspΣRBq.
Parallel Snapshot Isolation (PSI): This model strengthens causal consistency by enforcing the
Write Conflict Detection property: transactions writing to one same object do not execute concurrently.
PSI has been implemented in [24, 26]. We let ΣPSI “ tpρx, ρxquxPObj: then every execution
X P ExecutionspΣPSIq satisfies the inequation prWritesxs ; ARX ; rWritesxsq Ď VISX , for all
x P Obj. This specification is equivalent to the one presented in [13].
Snapshot Isolation (SI): This consistency model strengthens PSI by requiring that, in executions,
the set of transactions visible to any transaction T is a prefix of the arbitration relation. Formally, we
let ΣSI “ ΣPSIYtpρId, ρSIqu. The consistency guarantee pρId, ρSIq ensures that any abstract execution
X P ExecutionspSIq satisfies the property pARX ; VISX q Ď VISX

3. In [13], we have proved that this
specification is equivalent to the original, operational one [5].

Similarly to what we did to specify Red-Blue consistency, we can strengthen SI by allowing
the possibility to mark transactions as serialisable. The resulting x-specification is ΣSI`SER “

ΣSI Y tpρS , ρSqu. This x-specification captures a fragment of Microsoft SQL server, which allows
the user to select the consistency model at which a transaction should run [1].
Serialisability: Executions in this consistency model require the visibility relation to be total. This
can be formalised via the x-specification ΣSER :“ tpρId, ρIdqu. Any X P ExecutionspΣSERq is such
that ARX Ď VISX , thus enforcing VISX to be a strict total order.

3 Dependency Graphs

We present another style of specification for consistency models based on dependency graphs,
introduced in [2]. These are structures that capture the data-dependencies between transactions
accessing one same object. Such dependencies can be over approximated at compilation time. For
this reason, they have found use in static analysis [6, 14, 15, 16] for programs running under a weak
consistency model.

§ Definition 7. A dependency graph is a tuple G “ pT ,WR,WW,RWq, where T is a history and

1. WR : Obj Ñ 2TˆT is such that:

(a) @T, S P T .@x. T WRpxq
ÝÝÝÝÑ S ùñ T ‰ S ^ Dn. pT Q write x : nq ^ pS Q read x : nq,

(b) @S P T .@x. pS Q read x : nq ùñ DT. T
WRpxq
ÝÝÝÝÑ S,

(c) @T, T 1, S P T .@x. pT WRpxq
ÝÝÝÝÑ S ^ T 1

WRpxq
ÝÝÝÝÑ Sq ùñ T “ T 1;

2. WW : Obj Ñ 2TˆT is such that for every x P Obj, WWpxq is a strict, total order over Writesx;

3. RW : Obj Ñ 2TˆT is such that S
RWpxq
ÝÝÝÝÑ T iff S ‰ T and DT 1. T 1

WRpxq
ÝÝÝÝÑ S ^ T 1

WWpxq
ÝÝÝÝÑ T .

Given a dependency graph G “ pT ,WR,WW,RWq, we let TG :“ T , WRG :“ WR, WWG :“
WW, RWG :“ RW. The set of all dependency graphs is denoted as Graphs. Sometimes, we commit
an abuse of notation and use the symbol WR to denote the relation

Ť

xPObj WRpxq, and similarly for
WW and RW. The actual meaning of WR will always be clear from the context.

3 To be precise, the property induced by the guarantee pρId, ρSIq is pARX ; pVISX zIdqq Ď ARX . However, since
VISX is an irreflexive relation, VISX zId “ VISX . Also, note that ρpT , Rq “ R is not a specification function, so
we cannot replace the guarantee pρId, ρSIq with pρId, ρq.
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Let G P Graphs. T WRGpxq
ÝÝÝÝÝÑ S means that S reads the value of object x that has been written

by T . By Definition 7, for any transaction S P Readsx there exists exactly one transaction T such

that T
WRGpxq
ÝÝÝÝÝÑ S. The relation WWGpxq establishes a total order in which updates over object x are

executed by transactions. The relation RWGpxq takes the name of anti-dependency. T
RWGpxq
ÝÝÝÝÝÑ S

means that transaction T fetches some value for object x, but this is later updated by S. Given an
abstract execution X , we can extract a dependency graph graphpX q such that TgraphpX q “ TX .

§ Definition 8. Let X “ pT ,VIS,ARq be an execution. For x P Obj, we define graphpX q “
pT ,WRX ,WWX ,RWX q, where:

1. T
WRX pxq
ÝÝÝÝÝÑ S ðñ pS Q read x : _q ^ T “ maxARpVIS´1

pSq XWritesxq;

2. T
WWX pxq
ÝÝÝÝÝÑ S ðñ T

AR
ÝÝÑ S ^ T, S P Writesx;

3. T
RWX pxq
ÝÝÝÝÝÑ S ðñ S ‰ T ^ pDT 1. T 1

WRX pxq
ÝÝÝÝÝÑ T ^ T 1

WWX pxq
ÝÝÝÝÝÑ Sqq.

§ Proposition 9. For any valid abstract execution X , graphpX q is a dependency graph.

Specification of Consistency Models using Dependency Graphs. We interpret a depend-
ency graph G as a labelled graph whose vertices are transactions in Tx, and whose edges are pairs of
the form T

R
ÝÑ S, where R P tWRGpxq,WWGpxqG ,RWGpxq | x P Obju. To specify a consistency

model, we define a style of specifications of consistency models in two steps. We first identify one or
more conditions to be satisfied by dependency graphs. Such conditions require cycles of a certain
form not to appear in a dependency graph. Then we define a consistency model by projecting the set
of dependency graphs satisfying the imposed conditions into the underlying histories. This style of
specification is reminiscent of the one used in the CAT [3] language for formalising weak memory
models. In the following we treat the relations WRGpxq,WWGpxq,RWGpxq both as set-theoretic
relations, and as edges of a labelled graph.

§ Definition 10. A dependency graph based specification, or simply g-specification, is a set
∆ “ tδ1, ¨ ¨ ¨ , δnu, where for each i P t1, ¨ ¨ ¨ , nu, δi is a function of type Graphs Ñ 2pTˆTq and
satisfies δipGq Ď pWRG YWWG Y RWGq

˚ for every G P Graphs.
Given a g-specification ∆, we define Graphsp∆q “ tG P Graphs | @δ P ∆. δpGq X Id “ Hu, and

we let modelOfp∆q “ tT | DWR,WW,RW. pT ,WR,WW,RWq P Graphsp∆qu.
The requirement imposed over the functions δ1, ¨ ¨ ¨ , δn ensures that, whenever pT, Sq P δipGq, for
some dependency graph G, then there exists a path in G, that connects T to S. For ∆ “ tδiu

n
i“1

and G P Graphs, the requirement that δipGq X Id “ H means that G does not contain any cycle

T0
R0
ÝÝÑ T1

R1
ÝÝÑ ¨ ¨ ¨

Rn´1
ÝÝÝÑ Tn, such that T0 “ Tn, and pR0 ; ¨ ¨ ¨ ; Rn´1q Ď δipGq.

Examples of g-specifications of consistency models. Below we give some examples of
g-specifications for the consistency models presented in §2.

§ Theorem 11.

1. An execution X is serialisable iff graphpX q does not contain any cycle. That is, modelOfpΣSERq “

modelOfptδSERuq, where δSERpGq “ pWRG YWWG Y RWGq
`.

2. An execution X is allowed by parallel snapshot isolation iff graphpX q has no cycle where all
anti-dependency edges are over the same object. Let δPSI0pGq “ pWRG YWWGq

`, δPSIpxqpGq “
p
Ť

xPObjpWRGpxq YWWGpxqq
˚ ; RWGpxqq

`, and define ∆PSI “ tδPSI0u Y tδPSIpxq | x P Obju.
Then, modelOfpΣPSIq “ modelOfp∆PSIq.

3. An execution X is allowed by snapshot isolation iff graphpX q only admits cycles with at least two
consecutive anti-dependency edge. That is, modelOfpΣSIq “ modelOfptδSIuq, where δSIpGq “
ppWRG YWWGq ; RWG?q`.
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(a) Algebraic Laws for Sets of Transactions (c) Universal Algebraic Laws
(a.1) rT 1s Ď Id (a.2) rT1 X T2s “ rT1s ; rT2s (c.1) WRpxq Ď VIS (c.2) WWpxq Ď AR
(a.3) pR1 ; rT 1sq XR2 “ pR1 XR2q ; rT 1s (c.3) RWpxq Ď VIS´1 (c.4) VIS` Ď VIS
(a.4) prT 1s ; R1q XR2 “ rT 1s ; pRXR2q (c.5) AR` Ď AR (c.6) VIS Ď AR

(b) Algebraic Laws for (anti)Dependencies (c.7) rWritesxs ; VIS ; RWpxq Ď AR
(b.1) WRpxq Ď rWritesxs ; WRpxq ; rReadsxs (c.8) VIS ; VIS´1

Ď VIS´1

(b.2) WWpxq Ď rWritesxs ; WWpxq ; rWritesxs (c.9) VIS´1 ; VIS Ď VIS´1

(b.3) RWpxq Ď rReadsxs ; RWpxq ; rWritesxs (c.11) pVIS ; VIS´1
q X Id Ď H

(b.4) WRpxq Ď WRpxqzId (c.10) pVIS´1 ; VISq X Id Ď H
(b.5) WWpxq Ď WWpxqzId (c.12) ARX Id Ď H
(b.6) RWpxq Ď RWpxqzId

(d) Algebraic Laws induced by the Consistency Guarantee pρ, πq
(d.1) ρpVISq ; AR ; πpVISq Ď VIS (d.2) pπpVISq ; VIS´1 ; ρpVISqqzId Ď AR
(d.3) pAR ; πpVISq ; VIS´1

q X ρpT ˆ T q´1
Ď VIS´1

(d.4) pVIS´1 ; ρpVISq ; ARq X πpT ˆ T q´1
Ď VIS´1

Figure 3 Algebraic laws satisfied by an abstract execution X “ pT ,VIS,ARq. Here graphpX q “
pT ,WR,WW,RWq. The inequalities in part (d) are valid under the assumption that X P Executionsptρ, πuq.

Theorem 11(1) has been proved in [23], we proved Theorem 11(3) in [14], and the only if
condition of Theorem 11(2) was proved in [6]. However, to the best of our knowledge, the if condition
of the Theorem is new in this paper, and leads to a specification of PSI which describes the kind of
allowed cycles more precisely than the previous formalisation in [15]. We prove it formally in §5.

4 Algebraic Laws for Weak Consistency

Having two different styles for specifying consistency models gives rise to the following problems:
Weak Correspondence Problem: given a x-specification Σ, determine a non-trivial g-specification
∆ which over-approximates Σ, that is such that modelOfpΣq Ď modelOfp∆q.
Strong Correspondence Problem: Given a x-specification Σ, determine an equivalent g-specification
∆, that is such that modelOfpΣq “ modelOfp∆q.

We first focus on the weak correspondence problem, and we discuss the strong correspondence
problem in §5. This problem is not only of theoretical interest. Determining a g-specification ∆ that
over-approximates a x-specification Σ corresponds to establishing one or more conditions satisfied
by all cycles of dependency graphs from the set tgraphpX q | X P ExecutionspΣqu. Cycles in a
dependency graph that do not respect such a condition are called Σ-critical, and graphs that admit a
Σ-critical cycle cannot be obtained from abstract executions in ExecutionspΣq. One can ensure that
an application running under the model Σ is robust, i.e. it only produces serialisable behaviours, by
checking for the absence of non-Σ-critical cycles at static time [6, 16]. Robustness of an application
can also be checked at run-time, by incrementally constructing the dependency graph of executions,
and detecting the presence of non-Σ-critical cycles [29].

General Methodology. Let Σ be a given x-specification. We tackle the weak correspondence
problem in two steps.

First, we identify a set of inequations that hold for all the executions X satisfying consistency
guarantees pρ, πq in Σ. There are two kinds of such inequations. The first are the inequations
in Figure 3, and the second the inequations corresponding to the axioms of the Kleene Algebra
p2TˆT,H, Id,Y, ;, ¨˚q and the boolean algebra p2TˆT,H,Tˆ T,Y,X, ¨q. The exact meaning of the
inequations in Figure 3 is discussed later in this section.

Second, we exploit our inequations to derive inequations of the form RX Ď ARX for every
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X P ExecutionspΣq. Here RX is a relation built from dependencies and anti-dependencies in
graphpX q, i.e. RX Ď pWRX YWWX Y RWX q

˚. Because ARX is acyclic (that is AR`X X Id Ď H),
we may conclude that RX is acyclic for any X P ExecutionspΣq.

Some of the inequations we develop, namely those in Figure 3(d), are parametric in the consistency
guarantee pρ, πq. As a consequence, our approach can be specialised to any consistency model that
is captured by our framework. To show its applicability, we infer several robustness criteria for the
consistency models that we have presented.

Technical Development. Let X “ pT ,VIS,ARq, and graphpX q “ pT ,WR,WW,RWq. We
now explain the inequations in Figure 3. Among these, the inequations in Figures 3(a) and (b)
should be self-explanatory, as well as many of those in Figure 3(c).

In Figure 3(c), inequations (c.1), (c.2) and (c.3) relate dependencies to visibility and arbitration.
The inequation (c.3) is non-standard, and it relates anti-dependencies to a novel anti-visibility relation

VIS´1, defined as T VIS´1
ÝÝÝÑ S iff  pS VIS

ÝÝÑ T q. In words, T is anti-visible to S if S does not observe
the effects of T . As we will explain later, anti-visibility plays a fundamental role in the development
of our algebraic laws.

Proof Sketch of Inequation (c.3). Suppose T
RWpxq
ÝÝÝÝÑ S for some object x P Obj. By definition,

there exists a transaction T 1 such that T 1
WRpxq
ÝÝÝÝÑ T and T 1

WWpxq
ÝÝÝÝÑ S. In particular, T 1 AR

ÝÝÑ S by
the inequation (c.2). Now, if it were S VIS

ÝÝÑ T , by the definition of graphpX q we would have that

S
WRpxq
ÝÝÝÝÑ T , since S would be the AR-supremum of the set of transactions visible to T , and writing

to object x. But we already have T 1
WRpxq
ÝÝÝÝÑ S, causing a contradiction. Therefore, T VIS´1

ÝÝÝÑ S. đ

Another non-trivial inequation is (c.7) in Figure 3(c). It says that if a transaction T reads a value
for an object x that is later updated by another transaction S (T RW

ÝÝÑ Sq, then the update of S is more
recent (i.e. it follows in arbitration) than all the updates to x seen by T .

The inequations in Figure 3(d) are specific to a consistency guarantee pρ, πq, and hold for
an execution X when the execution satisfies pρ, πq. The inequation (d.1) is just the definition of
consistency guarantee. The next inequation (d.2) is where the novel anti-visibility relation, introduced
previously, comes into play. While the consistency guarantee pρ, πq expresses when arbitration
induces transactions related by visibility, the inequation (d.2) expresses when anti-visibility induces
transactions related by arbitration. To emphasise this correspondence, we call the inequation (d.2)
co-axiom induced by pρ, πq. Later in this section, we show how by exploiting the co-axiom induced
by several consistency guarantees, we can infer robustness criteria for several consistency models.
Proof of Inequation (d.2). Suppose that X P Executionsptpρ, πquq. Let T, T 1, S1, S P T be such

that T ‰ S, T
ρpVISq
ÝÝÝÝÑ T 1

VIS´1
ÝÝÝÑ S1

πpVISq
ÝÝÝÝÑ S. Because AR is total, either S AR

ÝÝÑ T or T AR
ÝÝÑ S.

T T 1 S1 S8
πpVISq VIS ρpVISq

AR

VIS
However, the former case is not possible. If so,

we would have S1
ρpVISq
ÝÝÝÝÑ S

AR
ÝÝÑ T

πpVISq
ÝÝÝÝÑ T 1.

But then because X P Executionsptpρ, πquq, by
the inequation (d.1), it follows that S1 VIS

ÝÝÑ T 1,

contradicting the assumption that T 1 VIS´1
ÝÝÝÑ S1.

Therefore, it has to be T AR
ÝÝÑ S. The proof of this proposition is depicted in the above figure.

