Concurrent Abstract Predicates

Thomas Dinsdale-Young', Mike Dodds?, Philippa Gardner!,
Matthew Parkinson?, and Viktor Vafeiadis?

! Tmperial College, London, {td202, pg}@doc.ic.ac.uk
2 University of Cambridge, {md466,mjp41,vv216}@cl.cam.ac.uk

Abstract. Abstraction is key to understanding and reasoning about
large computer systems. Abstraction is simple to achieve if the relevant
data structures are disjoint, but rather difficult when they are partially
shared, as is often the case for concurrent modules. We present a pro-
gram logic for reasoning abstractly about data structures that provides a
fiction of disjointness and permits compositional reasoning. The internal
details of a module are completely hidden from the client by concurrent
abstract predicates. We reason about a module’s implementation using
separation logic with permissions, and provide abstract specifications for
use by client programs using concurrent abstract predicates. We illus-
trate our abstract reasoning by building two implementations of a lock
module on top of hardware instructions, and two implementations of a
concurrent set module on top of the lock module.

1 Introduction

When designing physical systems, we use abstraction and locality to hide irrele-
vant details. For example, when building a house in London, we do not consider
the gravitational forces on individual brick molecules, nor what the weather is
like in Paris. Similarly, we use abstraction and locality when designing and rea-
soning about large computer systems. Locality allows us to consider small parts
of a system in isolation. Abstraction gives us a structured view of the system,
because components can be represented by their abstract properties.

With locality, we can directly provide some degree of abstraction. Using sep-
aration logic [16], we can prove that a module operates only on a particular data
structure, not accessed by other modules. If the structure is manipulated only by
module functions, it can be represented just in terms of its abstract properties,
using abstract predicates [21]. For example, we can give a specification for a set
using an abstract predicate to assert that “the set is {5,6}”. A client can then
reason about the set without reasoning about its internal implementation: given
“the set is {5,6}”, the client can infer, after deleting 6, that “the set is {5}”.

This combination of abstract predicates with the low-level locality from sep-
aration logic supports coarse-grained reasoning about modules, where each data
structure is represented by a single abstract predicate. However, we often need
to reason about modules in a fine-grained manner, where many abstract predi-
cates refer to properties of the same data structure. For example, a fine-grained

specification for the set module would allow element 6 to be manipulated sepa-
rately from the rest of the set. Fine-grained reasoning of this sort is advocated
by context logic [3].

Fine-grained abstractions often cannot be achieved using traditional abstract
predicates. This is because separation in the abstraction (union, in the case of
the set module) need not correspond to separation in the implementation [7].
If the set module is implemented using an array, and each element of the set is
represented with a disjoint element of the array, then the high-level and low-level
separation correspond. However, if the set module is implemented as a singly-
linked list, then the implementation must traverse the global list to manipulate
individual set elements. Individual set elements are not represented disjointly in
the implementation, and fine-grained reasoning is not possible with traditional
abstract predicates combined with separation logic.

In this paper, we present a program logic that allows fine-grained abstraction
in the presence of sharing, by introducing concurrent abstract predicates. These
predicates present a fiction of disjointness [7]; that is, they can be used as if
each abstract predicate represents disjoint resource, whereas in fact resources are
shared between predicates. For example, given a set implemented by a linked list
we can write abstract predicates asserting “the set contains 5, which I control”
and “the set contains 6, which I control”. Both predicates assert properties about
the same shared structure, and both can be used at the same time by separate
threads: for example, elements can be deleted concurrently from a set.

Concurrent abstract predicates capture information about the permitted
changes to the shared structure. In the case of the set predicates, each pred-
icate gives the thread full control over a particular element of the set. Only the
thread owning the predicate can remove this element. We implement this con-
trol using resource permissions [8], with the property that the permissions must
ensure that a predicate is self-stable: that is, immune from interference from
the surrounding environment. Predicates are thus able to specify independent
properties about the data, even though the data are shared.

With our program logic, a module implementation can be verified against a
high-level specification expressed using concurrent abstract predicates. Clients
of the module can then be verified purely in terms of this high-level specifica-
tion, without reference to the module’s implementation. We demonstrate this by
presenting two implementations of a lock module satisfying the same abstract
lock specification, and using this specification to build two implementations of
a concurrent set satisfying the same abstract set specification. At each level,
we reason entirely abstractly, avoiding reasoning about the implementation of
the preceding level. Hence, concurrent abstract predicates provide the necessary
abstraction for compositional reasoning about concurrent systems.

2 Informal Development

We develop our core idea, to define abstract specifications for concurrent modules
and prove that concrete module implementations satisfy these specifications.

We motivate our work using a lock module, one of the simplest examples of
concurrent resource sharing. We define an abstract specification for locks, and
give two implementations satisfying the specification.