Dashed edges represent the consequences of assuming S AR
ÝÝÑ T . The pair pT 1, S1q P VIS´1 is

represented by a crossed edge labelled VIS, which connects S1 to T 1, to emphasize the fact that

T 1
VIS´1
ÝÝÝÑ S1 ðñ  pS1

VIS
ÝÝÑ T 1q. đ

The last inequations (d.3) and (d.4) in Figure 3(d) show that anti-visibility edges of X are also
induced by the consistency guarantee pρ, π). We prove them formally in (§C), where we also illustrate
some of its applications.



XX:10 Algebraic Laws for Weak Consistency

Applications. The algebraic laws of Figure 3 can be used to characterise non-Σ-critical cycles,
for any x-specification Σ. Below we give several applications to the consistency models introduced

before. Henceforth, we use the notation R1
(eq)
Ď R2 to denote that the inequality R1 Ď R2 follows

from the inequation (eq). Due to lack of space, we only give proof sketches of our theorems, and
defer complete proofs to Appendix (§C).

§ Theorem 12. For all X P ExecutionspΣSERq, the relation pWRX YWWX Y RWX q is acyclic.

Proof. The co-axiom of the consistency guarantee pρId, ρIdq P ΣSER is the inequation VIS´1
X zId Ď

ARX . Together with the inequation (c.3), this leads to RWX
(b.6)
Ď RWX zId

(c.3)
Ď VIS´1

X zId
(d.2)
Ď AR.

From here it is easy to infer that pWRX YWWX Y RWX q Ď ARX , hence the former is acyclic. đ

§ Theorem 13. For all X P ExecutionspΣSIq, every cycle in graphpX q always includes two
consecutive RWX edges. That is, ppWRX YWWX q ; RWX ?q is acyclic.

Proof Sketch. Let X P ExecutionspΣSIq. We argue that, for any execution X P SI, the following
inequations can be derived in an algebraic manner: (i) WWX Ď VISX , and (ii) VISX ; RWX ? Ď
ARX . Inequation (i) is a consequence of SI enforcing the write-conflict detection property, i.e.
pρx, ρxq P ΣSI for any object x P Obj:

WWpxq
(b.2)
Ď rWritesxs ; WWpxq ; rWritesxs

(c.2)
Ď rWritesxs ; ARX ; rWritesxs

(d.1)
Ď VISX .

Inequation (ii) is a consequence of the co-axiom pVISX ; RWX qzId Ď AR induced by the consistency
guarantee pρId, ρSq (as we show in (§D), the latter can be strengthened to pVISX ; RWX q Ď ARX ),
and of inequation (c.3). As a consequence of (i), and Equation (c.1), it follows that pWRXYWWX q Ď

VISX . By substituting pWRX YWWX q for VISX in (ii), we obtain that pWRX YWWX q ; RWX ? is
included in AR, hence it is acyclic. đ

§ Theorem 14. For all X P ExecutionspΣPSIq, it is not possible that all anti-dependencies in a
cycle of graphpX q are over the same object: pWRX YWWX q

˚ ; RWpxq is acyclic for all x P Obj.
Proof Sketch. Let X P ΣPSI. Here we prove a slightly weaker result, and defer the full proof of

Theorem 14 to (§C). We show that, for any x P Obj, the relation prWritesxs ; pWRX YWWX q
˚ ;

RWX pxqq is acyclic. The proof relies on the following three properties of X , each of which can be
proved using the laws of Figure 3: (i) pWRX YWWX q

` Ď VISX , (ii) prWritesxs ; RWX q Ď ARX ,
and (iii) rWritesxs ; VIS ; RWX pxq Ď ARX . The latter is an immediate consequence of Inequation
(c.7). Inequation (i) can be proved as in Theorem 13, since pρx, ρxq P PSI for any object x P Obj.
Inequation (ii) is a consequence of the co-axiom induced by pρx, ρxq:

rWritesxs ; RW
(b.6)
Ď rWritesxs ; pRWX pxqzIdq

(a.4)
“ prWritesxs ; RWX pxqqzId

(b.3)
Ď

prWritesxs ; RWX pxq ; rWritesxsqzId
(c.3)
Ď prWritesxs ; VIS´1

X ; rWritesxsqzId
(d.2)
Ď ARX .

By combining (i), (ii) and (iii), we obtain that rWritesxs ; pWRX YWWX q
˚ ; RWX pxq Ď ARX ,

and therefore rWritesxs ; pWRX YWWX q
˚ ; RWX pxq is acyclic. đ

§ Theorem 15. Let X P ExecutionspΣRBq. Say that a RWX edge in a cycle of graphpX q is
serialised if its endpoints are connected to serialisable transactions via a sequence of WRX edges.
Then all cycles in graphpX q have at least one non-serialised RWX edge. Formally, let ,RWX- be
prSerTxs ; pWRX q

˚ ; RWX ; pWRX q
˚ ; rSerTxsq. Then pWRX YWWX Y,RWX-q is acyclic.

Proof Sketch. Let X P ExecutionspΣRBq. Note that by equations (c.1), (c.3), (c.8) and (c.9), we
can easily deduce that WR˚X ; RWX ; WR˚X Ď VIS´1

X . The co-axiom of the consistency guarantee
pρS , ρSq, gives p,RWX-qzId Ď prSerTxs ; VIS´1

X ; rWritesxsqzId Ď ARX . In practice, we can
prove a stronger inequation, namely ,RWX- Ď ARX . From here it is immediate to deduce that
pWRX YWWX Y,RWX-q Ď AR, from which the result follows.
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WR Ď XV (V1) XV ; XV Ď XV (V2)
ď

tx|pρx,ρxqPΣu

WWpxq Ď XV (V3)

ρpXV q ; XA ; πpXV q Ď XV (V4)

WW Ď XA (A1) XV Ď XA (A2)
ď

xPObj

prWritesxs ; XV ; RWpxqq Ď XA (A3)

XA ; XA Ď XA (A4) pπpXV q ; XN ; ρpXV qq zId Ď XA (A5)

RW Ď XN (N1) XV ; XN Ď XN (N2) XN ; XV Ď XN (N3)

Figure 4 The system of inequations SystemΣpGq for the simple consistency model Σ and the dependency
graph G “ pT ,WR,WW,RWq.

5 Characterisation of Simple Consistency Models

We now turn our attention to the Strong Correspondence Problem presented in §4. Given a x-
specification Σ “ tpρ1, π1q, ¨ ¨ ¨ , pρn, πnqu and a dependency graph G, we want to find out a sufficient
and necessary condition for determining whether G “ graphpX q for some X P ExecutionspΣq.

In this section we propose a proof technique for solving the strong correspondence problem. This
technique applies to a particular class of x-specifications, which we call simple x-specifications. This
class includes several of the consistency models we have presented. We conclude the section by
showing why our proof technique is not sound in the case of non-simple x-specifications.

Characterisation of Simple x-specifications. Recall that for each object x P Obj, the function
ρx of an abstract execution X maps a relation R on transactions in X to the relation rWritesxs.
§ Definition 16. A x-specification Σ is simple if there exists a consistency guarantee pρ, πq such
that Σ Ď tpρ, πqu Y tpρx, ρxquxPObj.

That is, a simple x-specification Σ contains at most one consistency guarantee, beside those of the
form pρx, ρxq which express the write-conflict detection for some object x P Obj. Recall that the
axiom induced by pρx, ρxq for an abstract execution X is prWritesxs ; ARX ; rWritesxsq Ď VISX .
Among the x-specifications that we have presented in this paper, the only non-simple one is ΣSI`SER.

For simple x-specifications, it is possible to solve the strong correspondence problem, as illustrated
by the main result of this section:

§ Theorem 17. Let Σ Ď tpρ, πqu Y tpρx, ρxq | x P Obju be a simple x-specification, and let
G P Graphs. Define SystemΣpGq to be the collection of inequations about XV , XA and XN depicted
in Figure 4; the inequations involving pρ, πq are included in SystemΣpGq only if pρ, πq is in Σ. Let
pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q be the smallest solution of SystemΣpGq.4 Note that
AR0 need not to be total here. Then, G “ graphpX q for some X P ExecutionspΣq iff AR0 X Id “ H.

As an immediate consequence of Theorem 17 we obtain the following result:

§ Corollary 18. Let Σ Ď tpρ, πqu Y tpρx, ρxq | x P Obju be a simple x-specification. For each
dependency graph G, let pXV “ _, XA “ ARG , XN “ _q be the smallest solution of SystemΣpGq,
and define δpGq “ ARG . Then modelOfpΣq “ modelOfptδuq.

In the rest of the section, we will discuss the if direction of Theorem 17. Assume a simple
x-specification Σ Ď tpρ, πqu Y tpρx, ρxquxPObj, and a dependency graph G with the property that
the smallest solution pXV “ VIS0, XA “ AR0, XN “ AntiVis0q of SystemΣpGq is such that AR0 is
irreflexive. We will construct construct an abstract execution X “ pT ,VIS,ARq P ExecutionspΣq

4 That is, for any other solution pXV “ VIS, XA “ AR, XN “ AntiVISq we have VIS0 Ď VIS,AR0 Ď AR and
AntiVIS0 Ď AntiVIS.
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with graphpX q “ G in two steps.
First, we note that for any solution pXV “ VIS1, XA “ AR1, XN “ AntiVIS1q of SystemΣpGq

with irreflexive AR1, we may take its parts and construct the triple pTG ,VIS1,AR1q. This tuple satisfies
almost all the properties required for being an abstract execution in ExecutionspΣq except that AR1

does not necessarily relate all the transactions in TG . It is an example of pre-execution:

§ Definition 19. A pre-execution P “ pTG ,VIS,ARq is a tuple that satisfies all the constraints of
abstract executions, except that AR is not necessarily total, although AR is still required to be total
over the set Writesx for every object x.

The notation adopted for abstract executions naturally extends to pre-executions; also, for any valid
pre-execution P , graphpPq is well defined. Given a x-specification Σ, we let PreExecutionspΣq be
the set of all valid pre-executions that satisfy the consistency guarantees pρ, πq P Σ.
§ Proposition 20. Let pXV “ VIS1, XA “ AR1, XN “ AntiVIS1q be a solution to SystemΣpGq. If
ARX Id “ H, then P “ pTG ,VIS1,AR1q P PreExecutionspΣq; moreover, graphpPq “ G.
Proof Sketch. Each of the inequations (V1)-(V4) and (A1)-(A4) enforces one particular property
required by elements of PreExecutionspΣq:

The inequations (A1),(A2) and (A4) ensure that P is a pre-execution; in particular the first of
these inequations ensures that AR1 is a total relation over any of the sets Writesx, x P Obj; because
of the inequation (V2), P respects causality;
The inequations (V1), (A1) and (A3) enforce the Last Write Wins policy, a statement which we
prove formally in (§D); in particular, the inequation (A3) prevents a transaction T reading a value

for object x, from seeing any transaction writing a newer value for such an object: if S
WRpxq
ÝÝÝÝÑ

V
RWpxq
ÝÝÝÝÑ T , then S AR1

ÝÝÑ T by inequations (V1) and (A3), which leads to  pT VIS1
ÝÝÑ Sq because

the inequation (A2) implies VIS1 Ď AR1, and AR1 X Id “ H by hypothesis;
The inequation (V3) implies that the pre-execution P satisfies each of the consistency guarantees
pρx, ρxq P Σ; finally, the inequation (V4) ensures that the additional consistency guarantee
pρ, πq P Σ is also satisfied by P . đ

Second, we show that some solution pXV “ VIS, XA “ AR, XN “ AntiVISq of SystemΣpGq
has a total AR. This implies the if direction of Theorem 17. Recall our assumption that the smallest
solution pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q of SystemGpΣq is such that AR0 X Id “ H.
This requirement is necessary for the solution pXV “ VIS, XA “ AR, XN “ AntiVISq above to
exist. However, it is not the only necessary condition. The following example shows that the smallest
solution of SystemΣpGq also has to satisfy inequations (A5) and (N1)-(N3).

Example. Consider the simple x-specification ΣRB. We define the system Systembad
ΣRB
pGq

T

S

RW RW

read x : 0 write y : 1

read y : 0 write x : 1

by removing inequations (A5), (N1), (N2), and (N3) from
SystemΣRB

pGq. This system has two unknowns XV , XA.
Consider the dependency graph depicted to the right. Here
the transactions T, S have a double border to denote that
they have been marked as serialisable: T, S Q SerTx. We
also omitted a transaction T0 that is visible from T, S and
writes the initial value 0 for objects x and y. The smal-
lest solution to Systembad

ΣRB
pGq is given by pXV “ VIS10, XA “ AR10q, where VIS10 “ AR10 “

tpT0, T q, pT0, Squ. AR10 is irreflexive, but it is immediate to observe that TG R modelOfpΣRBq.
On the other hand, let pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q be the smallest solution of

the original System SystemΣRB
pGq. In this case we have that AntiVIS0 “ tpT, Sq, pS, T qu because

of the inequation (N1), and therefore pT, T q P AR0 because of the inequations (A5) and (A4). It
follows that AR0 is not irreflexive. đ

It turns out that the conditions we have placed on SystemΣpGq, as well as our initial assumption
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that its smallest solution pXV “ _, XA “ AR0, XN “ _q is such that AR0 is irreflexive, are also
sufficient to establish the existence of another solution pXV “ VIS, XA “ AR, XN “ AntiVISq such
that AR is a total relation.

To prove this claim, we take an incremental approach. Initially, let n “ 0, and consider the solution
pXV “ VISn, XA “ ARn, XN “ AntiVISnq of SystemG . If all different T, S are related by ARn,
then ARn is a strict total order, and we can take VIS :“ VISn,AR :“ ARn,AntiVIS :“ AntiVISn.
Otherwise, we choose two transactions Tn, Sn that are not related by ARn. We compute the smallest
solution pXV “ VISn`1, XA “ ARn`1, XN “ AntiVISn`1q to SystemΣpGq with the additional
property that ARn`1 Ě ARn Y tpTn, Snqu, and we repeat the procedure for n :“ n` 1.

Interestingly enough, the solution pXV “ VISn`1, XA “ ARn`1, XN “ AntiVISn`1q in the
procedure above can be expressed in function of ARn,VISn,AntiVISn. For example, ARn`1 can be
expressed as follows:
§ Proposition 21. Let ∆ARn :“ ARn? ; tpTn, Snqu ; ARn?. Then ARn`1 “ ARn Y∆ARn.
An important consequence of Proposition 21 is that the acyclicity of the tARiuni“0 relations is
preserved by the procedure described above.

§ Corollary 22. If ARn X Id “ H, then ARn`1 X Id “ H.

Proof. Because ARn X Id “ H by hypothesis, by Proposition 21 it suffices to show that ∆ARn
is irreflexive: if pT, T q P ∆ARn for some T P TG , then it must be T ARn?

ÝÝÝÑ Tn and Sn
ARn?
ÝÝÝÑ T ,

from which it follows that Sn
ARn?
ÝÝÝÑ Tn. But this contradicts the hypothesis that ARn does not relate

transactions Tn and Sn. Therefore, pT, T q R ∆ARn for any T P TG , i.e. ∆ARn is irreflexive. đ

We have now everything in place to prove Theorem 17.
Proof of Theorem 17. For the only if direction, let X “ pTG ,VIS,ARq P ExecutionspΣq,

and suppose that graphpX q “ G. It follows from the algebraic laws developed in Section 4 that
pXV “ VIS, XA “ AR, XN “ VIS´1

q is a solution to SystemGpΣq. Let pXV “ VIS0, XA “

AR0, XN “ AntiVIS0q be the smallest solution to SystemΣpGq. We have that AR0 Ď AR, and
because AR is irreflexive, so is AR0.

Let now G be a dependency graph, and let pXV “ _, XA “ AR0, XN “ _q be the smallest
solution to SystemΣpGq. Assume that AR0 X Id “ H. If AR0 is a strict total order, then we have
that X “ pTG ,VIS0,AR0q P ExecutionspΣq, and graphpX q “ G, by Proposition 20 and we are
done. Otherwise, we choose pT0, S0q such that neither T0 “ S0, T0

AR0
ÝÝÑ S0, nor S0

AR0
ÝÝÑ T0. We

compute the smallest solution pXV “ _, XA “ AR1, XN “ _q of SystemΣpGq with the property
that AR1 Ě AR0 Y tpT0, S0qu: by Corollary 22 it follows that AR1 is irreflexive. We iterate this
procedure until we do not reach a solution pXV “ _, XA “ ARn, XN “ _q such that ARn is total;
such a solution exists because at each step of the iteration we decrease the number of transactions
that are not related by ARi, i “ 1, ¨ ¨ ¨ , n. By Corollary 22 we know that ARn X Id “ H, hence by
Proposition 20 we obtain that pTG ,VISn,ARnq P PreExecutionspΣq. Since ARn is a total relation, it
follows that P P ExecutionspΣq, as we wanted to prove. đ

Applications. Corollary 18 is a powerful proof technique for solving the strong correspondence
problem. Given a simple x-specification Σ, we can recover an equivalent g-specification ∆ by simply
solving the collection of systems SystemΣp¨q. Below we give a proof of Theorem 11.
Proof Sketch of Theorem 11. For each of the x-specifications Σ considered in Theorem

11, and for any dependency graph G, we compute the smallest solution pXV “ VISΣ
G , XA “

ARΣ
G , XN “ AntiVISΣ

G q of SystemΣpGq, and note that ARΣ
G coincides with the union of the desired

relations δpGq. For example, for ΣPSI, we obtain that VISΣPSI
G “ pWRG YWWGq

`, AntiVISΣPSI
G “

VISΣPSI
G ? ; RWG ; VISΣPSI

G ?, while ARΣPSI
G “ VISΣPSI

G Y

´

Ť

xPObjpVISΣPSI
G q? ; RWpxq

¯`

“ δPSI0pGqY
´

Ť

xPObj δPSIpxqpGq
¯

. We show how to solve the system of inequations in (§D). đ
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Incompleteness for Arbitrary x-specifications of Consistency Models. One could ask
whether Theorem 17 holds for non-simple x-specifications Σ, where SystemΣpGq is defined by includ-
ing inequations of the form (V4), (A5), for each consistency guarantee pρ, πq P Σ. Unfortunately, this
is not the case. Consider the x-specification Σ “ tpρId, ρSIq, pρS , ρSqu, and let G be the dependency
graph depicted to the right. Recall that transactions with a double border are marked as serialisable.

T1

T2 T3

T4

RWpxq

WWpzq

RWpvq

WWpyqwrite y : 2
read x : 0

write x : 1
write z : 1 write z : 2

read v : 0

write v : 1
write y : 1

We omitted from G a transaction T0 which
writes the value 0 for objects x, v, and which
is seen by T1, T3. For the dependency graph G,
the least solution of SystemΣpGq is pXV “

_, XA “ AR0, XN “ _q, where AR0 “

tpT2, T3q, pT4, T1qu Y tpT0, Tiqu
4
i“1. That is,

AR0 is acyclic. However, there exists no ab-
stract execution X P ExecutionspΣq such that
graphpX q “ G. In fact, if such X existed, then
T1 and T3 should be related by ARX . However, it cannot be T1

ARX
ÝÝÝÑ T3: the axiom of the consistency

guarantee pρS , ρSq, rSerTxs ; ARX ; rSerTxs Ď VISX , would imply T1
VISX
ÝÝÝÑ T3; together with

T3
RWX
ÝÝÝÑ T4 and the co-axiom induced by pρId, ρSIq, pVISX ; VIS´1

X qzId Ď ARX , this would mean

that T1
ARX
ÝÝÝÑ T4. But we also have T4

ARX
ÝÝÝÑ T1, hence a contradiction. Similarly, we can prove

 pT3
ARX
ÝÝÝÑ T1q.

6 Conclusion

We have explored the connection between two different styles of specifications for weak consistency
models at an algebraic level.We have proposed several laws which we applied to devise several
robustness criteria for consistency models. To the best of our knowledge, this is the first generic proof
technique for proving robustness criteria of weak consistency models. We have shown that, for a
particular class of consistency models, our algebraic approach leads to a precise characterisation of
consistency models in terms of dependency graphs. In the future, we intend to mechanise our proof
technique for inferring robustness criteria. We also plan to continue exploring the space of algebraic
laws that connect dependency graphs to abstract execution: our goal, in this respect, is that of giving
a precise characterisation for all consistency models, in terms of dependency graphs.

Related Work. Abstract executions have been introduced by Burckhardt in [10] to model the
behaviour of eventually consistent data-stores; They have been used to capture the behaviour of
replicated data types [Gotsman et al., 11], geo-replicated databases [Cerone et al., 13] and non-
transactional distributed storage systems [Viotti et al., 28].

Dependency graphs have been introduced by Adya [2]; they have been used since to reason about
programs running under weak consistency models. Bernardi et al., used dependency graphs to derive
robustness criteria of several consistency models [6], including PSI and red-blue; in contrast with
our work, the proofs there contained do not rely on a general technique. Also, the proposed criterion
for red-blue is less precise than ours. Brutschy et al. generalised the notion of dependency graphs to
replicated data types, and proposed a robustness criterion for eventual consistency [8].

Weak consistency also arises in the context of shared memory systems [3]. Alglave et al., proposed
the CAT language for specifying weak memory models in [3], which also specifies weak memory
models as a set of irreflexive relations over data-dependencies of executions. Castellan [12], and
Jeffrey et al. [18], proposed different formalisations of weak memory models via event structures.

The strong correspondence problem (§5) is also highlighted by Bouajjani et al. in [7]: there the
authors emphasize the need for general techniques to identify all the bad patterns that can arise in
dependency-graphs like structures. We solved the strong correspondence problem for SI in [14].
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28 P. Viotti and M. Vukolić. Consistency in non-transactional distributed storage systems. ACM
Comput. Surv., 49(1):19:1–19:34, June 2016.

29 K. Zellag and B. Kemme. Consistency anomalies in multi-tier architectures: Automatic detection
and prevention. The VLDB Journal, 23(1), 2014.



REFERENCES XX:17

A Exampes of Anomalies

We give examples of several anomalies: for each of them we list those consistency models, among
those considered in the paper, that allow the anomaly, and those that forbid it. For the sake of clarity,
we have removed from the pictures below a transaction writing the initial value 0 to relevant objects,
and visible to all other transactions. Also, unnecessary visibility and arbitration edges are omitted
from the Figure.

Fractured Reads: Transaction T2 reads only one of the updates performed by transaction T1:

Allowed by: No consistency model enjoying atomic visibility allows this anomaly.

T1

T2

AR

write x : 1 write y : 1

read x : 1 read y : 0

Violation of Causality: The update of transaction T2 to object y depends on the value of x written
by another transaction T1. For example, T2 can be generated by the code ifpx “ 1q then y :“ 1;.
A third transaction T3 observes the update to y, but not the one to x.

Allowed by: None of the models discussed in the paper. However, some other consistency
models such as Read Atomic [4] allow this anomaly.

T1 T2 T3

8

VIS VIS

VIS

write x : 1 read x : 1 write y : 1 read x : 0 read y : 1

Lost Update: This is the abstract Execution depicted in Figure 1, which we draw again below.
Two transactions T1, T2 concurrently update the state of the same object, after reading the initial
value for it.

Allowed by: Causal Consistency, Red-blue Consistency,
Forbidden by: Parallel Snapshot Isolation, Snapshot Isolation, Serialisability.

AR

VIS

VIS

acct := acct + 50

acct := acct + 25

T1

T2

S
read acct : 0 write acct : 50

read acct : 0 write acct : 25

read acct : 25
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Serialisable Lost Update: This execution is the same as the one above, but the two transactions
T1, T2 are marked as serialisable. This is represented in the figure below with a double box.
Because Causal Consistency does not distinguish between transactions marked as serialisable from
those that are not marked as such, it allows the serialisable lost update. However, this anomaly is
forbidden by red-blue consistency.

Allowed by: Causal Consistency,

Forbidden by: Red-blue Consistency, Parallel Snapshot Isolation, Snapshot Isolation, Serialis-
ability.

AR

VIS

VIS

acct := acct + 50

acct := acct + 25

T1

T2

S
read acct : 0 write acct : 50

read acct : 0 write acct : 25

read acct : 25

Long Fork: Two transactions T1, T2 write to different objects: two other transactions T3, T4 only
observe the updates of T1, T2, respectively:

Allowed by: Causal Consistency, Red-blue Consistency, Parallel Snapshot Isolation,

Forbidden by: Snapshot Isolation, Serialisability.

T1

T2

T3

T4

VIS

VIS

AR

write x : 1 read x : 1 read y : 0

write y : 1 read y : 1 read x : 0

Long Fork with Serialisable Updates: This is the same as the long fork, but the transactions
T1, T2 that write to objects x, y, respectively, are marked as serialisable. Because Parallel Snapshot
Isolation does not take serialisable transactions into account, it allows this anomaly. However,
Red-Blue consistency distinguishes between serialisable and non-serialisable transactions, hence it
does not allow it.

Allowed by: Causal Consistency, Parallel Snapshot Isolation,

Forbidden by: Red-blue Consistency, Snapshot Isolation, Serialisability.



REFERENCES XX:19

T1

T2

T3

T4

VIS

VIS

AR

write x : 1 read x : 1 read y : 0

write y : 1 read y : 1 read x : 0

Remark: Note that Red-blue consistency forbids this anomaly, but allows the lost update anomaly
from above. In contrast, Parallel Snapshot Isolation allows this anomaly, but forbids the lost-update
anomaly. In other words, Red-blue Consistency and Parallel Snapshot Isolation are incomparable:
ExecutionspΣRBq Ę ExecutionspΣPSIq and ExecutionspΣPSIq Ę ExecutionspΣRBq.

Write Skew: Transactions T1, T2 read each the initial value of an object which is updated by the
other.

Allowed by: Causal Consistency, Red-blue Consistency, Parallel Snapshot Isolation, Snapshot
Isolation,
Forbidden by: Serialisability.

T1

T2

AR

read x : 0 write y : 1

read y : 0 write x : 1

B Session Guarantees and Non-Causal Consistency Models

We augment histories with sessions: clients submit transactions within sessions, and the order in
which they are submitted to the database is tracked by a session order. We propose a variant of
x-specifications that allows for specifying session guarantees, as well as causality guarantees that are
weaker than causal consistency.

§ Definition 23. Let T be a set of transactions, and let tT1, T2, ¨ ¨ ¨ , Tnu be a partition of T . An
extended history is a pair H “ pT ,SOq, where SO “

Ťn
i“1 SOi, and each SOi is a strict, total order

over Ti. Each of the sets Ti “ 1, ¨ ¨ ¨ , n takes the name of session, and we call SO the session order.

Given a history H “ pT ,SOq, we let TH “ T , and SOH “ SO. If pT ,SOq is a history, and
pT ,VIS,ARq is an abstract execution, then we call pT ,SO,VIS,ARq an extended abstract execution.
Specification functions can also be lifted to take extended abstract executions into account: an
extended specification function is a function ρ : pH, Rq ÞÑ R1, such that for any extended history H
and relation R Ď THˆ TH, ρpH, Rq “ ρpH, THˆ THq XR?. An example of extended specification
function is ρpH, Rq “ RzpSOH?q. An extended consistency guarantee is a pair pρ, πq, where ρ, π
are extended specification functions.

§ Definition 24. A session guarantee is a function σ : 2TˆT Ñ 2TˆT such that, for any relation
R Ď T ˆ T, σpRq Ď R?. A causality guarantee is a pair pγ, βq, where γ and β are extended
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specification functions.
An extended x-specification of a consistency model is a triple Σ “ ptσiuiPI , tpγj , βjqujPJ ,

tρk, πkukPKq, where I, J,K are (possibly empty) index sets, for any i P I, jJ and k P K, σi is a
session guarantee, pγj , βjq is a causality guarantee, and pρk, πkq is an extended consistency guarantee.

Note that the definition of causality and (extended) consistency guarantees are the same. However,
they play a different role when defining the set of executions admitted by a consistency model.

§ Definition 25. An extended abstract execution X “ pT ,SO,VIS,ARq conforms to the extended
specification ptσiuiPI , tγj , βjujPJ , tpρk, πkqukPK iff

1. for any i P I , σipSOq Ď VIS
2. for any j P J , γjpH,VISq ; βjpH,VISq Ď VIS,
3. for any k P K, ρkpH,VISq ; AR ; πkpH,VISq Ď VIS.

Any x-specification can be lifted to an extended one: let γCCp_, Rq “ pRzIdq5. Let also Σ be any x-
specification, and for any pair pρ, πq P Σ, define ρ1p_, Rq “ ρpRq, π1p_, Rq “ πpRq. Then for any ab-
stract X , X P ExecutionspΣq iff X conforms to the extended specification pH, tpγCC, γCCu, tpρ

1, π1q |

pρ, πq P Σuq.
Dependency graphs can also be extended to take sessions into account. If pT ,SOq is a history,

and pT ,WR,WW,RWq is a dependency graph, then G “ pT ,SO,WR,WW,RWq is an exten-
ded dependency graph. Given an extended abstract execution X “ pT ,SO,VIS,ARq, we define
graphpX q “ pT ,SO,WR,WW,RWq, where pT ,WR,WW,RWq “ graphpT ,VIS,ARq. An ex-
tended abstract execution X “ pT ,SO,VIS,ARq with underlying extended dependency graph
graphpX q “ pT ,SO,WR,WW,RWq and conforming to the extended specification
ptσiuiPI , tpγj , βjqujPJ , tpρk, πkqukPK , satisfies all the Equations of Figure 3, exception made for
equations, (c.8) and (c.9). Furthermore, sessions and causality guarantees induce novel inequations,
which are listed below:

1.
Ť

iPI σipSOq Ď VIS,
2. for any j P J , pβjpH,VISq ; VIS´1

q X γpH, T ˆ T q´1 Ď VIS´1,
3. for any j P J , pVIS´1 ; γjpH,VISqq X βjpH, T ˆ T q´1VIS´1.

Equation (1) is obviously satisfied. To see why (3) is satisfied by X , suppose that T
βpH,VISq
ÝÝÝÝÝÝÑ

V
VIS´1
ÝÝÝÑ S, and S

γpH,TˆT q
ÝÝÝÝÝÝÝÑ T . If it were S VIS

ÝÝÑ T , then we would have a contradiction: because

γ is a specification function, S
γpH,T ˆT q
ÝÝÝÝÝÝÝÑ T and S VIS

ÝÝÑ T imply that S
γpH,VISq
ÝÝÝÝÝÑ T , and together

with T
βpH,VISq
ÝÝÝÝÝÝÑ V then we would have S VIS

ÝÝÑ V , contradicting the assumption that V VIS´1
ÝÝÝÑ S.

Therefore it has to be  pS VIS
ÝÝÑ T q, or equivalently T VIS´1

ÝÝÝÑ S.
Examples of Session Guarantees:. Below we give some examples of session guarantees,

inspired by [27].
Read Your Writes: This guarantee states that when processing a transaction, a client must see
previous writes in the same session. This can be easily expressed via the collection of consist-
ency guarantees tσRYWpxqpRquxPObj, where for each object x, σRYWpxqpRq “ rWritesxs ; R ;
rReadsxs. An extended abstract execution X “ pT ,SO,VIS,ARq satisfies this session guarantee if
Ť

xPObj rWritesxs ; SO ; rReadsxs Ď VIS,
Monotonic Writes: This guarantee states that transactions writing at least to one object are pro-
cessed in the same order in which the client requested them. It can be specified via the func-
tion σMWpRq “ p

Ť

xPObj rWritesxsq ; R ; p
Ť

xPObj rWritesxsq. Any extended abstract execution

5 The difference with the identity relation is needed for γ to satisfy the definition of specification function. However,
we will always apply γ to an irreflexive relation R, for which γp_, Rq “ pRzIdq “ R.
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X “ pT ,SO,VIS,ARq satisfies the monotonic writes guarantee, is such that p
Ť

xPObj rWritesxsq ;
SO ; p

Ť

xPObj rWritesxsq Ď VIS,
Strong Session Guarantees: This guarantee states that all transactions are processed by the database
in the same order in which the client requested them. It can be specified via the function σSSpRq “ R;
an extended abstract execution pT ,SO,VIS,ARq satisfies this guarantee if SO Ď VIS.