2.1 Lock Specification

A typical lock module has the functions lock(x) and unlock(x). It also has a
mechanism for constructing locks, such as makelock(n), which allocates a lock
and a contiguous block of memory of size n. We specify these functions as:

{isLock(x)} lock(x) {isLock(x) * Locked(x)}
{Locked(x)} unlock(x) {emp}

Jz.ret = z AisLock(z) * Locked(x) }

{emp} makelock(n) { x(x+1)— _*...x(z+n)— _

This abstract specification, which is presented by the module to the client, is
independent of the underlying implementation.® The assertions isLock(x) and
Locked(z) are abstract predicates. isLock(x) asserts that the lock at = can be
acquired by the thread with this assertion, while Locked(z) asserts that the
thread holds the lock. We use the separating conjunction, *, from separation
logic: p * g asserts that the state can be split disjointly into two parts, one
satisfying p and the other satisfying ¢. Later, we give a concrete interpretation
of these predicates for a simple compare-and-swap lock.
The module presents the following abstract predicate axioms to the client:

isLock(xz) <= isLock(z) * isLock(x) (1)
Locked(x) * Locked(z) <= false (2)

The first axiom allows the client to share freely the knowledge that z is a lock.*
The second axiom implies that a lock can only be locked once. With the sep-
aration logic interpretation of triples (given in §4.5), the client can infer that,
if lock(x) is called twice in succession, then the program will not terminate as
the post-condition is not satisfiable.

2.2 Example: A Compare-and-Swap Lock

Consider a simple compare-and-swap lock implementation.

lock(x) { unlock(x) { makelock(n) {

local b; ([x] = 0) local x := alloc(n+l);
do (b = —~CAS(&x, 0, 1)) } [x] = 1;

while(b) return x;

} ¥

(Here angle brackets denote atomic statements.)

3 This specification resembles those used in the work of Gotsman et al. [11] and Hobor
et al. [15] on dynamically-allocated locks.

4 We do not record the splittings of isLock(z), although we could use permissions [2]
to explicitly track this information.

Interpretation of Abstract Predicates. We relate the lock implementation to our
lock specification by giving a concrete interpretation of the abstract predicates.
The predicates are not just interpreted as assertions about the internal state of
the module, but also as assertions about the internal interference of the module:
that is, how concurrent threads can modify shared parts of the module state.
To describe this internal interface we extend separation logic with two asser-
tions, the shared region assertion | P|, & and the permission assertion [A]. The

shared region assertion s (4) specifies that there is a shared region of memory,

identified by label r, and that the entire shared region satisfies P. The shared
state is indivisible so that all threads maintain a consistent view of it. This is
expressed by the logical equivalence ; @ * ; @) & ; @) The possible
actions on the state are declared by the environment I(Z).

The permission assertion [A]” specifies that the thread has permission 7 to
perform action A over region r, provided the action is declared in the environ-
ment. Following Boyland [2], the permission 7 can be the fractional permission,

€ (0,1), denoting that both the thread and the environment can do the ac-
tion, or the full permission, m = 1, denoting that the thread can do the action
but the environment cannot.® We now have the machinery to interpret our lock
predicates concretely:

isLock(z) = 3r.3m. [Lock]. *[(z — 0% [UNLOCK]}) V & — 1\;(T o)
Locked(z) = Jr. [UNLOCK]] x H -

The abstract predicate isLock(z) is interpreted by the concrete, implementation-
specific assertion on the right-hand side. This specifies that the local state con-
tains the permission [LOCK]", meaning that the thread can acquire the lock. It
also asserts that the shared region satisfies the module’s invariant: either the
lock is unlocked (x +— 0) and the region holds the full permission [UNLOCK]] to
unlock the lock; or the lock is locked (x +— 1) and the unlocking permission is
gone (the thread that acquired the lock has it).

Meanwhile, the abstract predicate Locked(x) is interpreted as the permission
assertion [UNLOCK]] in the local state, giving the current thread full permission
to unlock the lock in region r, and the shared region assertion, stating that the
lock is locked (z — 1).

The actions permitted on the lock’s shared region are declared in I(r,x).
Actions describe how either the current thread or the environment may modify
the shared state. They have the form A: P ~~ @, where assertion P describes
the part of the shared state required to do the action and) describes the part
of the state after the action. The actions for the lock module are

I(r,z) =

def Lock: x+ 0% [UNLOCK]|] ~» =z 1,
UNLOCK: z+—1 ~» x> 0% [UNLOCK]]

5 The state model also contains a zero permission, 0, denoting that the thread may
not do the action but the environment may.

The LOCK action requires that the shared region contains the unlocked lock (x —
0) and full permission [UNLOCK]] to unlock the lock. The result of the action is to
lock the lock (z — 1) and to move the full unlock permission to the thread’s local
state ([UNLOCK]] has gone from the shared state). The movement of [UNLOCK]]
into local state allows the locking thread to release the lock afterwards. Note
that local state is not explicitly represented in the action; since interference only
happens on shared state, actions do not need to be prescriptive about local state.