Examples of Causality Guarantee: . We have already seen how to model causal consistency
via the causality guarantee pγCC, γCCq. Below we give an example of weak causality guarantee:
Per-object Causal Consistency: this guarantee states that causality is preserved only among transac-
tions accessing the same object. That is, let γxpRq “ prWritesx Y Readsxs ; R ; rWritesx Y ReadsxsqzId.
The difference with the identity set is needed in order for γxpRq to be a specification function. By
definition, An extended abstract execution X “ pT ,SO,VIS,ARq that satisfies the per-object causal
consistency guarantee, satisfies the inequation rWritesx Y Readsxs ; VIS ; rWritesx Y Readsxs ;
VIS ; rWritesx Y Readsxs Ď VIS.

C Additional Proofs of Algebraic Laws and Necessary Acyclicity
Conditions

Throughout this Section, we assume that X “ pT ,VIS,ARq is a valid abstract execution, and
graphpX q “ pT ,WR,WW,RWq.

First, a result about specification functions, which was hinted at in the main paper:

§ Proposition 26. Let ρp¨q be a specification function. For all histories T and relationsR,R1 Ď T ˆT ,

(i) ρpRq Ď R?;
(ii) ρpT ˆ T q XR Ď ρpRq;

(iii) ρpRq Y ρpR1q “ ρpRYR1q.

Proof. Recall that, by definition, if ρ is a specification function, then ρpRq “ ρpT ˆ T q XR?. It is
immediate to observe then that (i) ρpRq Ď R?, and (ii) ρpT ˆ T q XR Ď ρpT ˆ T q XR? “ ρpRq.
To prove (iii) note that

ρpRq Y ρpR1q “ pρpT ˆ T q XR?q Y pρpT ˆ T q XR1?q “ ρpT ˆ T q X pR?YR1?q “
ρpT ˆ T q X pR Y R1q? “ ρpR Y R1q

đ

C.1 Proof of the Algebraic Laws in Figure 3

§ Proposition 27. All the inequations in Figure 3(a) are satisfied.

Proof. We prove each of the Equations in Figure 3(a) individually. Throughout the proof, we let
T 1, T1, T2 Ď T , and R1, R2 Ď T ˆ T

(a.1): by Definition, rT 1s “ tpT, T q | T P T u Ď IdT ,
(a.2): note that we can rewrite rTis “ tpT, Sq | T P T1 ^ S P T1 ^ T “ Su, where i “ 1, 2; then

rT1s ; rT2s “ tpT, Sq | DV. pT, V q P rT1s ^ pV, Sq | rT2su “

tpT, Sq | DV. T P T1 ^ V P T1 ^ T “ V ^ S P T2 ^ V P T2 ^ V “ Su “

tpT, Sq | T P T1 ^ S P T1 ^ S “ V ^ S P T2 ^ T P T2u “

tpT, Sq | T P pT1 X T2q ^ S P pT1 X T2q ^ pS “ T qu “ rT1 X T2s
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(a.3):

pR1 ; rT 1sq XR2 “ tpT, Sq | pDV. pT, V q P R1 ^ V P T 1 ^ V “ Sq ^ pT, Sq P R2u “

tpT, Sq | pT, Sq P R1 X R2 ^ S P T 1u “ pR1 X R2q ; rT 1s

(a.4):

prT 1s ; R1q XR2 “ tpT, Sq |“ pDV. T “ V ^ T P T 1 ^ pV, Sq P R1q ^ pT, Sq P R2u “

tpT, Sq | pT, Sq P R1 X R2 ^ T P T 1u “ rT 1s ; pR1 X R2q

đ

§ Proposition 28. All the inequations of Figure 3(b) are satisfied by X .
Proof. We only prove inequations (b.1) and (b.4). The proof for the other equations is similar.

Suppose that pT, Sq P WRpxq. By Definition, T Q read x : _, hence pT, T q P rReadsxs. Also,
S P VIS´1

XWritesx Ď Writesx, from which pS, Sq P rWritesxs follows. Thus, pT, Sq P rReadsxs ;
WRpxq ; rWritesxs; this proves Equation (b.1).

Also, because T P VIS´1
pSq, then VIS Ď AR and AR X Id Ď H: by Definition of abstract

execution, then T ‰ S. Therefore, WRpxq X Id “ H. Now we can rewrite

WRpxq “ pWRpxq X pIdY Idqq “ pWRpxq X Idq YWRpxq X Id “
HY pWRpxq X Idq “ WRpxq X Id “ WRpxqzId.

đ

§ Proposition 29. X satisfies the inequation (c.3).

Proof. Let T, S be such that T
RWpxq
ÝÝÝÝÑ S; by Definition, T ‰ S, T Q read x : n, S Q write x : m

for some n,m P N. Also, there exists a T 1 P T such that T 1
WRpxq
ÝÝÝÝÑ T, T 1

WWpxq
ÝÝÝÝÑ S. Because

T 1
WRpxq
ÝÝÝÝÑ T , by definition of graphpX q it follows that T 1 “ maxARpVIS´1

pT qXWritesxq. Because

T 1
WWpxq
ÝÝÝÝÑ S and because of the inequation (c.2), it must be the case that T 1 AR

ÝÝÑ S. Because
T 1

AR
ÝÝÑ S, S P Writesx, and T 1 “ maxARpVIS´1

pT qXWritesx, it must be the case that pS VIS
ÝÝÑ T q,

or equivalently T VIS´1
ÝÝÝÑ S. đ

§ Proposition 30. X satisfies inequations (c.1), (c.2) and (c.7).
Proof. The inequations (c.1) and (c.2) follow directly from the Definition of graphpX q. It remains

to prove the inequation (c.7). Let T, S, T 1 be three transactions such that T Q write x : _, T VIS
ÝÝÑ S

and S
RWpxq
ÝÝÝÝÑ T 1; we need to show that T AR

ÝÝÑ T 1. Recall that, because X is an abstract execution,
then the relation AR is total: either T “ T 1, T 1 AR

ÝÝÑ T , or T AR
ÝÝÑ T . It is not possible that T “ T 1,

because otherwise we would have S
RWpxq
ÝÝÝÝÑ T and T VIS

ÝÝÑ S (equivalently,  pS VIS´1
ÝÝÝÑ T q),

T Q write x : _ S Q read x : _

T 1 Q write x : _

S1 Q write x : _

VIS
RWpxq

WRpxq

WWpxq

AR,WWpxq

WWpxq

RWpxq

contradicting Equation (c.3). It cannot
be that T 1 AR

ÝÝÑ T either: in the picture to
the right, we have given a graphical rep-
resentation of this scenario, where dashed
edges represent the consequences of hav-
ing T 1 AR

ÝÝÑ T . In this case, T P Writesx
by hypothesis; because S

RWpxq
ÝÝÝÝÑ T 1, we

also have that T 1 P Writesx; because
T, T 1 P Writesx, and T 1 AR

ÝÝÑ T , the defin-

ition of graphpX q implies that it has to be T 1
WWpxq
ÝÝÝÝÑ T . Since S

RWpxq
ÝÝÝÝÑ T , then S1

WRpxq
ÝÝÝÝÑ T ,
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and S1
WWpxq
ÝÝÝÝÑ T for some S1; because WWpxq is transitive, then S1

WWpxq
ÝÝÝÝÑ T 1. We have proved

that S1
WRpxq
ÝÝÝÝÑ S, and S1

WWpxq
ÝÝÝÝÑ T 1. By definition, it follows that S

RWpxq
ÝÝÝÝÑ T : together with the

hypothesis T VIS
ÝÝÑ S, we get a contradiction because the inequation (c.3) is violated. We have proved

that it cannot be T “ T 1, nor T 1 AR
ÝÝÑ T . Therefore T AR

ÝÝÑ T 1, as we wanted to prove. đ

§ Proposition 31. X satisfies inequations (c.8) and (c.9).
Proof. We only prove the inequation (c.8), as the inequation (c.9) can be proved in a similar manner.

T V S8
VIS VIS

VIS

VIS

Suppose that T VIS
ÝÝÑ V

VIS´1
ÝÝÝÑ S. We prove that

 pS
VIS
ÝÝÑ T q, or equivalently pT VIS´1

ÝÝÝÑ Sq, by contra-
diction. Let then S VIS

ÝÝÑ T . Because X respects causality,

S
VIS
ÝÝÑ T

VIS
ÝÝÑ V implies that S VIS

ÝÝÑ V . But V VIS´1
ÝÝÝÑ S

by hypothesis, which causes the contradiction. A graph-
ical representation of the proof is given to the right; here dashed edges are implied by the assumption
that S VIS

ÝÝÑ T . đ

§ Proposition 32. X satisfies all the inequations of Figure 3(c).
Proof. We have proved that X satisfies the inequations (c.1), (c.2), (c.3) and (c.7) in propositions
29 and 30. The inequations (c.5), (c.6), and (c.12) are trivial consequences of the definition of
abstract execution. The inequations (c.4) is satisfied because we are assuming that X respects
causality. The inequation (c.11) is a trivial consequence of the fact that, for any relation R Ď T ˆ T ,
R´1 “ tpT, Sq | pS, T q R Ru; then

pR ; R´1q X Id “ tpT, T q | DS. pT, Sq P R^ pS, T q P R´1u “

tpT, T q | DS. pT, Sq P R ^ pT, Sq R Ru “ H

The inequation (c.10) can be proved similarly. Finally, the inequations (c.8) and (c.9) are satisfied,
as we have proved in Proposition 31. đ

§ Proposition 33. If X satisfies the consistency guarantee pρ, πq, then it also satisfies the inequations
(d.3) and (d.4).
Proof. We only prove the inequation (d.3). The proof for the inequaiton (d.4) is similar. Let

T, T 1, S1, S P T be such that T AR
ÝÝÑ T 1, T 1

πpVISq
ÝÝÝÝÑ S1, S1 VIS´1

ÝÝÝÑ S, and S
ρpTˆT q
ÝÝÝÝÝÑ T .

T T 1 S1 S8
AR πpVISq VIS

ρpT ˆ T q

ρpT ˆ T q X VIS Ď ρpVISq

VIS

We need to prove that T VIS´1
ÝÝÝÑ S, or equivalently

that  pS VIS
ÝÝÑ T q. The proof goes by contradic-

tion: suppose that S VIS
ÝÝÑ T . Then we have that

S
ρpT ˆT qXVIS
ÝÝÝÝÝÝÝÝÑ T , and by Proposition 26 it fol-

lows that S
ρpVISq
ÝÝÝÝÑ T . We have S

ρpVISq
ÝÝÝÝÑ T

AR
ÝÝÑ

T 1
πpVISq
ÝÝÝÝÑ S1. Because X P Executionsptρ, πuq,

then S VIS
ÝÝÑ S1 by Inequation (d.1). But S1 VIS´1

ÝÝÝÑ S

by hypothesis, hence the contradiction. A graphical representation of the proof is given to the right:
here dashed edges are implied by the assumption that S VIS

ÝÝÑ T . đ

§ Proposition 34. If X satisfies the consistency guarantee pρ, πq, then it satisfies all the inequations
of Figure 3(d), relatively to said consistency guarantee.
Proof. Because X satisfies the consistency guarantee pρ, πq by hypothesis, then it satisfies the

inequation (d.1). It also satisfies the inequation (d.2), as we showed in §4. Finally, it satisfies
inequations (d.3) and (d.4) by Proposition 33. đ
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C.2 Additional Algebraic Laws

Here we prove some additional algebraic laws that can be proved from the laws of Figure 3, and from
the axioms of the Kleene Algebra and boolean algebra of set relations. In the following, we assume
that X “ pT ,VIS,ARq is an abstract execution, and graphpX q “ pT ,WR,WW,RWq.
§ Proposition 35. For all relations R1, R2 Ď T ˆ T ,

pR1 ; R2q X Id Ď H ùñ pR2 ; R1q X Id Ď H (1)

Proof. Suppose pR1 ; R2q X Id Ď H. For any T P T , there exists no S P T such that pT, Sq P R1
and pS, T q P R2. In particular, there exists no S P T such that pS, T q P R2, pT, Sq P R1, for all
T P T : equivalently, pS, Sq R pR2 ; R1q. That is, pR2 ; R1q X Id Ď H. đ

§ Proposition 36. For any set T 1 Ď T ,

rT 1s “ rT 1s ; rT 1s. (2)

Proof. rT 1s “ rT 1 X T 1s (a.2)
“ rT 1s ; rT 1s. đ

§ Proposition 37.

WR Ď VIS (3)
WW Ď AR (4)

RW Ď VIS´1 (5)

Proof. We only give details for Equation (3); the other equations can be proved similarly:

WR “
ď

xPObj
WRpxq

(c.1)
Ď

ď

xPObj
VIS “ VIS.

đ

§ Proposition 38.

WR Ď WRzId (6)
WW Ď WWzId (7)

RW Ď RWzId (8)

Proof. We only give details for Equation (6). The other equations can be proved similarly.

WR “
ď

xPObj
WRpxq

(c.1)
Ď

ď

xPObj
pWRpxqzIdq “

˜

ď

xPObj
WRpxq

¸

zId “ WRzId.

đ

§ Proposition 39. For any relation R Ď T ˆ T ,

pRX Id “ Hq ðñ pR Ď RzIdq. (9)
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Proof. Suppose RX Id “ H. Then

R “ R X pId Y Idq “ pR X Idq Y pR X Idq “ H Y pRzIdq “ pRzIdq.

Now, suppose that R Ď RzId. Then

pR X Idq Ď pRzIdq X Id “ pR X Idq X Id “ R X pIdX Idq “ R XH “ H.

đ

§ Corollary 40.

VIS Ď VISzId (10)

pVIS ; VIS´1
q Ď pVIS ; VIS´1

qzId (11)

pVIS´1 ; VISq Ď pVIS´1 ; VISqzId (12)

Proof. The inequation (11) is a trivial consequence of the inequations (9) and (c.11). The
inequation (12) is a trivial consequence of equations (9) and (c.10). For the inequation (10), it
suffices to prove that VISX Id “ H, then the result follows from Equation (9). But this is trivially
true:

VISX Id
(c.6)
Ď ARX Id

(c.12)
Ď H. (13)

đ

§ Proposition 41.

WRpxq Ď rWritesxs ; WRpxq (14)
WRpxq Ď WRpxq ; rReadsxs (15)

WWpxq Ď rWritesxs ; WWpxq (16)
WWpxq Ď WWpxq ; rWritesxs (17)

RWpxq Ď rReadsxs ; RWpxq (18)
RWpxq Ď RWpxq ; rWritesxs (19)

Proof. We only prove Equation (14); the proof for the other equations is similar.

WRpxq
(b.1)
Ď rReadsxs ; WRpxq ; rWritesxs

(a.1)
Ď Id ; WRpxq ; rWritesxs “ WRpxq ; rWritesxs. (20)

đ

§ Proposition 42. Let Σ be a consistency guarantee such that pρx, ρxq P Σ, for some object x P Obj.
If X P ExecutionspΣq, then

WWpxq Ď VIS. (21)

Proof. By instantiating the inequation (d.1) for the consistency guarantee pρx, ρxq, we obtain
that the following equation is valid for X :

rWritesxs ; AR ; rWritesxs Ď VIS. (22)

Therefore we have that

WWpxq
(b.2)
Ď rWritesxs ; WWpxq ; rWritesxs

(c.2)
Ď rWritesxs ; AR ; rWritesxs

(22)
Ď VIS.

đ
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§ Corollary 43. Let Σ be a consistency model such that pρx, ρxq P Σ for any x P Obj. If X P

ExecutionspΣq, then

WW Ď VIS. (23)

Proof. If X P ExecutionspΣq, then

WW “
ď

xPObj
WWpxq

(21)
Ď

ď

xPObj
VIS Ď VIS.

đ

§ Corollary 44. Let Σ be a consistency model such that pρx, ρxq P Σ for any x P Obj. If X P

ExecutionspΣq, then

pWRYWWq` Ď VIS. (24)

Proof. If X P ExecutionspΣq, then

pWRYWWq`
(3),(23)
Ď VIS`

(c.4)
Ď VIS.

đ

C.3 Proofs of Robustness Criteria

Proof of Theorem 12. First, observe that by instantiating inequations (d.1), (d.2) to the consistency
guarantee pρId, ρIdq, we obtain:

AR Ď VIS (25)

pVIS´1
qzId Ď AR (26)

We need to prove that if X P ExecutionspΣSERq, then pWRYWWYRWq`X Id Ď H. We show
that the following inequations hold:

WR Ď AR (27)
WW Ď AR (28)
RW Ď AR. (29)

From the three inequations above, it follows immediately that pWRYWW Y RWq` X Id Ď H, as
we wanted to prove:

pWRYWW Y RWq` X Id
p27,28,29q
Ď AR` X Id

(c.5)
Ď ARX Id

(c.12)
Ď H

It remains to prove inequations (27), (28) and (29).

Proof of inequation (27): WR
(3)
Ď VIS

(c.6)
Ď AR,

Proof of inequation (28): WW
(4)
Ď AR,

Proof of inequation (29): RW
(8)
Ď RWzId

(5)
Ď VIS´1

zId
(26)
Ď AR.

đ

Proof of Theorem 13. Suppose that X P ExecutionspΣSIq. Recall that pρId, ρSIq P ΣSI. By
instantiating inequations (d.1) and (d.2) to this consistency guarantee, we obtain the following
inequations:

pAR ; pVISzIdqq Ď VIS (30)

ppVISzIdq ; VIS´1
qzId Ď AR. (31)
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In practice, the inequations above can be strengthened as follows:

AR ; VIS Ď VIS (32)

VIS ; VIS´1
Ď AR. (33)

Proof of inequation (32): AR ; VIS
(10)
Ď AR ; pVISzIdq

(30)
Ď VIS,

Proof of inequation (33):

pVIS ; VIS´1
q

(11)
Ď pVIS ; VIS´1

qzId
(10)
Ď ppVISzIdq ; VIS´1

qzId
(31)
Ď AR.

Also, because pρx, ρxq P SI for any object x P Obj, by Corollary 44 we have that inequation (24)
is satisfied: pWRYWWq` Ď VIS.

We need to prove that ppWR YWWq ; RW?q` X Id Ď H. To this end, It suffices to prove the
following inequations:

pWRYWWq Ď AR (34)
pWRYWWq ; RW Ď AR (35)

In fact, assuming that inequations (34) and (35) are satisfied, we obtain

ppWRYWWq ; RW?q` X Id “ ppWRYWWq ; pRW Y Idqq` X Id “

ppWRYWWq Y ppWRYWWq ; RWqq` X Id
p34,35q
Ď AR` X Id

(c.5)
Ď ARX Id

(c.12)
Ď H

where the second equality holds because the union distributed over the operator ¨ ; ¨, and for any
relation R, R ; Id “ R.

Proof of inequation (34): pWRYWWq
(3)
Ď pVISYWWq

(c.6),(4)
Ď pARY ARq “ AR,

Proof of inequation (35):

pWRYWWq ; RW Ď pWRYWWq` ; RW
(24)
Ď VIS ; RW

(5)
Ď VIS ; VIS´1 (33)

Ď AR.

đ

Proof of Theorem 14. Recall that ΣPSI “ tpρx, ρxquxPObj. By instantiating, for each object
x P Obj, inequations (d.1) and (d.2), we obtain that

rWritesxs ; AR ; rWritesxs Ď VIS (36)

prWritesxs ; VIS´1 ; rWritesxsqzId Ď AR (37)

We need to prove that, for any x P Obj, ppWRYWWq˚ ; RWpxqq` X Id Ď H. To this end, it
suffices that for any x P Obj, the following inequation is satisfied:

prWritesxs ; pWRYWWq˚ ; RWpxqq` X Id Ď H. (38)

In fact, assuming that Inequation (38) is satisfied, we can apply the following theorem of Kleene
Algebra:

@R1, R2 Ď T ˆ T .pR1 ; R2q
` “ pR1 ; pR2 ; R1q

˚ ; R2q (39)

By applying the equation (39) to the equation (38), where R1 “ rWritesxs and R2 “ pWRYWWq˚ ;
RWpxq, we obtain the following:

ˆ

rWritesxs ;
´

ppWRYWWq˚ ; RWpxqq ; rWritesxs
˙˚

;
´

pWRYWWq˚ ; RWpxq
¯

˙

X Id Ď H.
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(40)

Next, we apply Proposition 35, relatively to R1 “ rWritesxs, R2 “ pWR YWWq˚ ; RWpxq. We
obtain the following:
ˆ

´

ppWRYWWq˚ ; RWpxqq ; rWritesxs
¯˚

;
´

pWRYWWq˚ ; RWpxq
¯

; rWritesxs
˙

X Id Ď H.

(41)

or, equivalently,
´

ppWRYWW˚
q ; RWpxqq ; rWritesxs

¯`

X Id “ H. (42)

By applying the inequation (19) - RWpxq “ RWpxq ; rWritesxs - in inequation (42) above, we obtain
the desired result:

ppWRYWWq˚ ; RWpxqq` X Id Ď H. (43)

It remains to prove Inequation (38). To this end, let x P Obj: we show that the following three
inequations are satisfied:

rWritesxs ; RWpxq Ď AR (44)
rWritesxs ; pWRYWWq` ; RWpxq Ď AR. (45)

Assuming that (44) and (45) are satisfied, we obtain a proof for the inequation (38):

prWritesxs ; pWRYWWq˚ ; RWpxqq` X Id “
´

`

rWritesxs ; RWpxq
˘

Y
`

rWritesxs ; pWRYWWq` ; RWpxq
˘

¯` p44,45q
Ď AR` X Id Ď H.

Proof of Inequation (44):

rWritesxs ; RWpxq
(8)
Ď rWritesxs ; pRWpxqzIdq (a.4)

“ prWritesxs ; RWpxqqzId
(19)
Ď

prWritesxs ; RWpxq ; rWritesxsqzId
(c.3)
Ď prWritesxs ; VIS´1 ; rWritesxsqzId

(37)
Ď AR,

Proof of Inequation (45):

rWritesxs ; pWRYWWq` ; RWpxq
(24)
Ď rWritesxs ; VIS ; RWpxq

(c.7)
Ď AR.

đ

Proof of Theorem 15. Recall that ΣRB “ tpρS , ρSqu. By instantiating inequations (d.1) and
(d.2), relatively to the consistency guarantee pρS , ρSq, we have that the following inequalities are
satisfied:

prSerTxs ; AR ; rSerTxsq Ď VIS (46)

prSerTxs ; VIS´1 ; rSerTxsqzId Ď AR. (47)

We need to prove that pWR YWW Y ,RW-q` X Id Ď H, where we recall that ,RW- “
rSerTxs ; WR˚ ; RW ; WR˚ ; rSerTxs. To this end, it suffices to show that

WR˚ ; RW ; WR˚ Ď VIS´1
zId (48)

In fact, assuming that inequation (48) holds, we obtain that:

,RW- Ď AR. (49)
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Proof of inequation (49):

,RW- “ rSerTxs ; WR˚ ; RW ; WR˚ ; rSerTxs
(48)
Ď rSerTxs ; pVIS´1

zIdq ; rSerTxs (a.3)
“

rSerTxs ; pVIS´1 ; rSerTxsqzId (a.4)
“ prSerTxs ; VIS´1 ; rSerTxsqzId

(47)
Ď AR

Finally, we can prove the desired result:

pWRYWW Y,RW-q` X Id
(3)
Ď pVISYWW Y,RW-q` X Id

(c.6),(4),(49)
Ď

AR` X Id
(c.5)
Ď AR X Id

(c.12)
Ď H.

đ

It remains to prove the inequation (48). To this end, we prove the following four inequations:

RW Ď VIS´1
zId (50)

WR` ; RW Ď VIS´1
zId (51)

RW ; WR` Ď VIS´1
zId (52)

WR` ; RW ; WR` Ď VIS´1
zId. (53)

In fact, assuming that the four inequations above hold, we have that

WR˚ ; RW ; WR˚ “ RWY pWR` ; RWq Y pRW ; WR`q Y pWR` ; RW ; WR`q Ď VIS´1
zId

Proof of Inequation (50): RW
(8)
Ď RWzId

(5)
Ď VIS´1

zId,
Proof of Inequation (51):

pWR` ; RWq
(3)
Ď VIS` ; RW

(c.4)
Ď VIS ; RW

(5)
Ď VIS ; VIS´1 (11)

Ď

pVIS ; VIS´1
qzId

(c.8)
Ď VIS´1

zId

Proof of Inequation (52):

pRW ; WR`q
(3)
Ď RW ; VIS`

(c.4)
Ď RW ; VIS

(5)
Ď VIS´1 ; VIS

(12)
Ď

pVIS´1 ; VISqzId
(c.9)
Ď VIS´1

zId

Proof of Inequation (53):

pWR` ; RW ; WR`q
(3)
Ď VIS` ; RW ; VIS`

(c.4)
Ď VIS ; RW ; VIS

(5)
Ď pVIS ; VIS´1 ; VISq

(c.8)
Ď

VIS´1 ; VIS
(12)
Ď pVIS´1 ; VISqzId

(c.9)
Ď VIS´1

zId

đ

C.4 Additional Robustness Criteria

So far, none of the robustness criteria that we have derived has exploited the inequations (d.3) and
(d.4) from Figure 3. Here we give another example of x-specification, for which we can derive a
robustness criterion which makes use of the inequations (d.3) and (d.4). Such a specification is given
by Σ “ tpρId, ρSIq, pρS , ρSqu. This can be thought as a weakening of ΣSI`SER which does not have
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any write conflict detection. By applying inequations (d.1), (d.2) to both consistency guarantees, we
obtain the following:

AR ; VIS Ď VIS (54)
rSerTxs ; AR ; rSerTxs Ď VIS (55)

VIS ; VIS´1
Ď AR (56)

prSerTxs ; VIS´1 ; rSerTxsqzId Ď AR (57)

Also, we can instantiate inequation (d.4) relatively to the consistency guarantee pρId, ρSIq. Recall that
ρIdpVISq “ Id, and ρSIpT ˆ T q “ ρSIpT ˆ T q´1 “ pT ˆ T qzId. We have that pVIS´1 ; ρIdpVISq ;
ARq ; ρSIpT ˆ T q´1 “ pVIS´1 ; ARq X ppT ˆ T qzIdq´1 “ pVIS´1 ; ARqzId. Therefore, we have
the following:

pVIS´1 ; ARqzId Ď VIS´1 (58)

Using this inequations, we can derive a robustness criterion for the consistency model induced by the
x-specification Σ.

§ Theorem 45. Let X “ pT ,VIS,ARq P ExecutionspΣq, where Σ “ tpρS , ρSq, pρId, ρSIqu. We say

that a path T0
R0
ÝÝÑ ¨ ¨ ¨

Rn´1
ÝÝÝÑ Tn of graphpX q, is critical if T0 ‰ Tn, both T0, Tn Q SerTx, only

one of the edges Ri, 0 ď i ă n is an anti-dependency, and none of the edges Rj , 0 ď j ă i is a
WW-edge. Then all cycles of graphpX q have at least one anti-dependency edge that is not contained
within a critical sub-path of the cycle.

Formally, let CSub “ prSerTxs ; WR˚ ; RW ; pWWYWRq˚ ; rSerTxsqzId, where graphpX q “
pT ,WR,WW,RWq. Then pWRYWW Y prSerTxs ; CSub ; rSerTxsqq is acyclic.

Proof Sketch. It suffices to prove the following:

CSub Ď AR (59)

To see why this inequation (59) is satisfies, note that we have the following:

CSub “ prSerTxs ; WR˚ ; RW ; pWW YWRq˚ ; rSerTxsqzId
(3)
Ď

prSerTxs ; VIS˚ ; RW ; pWW Y VISq˚ ; rSerTxsqzId
(4)
Ď

prSerTxs ; VIS˚ ; RW ; pARY VISq˚ ; rSerTxsqzId
(c.6)
Ď

prSerTxs ; VIS˚ ; RW ; AR˚ ; rSerTxsqzId
(c.4),(c.5)
Ď

prSerTxs ; VIS? ; RW ; AR? ; rSerTxsqzId
(5)
Ď

prSerTxs ; VIS? ; VIS´1 ; AR? ; rSerTxqszId
(c.8)
Ď

prSerTxs ; VIS´1 ; AR? ; rSerTxsqzId Ď
´

prSerTxs ; VIS´1 ; AR? ; rSerTxsqzId
¯

zId
(a.4),(a.3)
Ď

´

rSerTxs ; pVIS´1 ; AR?qzId ; rSerTxs
¯

zId
(58)
Ď

prSerTxs ; VIS´1 ; rSerTxsqzId
(57)
Ď AR

D Proofs of Results for Simple x-Specifications

Let X Ď Obj and suppose that pρ, πq is a consistency guarantee throughout this section we will work
with the (simple) x-specification Σ “ tpρx, ρxquxPX Y tpρ, πqu, although all the results apply to the
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x-specification Σ1 “ tpρx, ρxquxPX which does not contain any consistency guarantee, aside from
those enforcing the write conflict detection over some objects.

D.1 Proof of Proposition 20

Let G “ pT ,WR,WW,RWq be a dependency graph.
Recall the following definition of valid pre-execution:

§ Definition 46. a pre-execution is a quadruple P “ pT ,VIS,ARq such that

1. VIS Ď AR,
2. VIS and AR are strict partial orders,
3. for any object x P Obj, AR is total over the set Writesx,
4. P satisfies the Last Write Wins property: for any T P T , if T Q read x : n then S :“

maxARpVIS´1
pT q XWritesxq is well defined, and S Q write x : n.

The proof of Proposition 20 relies on the following auxiliary result:
§ Proposition 47. Let pXV “ VIS, XA “ AR, XN “ AntiVISq be a solution of SystemΣpGq. If
ARX Id is acyclic, then P “ pT ,VIS,ARq is a valid pre-execution.
Proof. Because pXV “ VIS, XA “ AR, XN “ AntiVISq is a solution of SystemΣpGq, all

the inequalities in the latter are satisfied when substituting the relations VIS,AR,AntiVIS for the
unknowns XV , XA, XN , respectively. In particular, we have that and VIS Ď AR because of the
inequation (A2). Because AR is irreflexive by hypothesis, it also implies that VISX Id Ď ARX Id Ď
H. Together with the inequation (V2) it ensures that VIS is a strict, partial order. Similarly, the
assumption that ARX Id and the inequation (A4) imply that AR is a strict, partial order.

Next, we prove that for any transactions T 1, T 2 P T such that T 1 P Writesx, T 2 P Writesx and

T 1
AR
ÝÝÑ T 2, it must be T 1

WWpxq
ÝÝÝÝÑ T 2. In fact, for such transactions we have that T 1 AR

ÝÝÑ T 2 implies
that T 1 ‰ T 2, since we are assuming that ARX Id “ H. By the same hypothesis and the fact that
AR` Ď AR (as a consequence of Equation (A4)), we obtain that  pT 2 AR

ÝÝÑ T 1q. Because of the

inequation (A1), WWpxq Ď WW Ď AR, from which it follows that that  pT 2
WWpxq
ÝÝÝÝÑ T 1q. But

T 1 P Writesx, T 2 P Writesx, and because WWpxq is a total order over Writesx, and T 1 ‰ T 2, it

follows that the only possibility left is that T 1
WWpxq
ÝÝÝÝÑ T 2.

We have proved that for any two transactions T 1, T 2 such that T 1 P Writesx, T 2 P Writesx,

T 1
AR
ÝÝÑ T 2 implies T 1

WWpxq
ÝÝÝÝÑ T 2. By the inequation (A1), this implication can be strengthened to

an if and only if condition: the relation AR, restricted to transactions in the set Writesx, coincides
with WWpxq. A trivial consequence of this fact is that AR is a strict, total order over Writesx.

It remains to show that P satisfies the Last Write Wins property: to this end, let T P T be
a transaction such that T Q read x : n. By Definition 7 there exists a transaction S such that

S Q write x : n and S
WRpxq
ÝÝÝÝÑ T . By Equation (V1), we have that WR Ď VIS, hence S VIS

ÝÝÑ T .
Because S VIS

ÝÝÑ T and S Q write x : n, we have that S P pVIS´1
pT q XWritesxq, and in particular

pVIS´1
pT q XWritesxq ‰ H.

A consequence of the two facts above - pVIS´1
pT q X Writesxq ‰ H, and AR X pWritesx ˆ

Writesxq “ WWpxq - is that the entity S1 “ maxARpVIS´1
pT q X Writesxq is well-defined. It

remains to prove that S1 Q write x : n. To this end, it suffices to show that S “ S1 (recall that S

is the unique transaction such that S
WRpxq
ÝÝÝÝÑ T ), and observe that S Q write x : n, from which

the claim follows. Because S, S1 P Writesx and WWpxq coincides with the restriction of AR to the
set Writesx, we obtain that either S1 AR

ÝÝÑ S, S AR
ÝÝÑ S1 or S “ S1. The first case is not possible,

because S P VIS´1
pT q XWritesx, and S1 “ maxARpVIS´1

pT q XWritesxq. The second case is also

not possible: if S AR
ÝÝÑ S1 then S

WWpxq
ÝÝÝÝÑ S1; together with S

WRpxq
ÝÝÝÝÑ T this implies that there is
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an anti-dependency edge T
RWpxq
ÝÝÝÝÑ S1; now we have that S1 P Writesx, and S1 VIS

ÝÝÑ T
RWpxq
ÝÝÝÝÑ S1:

that is, pS1, S1q P rWritesxs ; VIS ; WRpxq. By the inequation (A3), this implies that S1 AR
ÝÝÑ S1,

contradicting the assumption that ARX Id Ď H. We are left with the only possibility S “ S1, which
is exactly what we wanted to prove. đ

Proof of Proposition 20. Let pXV “ VIS, XA “ AR, XN “ AntiVISq be a solution to
SystemΣpGq, and suppose that Let P :“ pT ,VIS,ARq. By Proposition 47 we know that P is a
valid pre-execution. To show that P P PreExecutionspΣq, we need to show the following:

1. for any object x P X , rWritesxs ; AR ; rWritesxs Ď VIS; this is because we are assuming that
pρx, ρxq P Σ for any x P X . Let then x P X , and consider two transactions T, S be such that
T

AR
ÝÝÑ S, and T, S P Writesx: we show that T VIS

ÝÝÑ S. Because ARX Id Ď H, then T ‰ S. Also,

it cannot be S
WWpxq
ÝÝÝÝÑ T : by inequation (A1) this would imply that S AR

ÝÝÑ T ; by inequation (A4)
and the assumption that T AR

ÝÝÑ S, this would lead to S AR
ÝÝÑ S, contradicting the assumption that

ARX Id “ H. We have proved that T, S P Writesx, T ‰ S and  pS
WWpxq
ÝÝÝÝÑ T q: since WWpxq

is a total order over the set Writesx, it must be T
WWpxq
ÝÝÝÝÑ S. It follows from the inequation (V3)

that T VIS
ÝÝÑ S,

2. ρpVISq ; AR ; πpVISq Ď VIS; this inequality is directly enforced by the inequation (V4).

Therefore, P is a valid pre-execution such that rWritesxs ; AR ; Writesx Ď VIS for any x P X ,
and ρpT ,VISq ; AR ; πpT ,VISq Ď VIS. Since Σ “ tpρWritesx , ρWritesxquxPX Y tpρ, πqu, we have
proved that P P PreExecutionspΣq. Let now G1 “ graphpPq. The proof that G1 is a well-defined
dependency graph is analogous to the one given for abstract executions in [14, extended version,
Proposition 23].

It remains to prove that G1 “ G; to this end, it suffices to show that for any x P Obj, WRGpxq “

WRG1pxq, and WWGpxq “ WWG1pxq.

Let T, S be two entities such that T
WRGpxq
ÝÝÝÝÝÑ S. By definition, S Q read x : n, and T Q

write x : n for some n. Also, let T 1 Q write x : n be the entity such that T 1
WRG1 pxq
ÝÝÝÝÝÑ S,

which exists because S Q read x : n and G1 is a well-defined dependency graph. By definition,
T 1 “ maxARpVIS´1

pSq XWritesxq, and in particular T 1 VIS
ÝÝÑ S.

Since T, T 1 Q write x : n, we have that either T “ T 1, T
WWGpxq
ÝÝÝÝÝÑ T 1, or T 1

WWGpxq
ÝÝÝÝÝÑ T :

if T
WWGpxq
ÝÝÝÝÝÑ T 1, then by definition, the edges T

WRGpxq
ÝÝÝÝÝÑ S and T

WWGpxq
ÝÝÝÝÝÑ T 1 induce the

anti-dependency S
RWGpxq
ÝÝÝÝÝÑ T 1. However, now we have that T 1 Q write x : _, T 1 VIS

ÝÝÑ S and

S
RWGpxq
ÝÝÝÝÝÑ T 1: by the inequation (A3), it follows that T 1 AR

ÝÝÑ T 1, contradicting the assumption
that ARX Id Ď H,

if T 1
WWGpxq
ÝÝÝÝÝÑ T , then note that by the inequation (A1) it has to be T 1 AR

ÝÝÑ T ; also, because of

the dependency T
WRGpxq
ÝÝÝÝÝÑ S and the inequality (V1), it has to be T VIS

ÝÝÑ S; but this contradicts
the assumption that T 1 “ maxARpVIS´1

pSq XWritesxq.
We are left with the case T “ T 1, from which T

WRG1 pxq
ÝÝÝÝÝÑ S follows.

Next, suppose that T 1
WRG1 pxq
ÝÝÝÝÝÑ S. Then S Q read x : n for some n, and because G is a

dependency graph, there exists an entity T such that T
WRGpxq
ÝÝÝÝÝÑ S. We can proceed as in the previous

case to show that T “ T 1, hence T 1
WRGpxq
ÝÝÝÝÝÑ T .

Finally, we need to show that WWG1pxq “ WWGpxq. First, note that if T
WWGpxq
ÝÝÝÝÝÑ S, then

T, S P Writesx. By the inequation (A1) we obtain that T AR
ÝÝÑ S, so that T

WWG1 pxq
ÝÝÝÝÝÝÑ S by definition

of graphpPq.
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If T
WWG1 pxq
ÝÝÝÝÝÝÑ S, then it has to be the case that T AR

ÝÝÑ S, T, S P Writesx. Since WWGpxq is

total over Writesx, then either T “ S, S
WWGpxq
ÝÝÝÝÝÑ T or T

WWGpxq
ÝÝÝÝÝÑ S. However, the first case is not

possible because it would imply T AR
ÝÝÑ T , contradicting the assumption that AR X Id Ď H. The

second case is not possible either, because by the inequality (A1) we would get that S AR
ÝÝÑ T

AR
ÝÝÑ S,

and by the inequality (A4) S AR
ÝÝÑ S, again contradicting the assumption that ARX Id Ď H. We are

left with T
WWGpxq
ÝÝÝÝÝÑ S, as we wanted to prove.

The fact that RWG “ RWG1 follows from the observation that, for any object x P Obj, RWGpxq “

WR´1
G pxq ; WWGpxq “ WR´1

G1 pxq ; WWG1pxq “ RWG1pxq. đ

D.2 Proof of Proposition 21

In the following, we let G “ pT ,WR,WW,RWq, and we assume that pXV “ VIS, XA “ AR, XN “

AntiVISq is a solution of SystemΣpGq such that ARX Id “ H. Also, we assume that there exist two

transactions T, S such that T ‰ S,  pT AR
ÝÝÑ Sq, and  pS AR

ÝÝÑ T q. The proof of Proposition 21 is a
direct consequence of the following result, which we will prove in this section:
§ Proposition 48. Define the following relations:

BA “ tpT, Squ,
∆A “ AR? ; BA ; AR?,
ARν “ ARY∆AR,
BV “ ρpVISq ; ∆A ; πpVISq,
∆V “ VIS? ; BV ; VIS?,
VISν “ VISY∆V ,
AntiVISν “ VISν? ; RW ; VISν?.

Then pXV “ VISν , XA “ ARν , XN “ AntiVISνq is a solution to SystemΣpGq. Furthermore, it is
the smallest solution for which the relation corresponding to the unknown XA contains the relation
pARY BAq.

Before proving Proposition 48, we need to prove several technical lemmas.

§ Lemma 49 (B-Cut). For any relations R,P,Q Ď T ˆ T we have that pR ; BA ; Q ; BA ; P q Ď
pR ; BA ; P q, and pR ; BV ; Q ; BV ; P q Ď pR ; BV ; P q.

Proof. Recall that BA “ tpT, Squ, where T, S are not related by AR. That is, whenever T 2 BA
ÝÝÑ

S2, for some T 2, S2 P T , then T 2 “ T, S2 “ S. It follows that pT 1, S1q P pR ; BA ; Q ; BA ; P q if

and only if T 1 RÝÑ T
BA
ÝÝÑ S

Q
ÝÑ T

BA
ÝÝÑ S

P
ÝÑ S1. As a consequence, T 1 RÝÑ T

BA
ÝÝÑ S

P
ÝÑ S1, as we

wanted to prove.
Next, recall that BV “ ρpVISq ; ∆A ; πpVISq, where ∆A “ AR? ; BA ; AR?. That is,

BV “ ρpVISq ; AR? ; BA ; AR? ; πpVISq. If we apply the statement above to the relations
R1 :“ pR ; ρpVISq ; AR?q, Q1 :“ pAR? ; πpVISq ; Q ; ρpVISq ; AR?q, P 1 :“ pAR? ; πpVISq ; P q,
we obtain that

R ; BV ; Q ; BV ; P “ pR ; ρpVISq ; AR?q ; BA ; pAR? ; πpVISq ; Q ;
ρpVISq ; AR?q ; BA ; pAR? ; πpVISq ; P q

“ R1 ; BA ; Q1 ; BA ; P 1
Ď R1 ; BA ; P 1
“ R ; ρpVISq ; AR? ; BA ; AR? ; πpVISq ; P
“ R ; BV ; P

đ

§ Corollary 50. The relations ARν and VISν are transitive.
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Proof. We only show the result for ARν . The statement relative to VISν can be proved analog-
ously.

It suffices to show that ARν ; ARν “ pARY∆Aq ; pARY∆Aq Ď pARY∆ARq. By distributivity
of ; with respect to Y, this reduces to prove the following four inclusions:

pAR ; ARq Ď pAR Y∆ARq. Recall that pXV “ VIS, XA “ AR, XN “ AntiVISq is a solution
of SystemΣpGq, hence by the inequation (A4) AR ; AR Ď AR. It follows immediately that
AR ; AR Ď ARY∆AR.
pAR ; ∆Aq Ď pARY∆Aq: recall that ∆A “ AR? ; BA ; AR?. Because of the inequation (A4),
we have that AR ; AR? Ď AR?, Therefore

AR ; ∆A “
AR ; pAR? ; BA ; AR?q “
AR? ; BA ; AR? “
∆A Ď ARY∆A

∆A ; AR Ď pARY∆Aq: This case is symmetric to the previous one.
p∆A ; ∆Aq Ď pARY∆Aq:

∆A ; ∆A “
pAR? ; BA ; AR?q ; pAR? ; BA ; AR?q “

AR? ; BA ; pAR? ; AR?q ; BA ; AR?
Lem.(49)
Ď

AR? ; BA ; AR? “
∆A Ď ARY∆AR

where the inequation above has been obtained by applying a B-cut (Lemma 49).
đ

§ Lemma 51 (∆-extraction (ρ case)).

ρpVISνq Ď ρpVISq Y pVIS? ; ρpVISq ; ∆Aq
ρpVISνq Ď ρpVISq Y p∆A ; πpVISq ; VIS?q .

We refer to the first inequality as right ∆-extraction, and to the second inequality as left ∆-extraction.

§ Lemma 52 (∆-extraction (π case)).

πpVISνq Ď πpVISq Y pVIS? ; ρpVISq ; ∆Aq
πpVISνq Ď πpVISq Y p∆A ; πpVISq ; VIS?q .

Proof. We only show how to prove the first inequation of Lemma 51. The proof of the second
inequation of Lemma 51, and the proof of Lemma 52, are similar.

Recall that VISν “ VISY∆V . By Proposition 26(iii), we have that

ρpVISνq “ ρpVISq Y ρp∆V q,

by unfolding the definition of specification function to the RHS, and by applying the distributivity of
X over Y, we get

ρpVISνq “ pρpT ˆ T q X VIS?q Y pρpT ˆ T q X∆V ?q “ ρpT ˆ T q X pVIS?Y∆V ?q

Note that for any relation R1, R2, R1?YR2? “ R1?YR2, hence we can elide the reflexive closure
in the term p∆V q? of the equality above

ρpVISνq “ ρpT ˆ T q X pVIS?Y∆V q
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By applying the distributivity of X over Y, and then by applying the definition of specification
function, we get

ρpVISνq “ pρpT ˆ T q X VIS?q Y pρpT ˆ T q X∆V q “
ρpVISq Y pρpT ˆ T q X∆V q Ď ρpVISq Y p∆V q

Because pXV “ VIS, XA “ AR, XN “ AntiVISq is a solution of SystemΣpGq, by Equation (A2)
we obtain that VIS? Ď AR?. Also, by Proposition 26(i) we have that πpVISq Ď VIS? Ď AR?. Finally,
the inequation (A4)states that AR ; AR Ď AR, from which AR? ; AR? Ď AR? follows. By putting
all these together, we get

ρpVISνq Ď ρpVISq Y∆V “
ρpVISq Y pVIS? ; ρpVISq ; ∆A ; πpVISq ; VIS?q Ď
ρpVISq Y pVIS? ; ρpVISq ; pAR? ; BA ; AR?q ; AR? ; AR?q
ρpVISq Y pVIS? ; ρpVISq ; pAR? ; BA ; AR?qq “ ρpVISq Y pVIS? ; ρpVISq ; ∆Aq.

as we wanted to prove. đ

§ Lemma 53.
BVIS Ď ∆A ; πpVISq
BVIS Ď ρpVISq ; ∆A

Proof. Recall that BV “ ρpVISq ; ∆A ; πpVISq. We prove the first inequality as follows:

∆V “ ρpVISq ; ∆A ; πpVISq
“ ρpVISq ; AR? ; BA ; AR? ; πpVISq
Ď AR? ; AR? ; BA ; AR? ; πpVISq
Ď AR? ; BA ; AR? ; πpVISq
“ ∆A ; πpVISq

where we have used the fact that ρpVISq “ ρpT ˆ T q X VIS? Ď VIS? Ď AR?, because of the
definition of specification function and because of Inequation (A2). đ

The next step needed to prove Proposition 48 is that of verifying that by substituting ARν for XA,
VISν for XV , and AntiVISν for XN , each of the inequations in SystemΣpGq is satisfied. The next
propositions show that this is indeed the case.
§ Proposition 54.

VISν Ď ARν
Proof. Recall that VISν “ VISY∆V , ARν “ ARY∆A. To prove that VISν Ď ARν , it suffices

to show that VIS Ď pARY∆Aq, and ∆V Ď pARY∆Aq.
The inequation VIS Ď ARY∆A follows immediately the fact that pXV “ VIS, XA “ AR, XN “

AntiVISq is a solution of SystemΣpGq, and from the inequation (A2)- VIS Ď AR.
It remains to prove that ∆V Ď ARY∆A. In fact, we prove a stronger result, namely ∆V Ď ∆A.

This is done as follows:

∆V “ VIS? ; BV ; VIS? “ VIS? ; ρpVISq ; ∆A ; πpVISq ; VIS? “
VIS? ; ρpVISq ; AR? ; BA ; AR? ; πpVISq ; VIS? Ď

VIS? ; VIS? ; AR? ; BA ; AR? ; VIS? ; VIS?
(V2)
Ď

VIS? ; AR? ; BA ; AR? ; VIS?
(A2)
Ď

AR? ; AR? ; BA ; AR? ; AR?
(A4)
Ď

AR? ; BA ; AR? “ ∆A,
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where we used the notation R1
peqq
Ď R2 to denote that the inequation R1 Ď R2 follows from the

Inequation peqq, taken from Figure 4. đ

§ Proposition 55.

ρpVISνq ; ARν ; πpVISνq Ď VISν .

Proof. First, we perform a right ∆-extraction (Lemma 51) of ρpVISνq, and a left ∆-extraction
(Lemma 52) of πpVISνq. This gives us the following inequation:

ρpVISνq ; ARν ; πpVISνq Ď pρpVISqYpVIS? ; ρpVISq ; ∆Aqq ; ARν ; pπpVISqYp∆A ; πpVISq ; VIS?q

and we rewrite the RHS of the above by applying the distributivity of Y over ; .

ρpVISνq ; ARν ; πpVISνq Ď ρpVISq ; ARν ; πpVISqY
ρpVISq ; ARν ; p∆A ; πpVISq ; VIS?qY

VIS? ; ρpVISq ; ∆A ; ARν ; πpVISqY
VIS? ; ρpVISq ; ∆A ; ARν ; ∆A ; πpVISq ; VIS?.

We show that each of the components of the union of the RHS of the inequation above is included in
VISν , from which we get the desired result ρpVISq ; ARν ; πpVISq Ď VISν .

ρpVISq ; ARν ; πpVISq Ď VISν . Recall that ARν “ ARY∆A, from which we get that

ρpVISq ; ARν ; πpVISq “ pρpVISq ; AR ; πpVISqq Y ρpVISq ; ∆A ; πpVISq.

We prove that each of the components of the union in the RHS above are included in VISν . First,
observe that

ρpVISq ; AR ; πpVISq Ď VIS Ď pVISY∆V q “ VISν

because of Inequation (V4). Also, we have that

ρpVISq ; ∆A ; πpVISq “ BV Ď VIS? ; BV ; VIS? “ ∆V Ď VISY∆V “ VISν

and in this case there is nothing left to prove.

ρpVISq ; ARν ; p∆A ; πpVISq ; VIS?q Ď VISν . Again, by unfolding the definition of ARν and by
applying the distributivity of Y over ; , we obtain that

ρpVISq ; ARν ; ∆A ; πpVISq ; VIS? “ ρpVISq ; AR ; ∆A ; πpVISq ; VIS?Y
ρpVISq ; ∆A ; ∆A ; πpVISq ; VIS?
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We prove that each of the components of the union in the RHS above is included in VISν .

ρpVISq ; AR ; ∆A ; πpVISq ; VIS? “

ρpVISq ; AR ; pAR? ; BA ; AR?q ; πpVISq ; VIS?
(A4)
Ď

ρpVISq ; AR? ; BA ; AR? ; πpVISq ; VIS? “
ρpVISq ; ∆A ; πpVISq ; VIS? “
BV ; VIS? Ď VIS? ; BV ; VIS? “
∆V Ď VISY∆V “ VISν

ρpVISq ; ∆A ; ∆A ; πpVISq ; VIS? “

ρpVISq ; AR? ; BA ; AR? ; AR? ; BA ; AR? ; πpVISq ; VIS?
Lem.49
Ď

ρpVISq ; AR? ; BA ; AR? ; πpVISq ; VIS? “
ρpVISq ; ∆A ; πpVISq ; VIS? “
BV ; VIS? Ď VIS? ; BV ; VIS? “ ∆V Ď VISY∆V “ VISν .

VIS? ; ρpVISq ; ∆A ; ARν ; πpVISq Ď VISν . As for the two cases above, we unfold ARν and
distribute the resulting union over ; : this leads to

VIS? ; ρpVISq ; ∆A ; ARν ; πpVISq “ VIS? ; ρpVISq ; ∆A ; AR ; πpVISqY
VIS? ; ρpVISq ; ∆A ; ∆A ; πpVISq.

Then we prove that each of the two terms in the union on the RHS above is included in VISν :

VIS? ; ρpVISq ; ∆A ; AR ; πpVISq “

VIS? ; ρpVISq ; AR? ; BA ; AR? ; AR ; πpVISq
(A4)
Ď

VIS? ; ρpVISq ; AR? ; BA ; AR? ; πpVISq “
VIS? ; ρpVISq ; ∆A ; πpVISq “
VIS? ; BV Ď
VIS? ; BV ; VIS? “ ∆V Ď VISY∆V “ VISν

VIS? ; ρpVISq ; ∆A ; ∆A ; πpVISq “

VIS? ; ρpVISq ; AR? ; BA ; AR? ; AR? ; BA ; AR? ; πpVISq
Lem.49
Ď

VIS? ; ρpVISq ; AR? ; BA ; AR? ; πpVISq “
VIS? ; ρpVISq ; ∆A ; ρpVISq “
VIS? ; BV Ď
VIS? ; BV ; VIS? “ ∆V Ď VISY∆V “ VISν

VIS? ; ρpVISq ; ∆A ; ARν ; ∆A ; πpVISq ; VIS? in this case we have the following:

VIS? ; ρpVISq ; ∆A ; ARν ; ∆A ; πpVISq ; VIS? “

VIS? ; ρpVISq ; AR? ; BA ; AR? ; ARν ; AR? ; BA ; AR? ; πpVISq ; VIS?
Lem.49
Ď

VIS? ; ρpVISq ; AR? ; BA ; AR? ; πpVISq ; VIS? “
VIS? ; BV ; VIS? “ ∆V Ď VISY∆V “ VISν

đ
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§ Proposition 56.

´

πpVISνq ; AntiVISν ; ρpVISνq
¯

zId Ď ARν .

Proof. Recall that AntiVISν “ VISν? ; RW ; VISν?. Thus, we need to prove that

´

πpVISνq ; VISν? ; RW ; VISν? ; ρpVISνq
¯

zId Ď ARν .

We start by performing a ∆-extraction both for the specification functions π and ρ:

´

πpVISνq ; VISν? ; RW ; VISν? ; ρpVISνq
¯

zId Ď

pπpVISq Y p∆A ; πpVISq ; VIS?qq ; VISν? ; RW ; VISν? ; ppVIS? ; ρpVISq ; ∆Aq Y ρpVISqqq zId “

pπpVISq ; VISν? ; RW ; VISν? ; ρpVISqqzIdY
p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; ρpVISqqzIdY
pπpVISq ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzIdY

p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzId

We prove that each of the four terms of the union above is included in ARν . To this end, it suffices to
prove the following:

pπpVISq ; VISν? ; RW ; VISν? ; ρpVISqqzId Ď ARν? (60)

In fact, if the inequation (60) is satisfied, we obtain that

pπpVISq ; VISν ; RW ; VISν? ; ρpVISqqzId Ď ARν :

pπpVISq ; VISν? ; RW ; VISν? ; ρpVISqqzId
(60)
Ď

ARν?zId “ pARν Y IdqzId “ ARνzId Ď ARν ,

p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; ρpVISqqzId Ď ARν :

p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; ρpVISqqzId Ď

p∆A ; πpVISq ; VISν? ; VISν? ; RW ; VISν? ; ρpVISqqzId
Cor.(50)
Ď

p∆A ; πpVISq ; VISν? ; RW ; VISν? ; ρpVISqqzId
(60)
Ď

p∆A ; ARν?qzId “
p∆A ; pARY∆Aq?qzId “
p∆A ; pAR?Y∆AqqzId “
p∆A ; AR?qzIdY p∆A ; ∆AqzId “

pAR? ; BA ; AR? ; AR?qzIdY pAR? ; BA ; AR? ; AR? ; BA ; AR?qzId
Lem.49
Ď

pAR? ; BA ; AR? ; AR?qzIdY pAR? ; BA ; AR?qzId
(A4)
Ď

pAR? ; BA ; AR?qzId “ p∆AqzId Ď ARY∆A “ ARν
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pπpVISq ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzId Ď ARν :

pπpVISq ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzId Ď

pπpVISq ; VISν? ; RW ; VISν? ; VISν? ; ρpVISq ; ∆AqzId
Cor.(50)
Ď

pπpVISq ; VISν? ; RW ; VISν? ; ρpVISq ; ∆AqzId
(60)
Ď pARν? ; ∆AqzId “

ppARY∆Aq? ; ∆AqzId “
ppAR?Y∆Aq ; ∆AqzId “
pAR? ; ∆AqzIdY p∆A ; ∆AqzId Ď
p∆AqzId Ď ARY∆A “ ARν

p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzId Ď ARν : here it suffices to
apply a B-cut (Lemma 49) to obtain the result:

p∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆AqzId Ď
∆A ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; ∆A “

AR? ; BA ; AR? ; πpVISq ; VIS? ; VISν? ; RW ; VISν? ; VIS? ; ρpVISq ; AR? ; BA ; AR?
Lem.(49)
Ď

AR? ; BA ; AR? “ ∆A Ď ARY∆A “ ARν

Let then prove Inequation (60): we have that

πpVISq ; VISν? ; RW ; VISν? ; ρpVISq “
πpVISq ; pVISY∆V q? ; RW ; pVISY∆V q? ; ρpVISq “

πpVISq ; VIS? ; RW ; VIS? ; ρpVISqY
πpVISq ; ∆V ; RW ; VIS? ; ρpVISqY
πpVISq ; VIS? ; RW ; ∆V ; ρpVISqY
πpVISq ; ∆V ; RW ; ρpVISq ; ρpVISq

We prove that each of the terms in the union above is included in ARν?.

πpVISq ; VIS? ; RW ; VIS? ; ρpVISq Ď ARν? (61)

πpVISq ; VIS? ; RW ; VIS? ; ρpVISq Ď

ppπpVISq ; VIS? ; RW ; VIS? ; ρpVISqqzIdq Y Id
(N1),(N2),(N3)

Ď

ppπpVISq ; AntiVIS ; ρpVISqqzIdq Y Id
(A5)
Ď

ARY Id Ď ARY∆AY Id “ ARν Y Id “ ARν?



XX:40 REFERENCES

πpVISq ; ∆V ; RW ; VIS? ; ρpVISq Ď ARν?:

πpVISq ; ∆V ; RW ; VIS? ; ρpVISq “
πpVISq ; VIS? ; BV ; VIS? ; RW ; VIS? ; ρpVISq “
πpVISq ; VIS? ; ρpVISq ; ∆A ; πpVISq ; VIS? ; RW ; VIS? ; ρpVISq Ď

VIS? ; VIS? ; VIS? ; ∆A ; πpVISq ; VIS? ; RW ; VIS? ; ρpVISq
(A2),(A4)
Ď

AR? ; ∆A ; πpVISq ; VIS? ; RW ; VIS? ; ρpVISq
(61)
Ď

AR? ; ∆A ; ARν? “
AR? ; ∆A ; pAR?Y∆Aq “
pAR? ; ∆A ; AR?q Y pAR? ; ∆A ; ∆Aq “

pAR? ; AR? ; BA ; AR?q Y pAR? ; AR? ; BA ; AR? ; AR? ; BA ; AR?q
(A4)
Ď

pAR? ; BA ; AR?q Y pAR? ; BA ; AR? ; BA ; AR?q
Lem.(49)
Ď

pAR? ; BA ; AR?q “ ∆A Ď ARY∆A “ ARν Ď ARν?

πpVISq ; VIS? ; RW ; ∆V ; ρpVISq Ď ARν?:

πpVISq ; VIS? ; RW ; ∆V ; ρpVISq “
πpVISq ; VIS? ; RW ; VIS? ; BV ; VIS? ; ρpVISq “
πpVISq ; VIS? ; RW ; VIS? ; ρpVISq ; ∆A ; ρpVISq ; VIS? ; ρpVISq Ď

πpVISq ; VIS? ; RW ; VIS? ; ρpVISq ; ∆A ; VIS? ; VIS? ; VIS?
(A2),(A4)
Ď

πpVISq ; VIS? ; RW ; VIS? ; ρpVISq ; ∆A ; AR?
(61)
Ď

ARν? ; ∆A ; AR? “
pAR? ; ∆Aq ; ∆A ; AR? “

pAR? ; ∆A ; AR?q Y p∆A ; ∆A ; AR?q
Lem.(49)
Ď

pAR? ; ∆A ; AR?q Y p∆A ; AR?q “
pAR? ; ∆A ; AR?q “ ∆A Ď ARY∆A “ ARν Ď ARν?

πpVISq ; ∆V ; RW ; ∆V ; ρpVISq Ď ARν?

πpVISq ; ∆V ; RW ; ∆V ; ρpVISq Ď
VIS? ; ∆V ; RW ; ∆V ; VIS? “

VIS? ; VIS? ; BV ; VIS? ; RW ; VIS? ; BV ; VIS? ; VIS?
Lem.(49)
Ď

VIS? ; VIS? ; BV ; VIS? ; VIS?
(V2)
Ď

VIS? ; BV ; VIS?
(A2)
Ď

VIS? ; VIS? ; ∆A ; VIS? ; VIS?
(V2),(A2)
Ď

AR? ; ∆A ; AR? “ ∆A Ď ARY∆A “ ARν Ď ARν?

đ

§ Proposition 57.
ď

xPObj
rWritesxs ; VISν ; RWpxq Ď ARν .
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Proof. Let T 1, U, S1 be such that T 1 P Writesx, T 1 VISν
ÝÝÝÑ U

RWpxq
ÝÝÝÝÑ S1 for some object x P Obj.

We need to show that T 1 ARν
ÝÝÑ S1. By definition, VISν “ VISY∆V . Thus, T 1 VIS

ÝÝÑ U or T 1 ∆V
ÝÝÑ U .

If T 1 VIS
ÝÝÑ U , then T 1 VIS

ÝÝÑ U
RWpxq
ÝÝÝÝÑ S1 and T 1 P Writesx. By the inequation (A3) we have that

T 1
AR
ÝÝÑ S1, which implies the desired T 1 ARν

ÝÝÑ S1.
Suppose then that T 1 ∆V

ÝÝÑ U . By unfolding the definition of ∆V , we have that

T 1
VIS?;ρpVISq
ÝÝÝÝÝÝÝÑ T 2

AR?
ÝÝÑ T

BA
ÝÝÑ S

AR?
ÝÝÑ U 1

πpVISq;VIS?
ÝÝÝÝÝÝÝÑ U

RWpxq
ÝÝÝÝÑ S1.

Recall that by definition of BA, the transactions T and S are not related by AR. Note that, since

U
RWpxq
ÝÝÝÝÑ S1, then U P Readsx, S1 P Writesx. Recall that WWpxq is a total order over Writesx.

Therefore, we have three possible cases: T 1
WWpxq
ÝÝÝÝÑ S1, T 1 “ S1 or T 1

WWpxq
ÝÝÝÝÑ S1. These cases are

analysed separately.

T 1
WWpxq
ÝÝÝÝÑ S1: by the inequality (A1)we have that T 1 AR

ÝÝÑ S1. Thus, T 1 ARν
ÝÝÑ S1.

T 1 “ S1: this case is not possible. We first prove that U 1 ‰ T 2. Suppose U 1 “ T 2. Then
S

AR?
ÝÝÑ U 1 “ T 2

AR?
ÝÝÑ T , that is S AR?

ÝÝÑ T . But by hypothesis, T and S are not related by AR,
hence we get a contradiction.
Let then U 1 ‰ T 2. Since we have

U 1
πpVISq;VIS?
ÝÝÝÝÝÝÝÑ U

RWpxq
ÝÝÝÝÑ S1 “ T 1

VIS?;ρpVISq
ÝÝÝÝÝÝÝÑ T 2

we have that U 1 AR
ÝÝÑ T 2 by the inequality (A5). Thus, S AR?

ÝÝÑ U 1
AR
ÝÝÑ T 2

AR?
ÝÝÑ T , or equivalently

S
AR
ÝÝÑ T . Again, this contradict the assumption that S and T are not related by AR.

S1
WWpxq
ÝÝÝÝÑ T 1: this case is also not possible. Recall that U

RWpxq
ÝÝÝÝÑ S1; that is, there exists an

entity U2 such that U2
WRpxq
ÝÝÝÝÑ U , U2

WWpxq
ÝÝÝÝÑ S1. By the transitivity of WWpxq, we have that

U2
WWpxq
ÝÝÝÝÑ T 1. Thus, U

RWpxq
ÝÝÝÝÑ T 1. We can proceed as in the case above to show that this implies

S
AR
ÝÝÑ T , contradicting the assumption that T and S are not related by AR.

đ

Finally, we prove the following:
§ Proposition 58. The triple pXV “ VISν , XA “ ARν , XN “ AntiVISνq is included in the least
solution to SystemΣpGq for which the relation corresponding to the unknownXA includes the relation
ARY BA.
Proof.. Let pXV “ VIS1, XA “ AR1, XN “ AntiVIS1q be a solution to SystemΣpGq such that
pARY BAq Ď AR1. We need to show that ARν Ď AR1, VISν Ď VIS1, and AntiVisν Ď AntiVIS1.

ARν Ď AR1: note that we have that

∆A “ AR? ; BA ; AR? Ď AR1 ; AR1 ; AR1
(A4)
Ď AR1

from which it follows that ARν “ ARY∆AR Ď pAR1 Y AR1q “ AR1.
VISν Ď VIS1: Observe that for any solution pXV “ VIS2, XA “ AR2, XN “ AntiVIS2q of
SystemΣpGq, the relation VIS1 is determined uniquely by AR2: specifically, VIS2 “ µV.FpV,AR2q,
where

FpV,AR2q “

¨

˝WRY

¨

˝

ď

tx|pρx,ρxqPΣu
WWpxq

˛

‚Y pρpV q ; AR2 ; πpV qq

˛

‚

`

the functional F is monotone in its second argument, which means that the inequation ARν Ď AR1

also implies that VISν Ď VIS1.
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AntiVISν Ď VIS1. Observe that, for any solution pXV “ VIS2, XA “ AR2, XN “ AntiVIS2q, the
relation AntiVIS2 is determined uniquely by VIS2. Specifically, we have that AntiVIS2 “ FpVIS2q,
where FpVIS2q “ VIS2? ; RW ; VIS2?. The functional F is monotone, from which it follows that
the inequation VISν Ď VIS1, proved above, implies that AntiVisν Ď AntiVIS1.

đ

Proof of Proposition 48. We need to show that pXV “ VISν , XA “ ARν , XN “ AntiVISνq is a
solution of SystemGpΣq. By Proposition 58, it follows that it is the smallest solution for which the
relation corresponding to the unknown XA includes ARY BA.

Obviously we have that WR Ď VIS Ď VISν , and
Ť

tWWpxq | pρx, ρxq P Σu Ď VIS Ď VISν : the
inequations (V1)and (V3)are satisfied. The validity of inequation (V2) follows from Corollary 50.
The inequation (V4) is also satisfied, as we have proved in Proposition 55.

The inequality (A1)is satisfied because WW Ď AR Ď ARν , and the inequation (A2) has been
proved in Proposition 54. The validity of the inequation (A4) also follows from Corollary 50. The
inequation (A5) and (A3) are satisfied, as we have proved in propositions 56 and 57.

Finally, the inequation (N1) is satisfied because RW Ď VISν? ; RW ; VISν? “ AntiVISν ; the
inequation (N2) is satisfied because VISν ; AntiVISν “ VISν ; VISν? ; RW ; VISν? Ď VISν? ;
RW ; VISν? “ AntiVISν (recall that VISν is transitive by Corollary 50), and similarly we can prove
that the inequation (N3) is also satisfied. đ

D.3 Proof of Theorem 11

Throughout this section we let G “ pT ,WR,WW,RWq.

D.3.1 Proof of Theorem 11(1)

Recall that ΣSER “ tpρS , ρSqu, where ρSpRq “ Id. The instantiation of inequations (V4) and (A5),
in SystemΣSER

pGq gives rise to the inequations XA Ď XV and XNzId Ď XA.
Let VIS “ AR “ AntiVIS “ pWR Y WW Y RWq`. We prove that pXV “ VIS, XA “

AR, XN “ AntiVISq is a solution to SystemΣSER
pGq: to this end, we show that by substituting each of

the unknowns for the relation pWRYWW Y RWq` in SystemΣSER
pGq, then each of the inequations

of such a system is satisfied. Clearly WR Ď VIS, hence equation (V1) is satisfied. Because there
is no consistency guarantee of the form pρx, ρxq P ΣSER, the inequation (V3) is trivially satisfied.
Inequation (V2) is also satisfied. VIS ; VIS “ pWR YWW Y RWq` ; pWR YWW Y RWq` “
pWR YWW Y RWq` “ VIS. Inequation (V4) requires that AR Ď VIS: this is also satisfied, as
AR “ pWRYWW Y RWq` “ VIS.

Inequation (A1) is trivially satisfied: WW Ď pWRYWW Y RWq` “ AR. Inequation (A2) is
also satisfied: VIS “ pSO YWR Y RWq` “ AR, hence VIS Ď AR. Inequation (A5) is satisfied
as well: AntiVISzId “ pWR YWW Y RWq`zId Ď pWR YWW Y RWq` “ AR. Inequation (A3)
is also satisfied:

Ť

xPObj rWritesxs ; VIS ; RWpxq Ď VIS ; RW “ pWR YWW Y RWq` ; RW Ď

pWRYWW Y RWq` “ AR.
Inequation (N1) is obviously satisfied, as RW Ď pWR Y WW Y RWq` “ AntiVIS. For

inequation (N2) , note that VIS ; AntiVIS “ pWR Y WW Y RWq` ; pWR Y WW Y RWq` Ď
pWRYWW Y RWq` “ AntiVIS, and it can be shown that Inequation (N3) is satisfied in a similar
way.

The proof that the solution pXV “ VIS, XA “ AR, XN “ AntiVISq is the smallest solution of
SystemΣSER

pGq can be obtained as in the proof of Theorem 12. đ
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D.3.2 Proof of Theorem 11(3).

Recall that ΣSI “ tpρx, ρxquxPObj Y tpρId, ρSIqu, where ρxpRq “ rWritesxs, ρSIpRq “ RzId. By
instantiating inequation (V3) to ΣSI we obtain WW Ď XV , while by instantiating inequations
(V4) and (A5) to the consistency guarantee pρId, ρSIq, we obtain XA ; pXV zIdq Ď XV , and
ppXV zIdq ; XN qzId Ď XA.

Let AR “ ppWRYWWq ; RW?q`, VIS “ AR? ; pWRYWWq, AntiVIS “ VIS? ; RW ; VIS?.
Then pXV “ VIS, XA “ AR, XN “ AntiVISq is a solution of SystemΣSI

pGq. We can prove that it is
the smallest such solution in the same way as in Theorem 13.

We need to show that, by substituting VIS,AR,AntiVIS for XV , XA, XN respectively, in
SystemΣSI

pGq, all the inequations are satisfied. Here we give the details only for the most important
of them. A full proof of this statement can be found in [14].

AR ; pVISzIdq Ď VIS:

AR ; pVISzIdq Ď AR ; VIS “
ppWRYWWq ; RW?q` ; ppWRYWWq ; RW?q˚ ; pWRYWWq Ď
ppWRYWWq ; RW?q˚ ; pWRYWWq “ AR? ; pWRYWWq “ VIS

ppVISzIdq ; AntiVISqzId Ď AR:

ppVISzIdq ; AntiVISqzId Ď
VIS ; AntiVIS “ VIS ; VIS? ; RW ; VIS? “
VIS ; RW ; VIS? “
pppWRYWWq ; RW?q˚ ; pWRYWWqq ; RW ; VIS? Ď
ppWRYWWq ; RW?q` ; VIS? “
ARY VIS? Ď AR

where we have used the fact that AR ; VIS Ď VIS, which we have proved previously.
đ

D.3.3 Proof of Theorem 11(2).

Errata: the statement of the Theorem is correct. However, the proof sketch given in §5 is not. In
such a proof sketch we claim that the smallest solution of the system of inequation SystemΣpPSIq
is given by pXV “ VIS, XA “ AR, XN “ AntiVISq, where VIS “ pWR Y WWq`, AR “

VISY
Ť

xPObj pVIS? ; RWpxqq`, AntiVIS “ VIS? ; RW ; VIS?. This is not true.
The correct claim for proving Theorem 11(2) is the following:

§ Proposition 59. Let VIS “ pWR YWWq`, AR “ VIS Y
Ť

xPObj prWritesxs ; VIS? ; RWpxqq`,
AntiVIS “ VIS? ; RW ; VIS?. If AR is irreflexive, then pXV “ VIS, XA “ AR, XN “ AntiVISq is
a solution of SystemΣPSI

pGq. Furthermore, it is the smallest such solution.
In the following, we prove both Proposition 59 and Theorem 11(2).

Proof of Proposition 59. Recall that ΣPSI “ tpρx, ρxquxPObj. Therefore, the system of
inequations SystemΣPSI

pGq does not contain inequations (V4) and (A5), and inequation (V3) is
instantiated to WW Ď VIS. We prove that, under the assumption that AR is irreflexive, the triple
pXV “ VIS, XA “ AR, XN “ AntiVISq is a solution of SystemΣPSI

pGq by showing that, by substi-
tuting VIS,AR and AntiVIS for XV , XA and XN in SystemΣPSI

pGq, respectively, all the inequations
are satisfied. The fact that the triple pXV “ VIS, XA “ AR, XN “ AntiVISq is the smallest solution
of SystemΣPSI

pGq can be proved in the same way as in the proof of Theorem 14.
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First, we observe that if AR is irreflexive, then for any x P Obj, rWritesxs ; VIS? ; RWpxq Ď
WWpxq. To see why this is true, recall that WWpxq is a strict, total order over Writesx. Suppose

that T Q write x : _, T VIS?
ÝÝÝÑ S1

RWpxq
ÝÝÝÝÑ S. Note that, since rWritesxs ; VIS? ; RWpxq Ď AR,

and we are assuming that the latter is irreflexive, it cannot be T “ S. By definition of RWpxq,
S Q write x : _. Therefore, either T

WWpxq
ÝÝÝÝÑ S, or S

WWpxq
ÝÝÝÝÑ T . However, if it were S

WWpxq
ÝÝÝÝÑ T ,

we would have S Q Writesx, S
WWpxq
ÝÝÝÝÑ T

VIS?
ÝÝÝÑ S1

RWpxq
ÝÝÝÝÑ S: because VIS “ pWR Y WWq`,

WWpxq ; VIS? Ď VIS?, hence S VIS?
ÝÝÝÑ S1

RWpxq
ÝÝÝÝÑ S, and because S Q write x : _, it would follow

that S AR
ÝÝÑ S, contradicting the hypothesis that AR is irreflexive. Therefore, it must be T

WWpxq
ÝÝÝÝÑ S.

We have proved that, if AR is irreflexive, then for any x P Obj, rWritesxs ; VIS? ; RWpxq Ď WW.
An immediate consequence of this fact is the following:

ď

xPObj
prWritesxs ; VIS? ; RWpxqq` Ď WW (62)

Next, we prove that each of the inequations in SystemΣPSI
are satisfied when VIS,AR,AntiVIS

are substituted for XV , XA, XN , respectively.

Inequation (V1): WRY VIS. This is true, because WR Ď pWRYWWq` “ VIS,
Inequation (V3): WW Ď VIS. This can be proved as above: WW Ď pWRYWWq` Ď VIS,
Inequation (V2): VIS ; VIS Ď VIS. This is trivially satisfied: VIS ; VIS “ pWR Y WWq` ;
pWRYWWq` Ď pWRYWWq` “ VIS,

Inequation (A1): WW Ď AR. We have already proved that WW Ď VIS, hence it suffices to show
that VIS Ď AR; this is done below,

Inequation (A2): VIS Ď AR. We have that

VIS Ď VISY
ď

xPObj
prWritesxs ; VIS? ; RWpxqq` “ AR,

Inequation (A4): AR ; AR Ď AR. We have that

AR ; AR “
˜

VISY
ď

xPObj
prWritesxs ; VIS? ; RWpxqq`

¸

;
˜

VISY
ď

xPObj
prWritesxs ; VIS? ; RWpxqq`

¸

(62)
Ď

pVISYWWq ; pVISYWWq (A1)
“ VIS ; VIS

(A2)
Ď AR

Inequation (A3):
Ť

xPObj rWritesxs ; VIS ; RWpxq Ď AR. This inequation is trivially satisfied by
the definition of AR:

ď

xPObj
rWritesxs ; VIS ; RWpxq Ď

ď

xPObj
rWritesxs ; VIS? ; RWpxq Ď AR

Inequation (N1): RW Ď AntiVIS. We have that RW Ď VIS? ; RW ; VIS? “ AntiVIS,
Inequation (N2): VIS? ; RW Ď AntiVIS: we have that VIS? ; RW Ď VIS? ; RW ; VIS? “

AntiVIS. Inequation (N3) can be proved similarly.
đ

Proof of Theorem 11(2). Let ∆PSI “ tδPSI0u Y tδPSIpxquxPObj. Recall that

δPSI0 :G ÞÑ pWRG YWWGq
`

δPSIpxq :G ÞÑ ppWRG YWWGq
˚ ; RWpxqq`.



REFERENCES XX:45

We need to show that modelOfpΣPSIq “ modelOfp∆PSIq: for any execution X P ExecutionspΣPSIq,
graphpX q P Graphsp∆PSIq, and for any G P Graphsp∆PSIq, there exists an execution X P ExecutionspΣPSIq

such that graphpX q “ G.
We prove this result in several step. First, define

δ1PSI : G ÞÑ pWRG YWWGq
` Y

ď

xPObj
prWritesxs ; pWRG YWWGq

˚ ; RWGpxqq
`
.

We prove that modelOfpΣPSIq “ modelOfptδ1PSIuq. By Theorem 14 we have that, for any X P

ExecutionspPSIq, the relation δ1PSIpGq is irreflexive, hence modelOfpΣPSIq Ď modelOfptδ1PSIuq. Let
then G P modelOfpδ1PSIq, that is the relation δ1PSIpGq is irreflexive. By Proposition 59 we have that
pXV “ _, XA “ δ1PSIpGq, XN “ _q is a solution to SystemPSIpGq, and by Theorem 17 it follows that
there exists a relation X P ExecutionspΣPSIq such that graphpX q “ G. That is, modelOfptδ1PSIuq Ď

modelOfpΣPSIq.
Next, for any object x P Obj, define δ1PSIpxqpGq “ prWritesxs ; pWRGYWWGq

˚ ; RWGpxqq
`. It

is immediate to observe that modelOfptδ1PSIuq “ modelOfptδPSI0uYtδ
1
PSIpxq | x P Objuq. In fact, for

any G P Graphs, we have that δ1PSIpGq “ δPSI0pGqY
Ť

xPObj δ
1
PSIpxqpGq, hence δ1PSIpGqXId “ H if and

only if δPSI0pGq X Id “ H, and δ1PSIpxqpGq X Id “ H. At this point we have that modelOfpΣPSIq “

modelOfptδ1PSIuq “ modelOfptδPSI0u Y tδ
1
PSIpxq|xPObjuq.

As a last step, we show that for each dependency graph G and object x, the relation δ1PSIpxqpGq
is irreflexive if and only if the relation δPSIpxqpGq is irreflexive, where we recall that δPSIpxqpGq “
ppWRG YWWGq

˚ ; RWGpxqq
`. An immediate consequence of this fact is that modelOfpΣPSIq “

modelOfptδPSI0u Y tδPSIpxq | x P Objuq “ modelOfp∆PSIq, which is exactly what we want to prove.
Note that δ1PSIpxqpGq “ prWritesxs ; pWRG Y WWGq

˚ ; RWGpxqq
` ĎqpWRG Y WWGq

˚ ;
RWGpxqq

` “ δPSIpxqpGq: if δPSIpxqpGq is irreflexive, then so if δ1PSIpxqpGq. Finally, suppose that
δ1PSIpxqpGq X Id Ď H. That is, prWritesxs ; pWRG YWWGq

˚ ; RWGpxqq
` X Id Ď H. We apply the

following Theorem from Kleene Algebra: for any relations R1, R2 Ď TG ˆ TG , pR1 ; R2q
` “ R1 ;

pR2 ; R1q
˚ ; R2. This leads to the following:

prWritesxs ; ppWRG YWWGq
˚ ; RWpxq ; rWritesxsq˚ ; ppWRG YWWGq

˚ ; RWpxqqqX Id Ď H

Also, by Proposition 35, the latter can be rewritten as follows:

pppWRG YWWGq
˚ ; RWGpxq ; rWritesxsq˚ ; pWRG YWWGq

˚ ; RWGpxq ; rWritesxsqqXId Ď H

which can be simplified into

ppWRG YWWGq
˚ ; RWGpxq ; rWritesxsq` X Id Ď H.

As a last step, note that RWGpxq ; rWritesxs Ď RWGpxq, hence we have

ppWRG YWWGq
˚ ; RWpxqq` X Id Ď H

which is exactly δPSIpxqpGq X Id Ď H. đ
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