The UNLOCK action requires that the shared region r contains the locked lock
(x +— 1). The result of the action is to unlock the lock (z — 0) and move the
[UNLOCK]] permission into the shared state. The thread must have [UNLOCK]}
in its local state in order to move it to the shared state as a result of the action.

Notice that UNLOCK is self-referential. The action moves exclusive permission
on itself out of local state. Consequently, a thread can only apply UNLOCK once
(intuitively, a thread can only release a lock once without locking it again). In
84.2, we discuss how our semantics supports such self-referential actions.

The abstract predicates must be self-stable with respect to the actions: that
is, for any action permitted by the module (actions in I(r, z)), the predicate must
remain true. Self-stability ensures that a client can use these predicates without
having to consider the module’s internal interference. For example, assume that
the predicate Locked(x) is true. There are two actions the environment can
perform that can potentially affect the location x:

— LoOcCK, but this action does not apply, as x has value 1 in the shared state
of Locked(z); and

— UNLOCK, but this action also does not apply, as full permission on it is in
the local state of Locked(z).

The implementer of the module must show that the concrete interpretation of
the predicates satisfies the axioms presented to the client. In our example, axiom
1, that only a single Locked(x) can exist, follows from the presence in the local
state of full permission on UNLOCK. Axiom 2, that isLock(z) can be split, follows
from the fact that non-exclusive permissions can be arbitrarily subdivided and
that * behaves additively on shared region assertions.

Verifying the Lock Implementation. Given the definitions above, the lock imple-
mentation can be verified against its specification; see Fig. 1 and Fig. 2.

For the unlock case, the atomic update ([z] := 0) is allowed, because it can be
viewed as performing the UNLOCK action, full permission for which is in the local
state. The third assertion specifies that the permission [UNLOCK]] has moved
from the local state to the shared region r as stipulated by the unlock action.
This assertion is not, however, stable under interference from the environment
since another thread could acquire the lock. It does imply the fourth assertion,
which is stable under such interference. The semantics of assertions allows us to
forget about the shared region, resulting in the post-condition, emp.

For the lock case, the key proof step is the atomic compare-and-swap com-
mand in the loop. If successful, this command updates the location referred to
by x in the shared state region from 0 to 1. This update is allowed because of

{isLock(x)} {Locked(x)}

lock(x) { unlock(x) {
Ir. 7. [LOCK]7 * . {Hr, [UNLOCK]T * | x — 1 IT(T x)}
‘ (x — 0% [UNLOCK]}) V x — 1 e ([x] = 0); 7
local b; {Hr.‘ x — 0% [UNLOCK]T " x)}

do // Stabilise the assertion.

Ir. 7. [LOCK]7 * . (x — 0% [UNLock]7) |
’(X»—)O*[UNLOCKH)\/XHll(| Jr. Vxi 1

X I(r,x)
(b := —CAS(&x,0,1)); } {emp}
Ir. . (x> 1 IT(T o ¥ [Lock]; * [UNLOCK]] * b = false) v

(\ (x +— 0 % [UNLOCK]}) V x — 1

* [LOCK] b = true)

I(r,x)

while(b)

{Hr. ;T o ¥ [LOCK], * [UNLOCK]] * b = false}
}

{isLock(x) * Locked(x) }

Fig. 1. Verifying the compare-and-swap lock implementation: lock and unlock.

the permission [LOCK]% in the local state and the action in I(r,z). The post-
condition of the CAS specifies that either location x has value 1 and the unlock
permission has moved into the local state as stipulated by the LOCK action, or
nothing has happened and the pre-condition is still satisfied. This post-condition
is stable and so the Hoare triple is valid.

For the makelock case, the key proof step is the creation of a fresh shared
region and its associated permissions. Our proof system includes repartitioning
operator, denoted by =>, which enables us to repartition the state between
regions and to create regions. In particular, we have that:

P=3r.[P]} . *all(I(Z))

(@)

which creates the fresh shared region r and full permission for all of the actions
defined in I(Z) (denoted by all(I(Z))). In our example, we have

r 1= HT';(T 2y * ILOCK]] * [UNLOCK]]

The final post-condition results from the definitions of isLock(x) and Locked(z).

2.3 The Proof System

We give an informal description of the proof system, with the formal details given
in §4. Judgements in our proof system have the form A; I' - {P}C{Q}, where A
contains predicate definitions and axioms, and I presents abstract specifications
of the functions used by C. The local Hoare triple {P}C{Q} has the fault-
avoiding partial-correctness interpretation advocated by separation logic: if the

{emp)

makelock(n) {
local x := alloc(n + 1);
{XP—),*(X"‘l)’—?,*“.*(X-’-n))—),}
[x] = 1;
{x—1x@Ex+1)—_x...x(x+n)— _}
// Create shared lock region.

{3r.;(m) # [LOCK]} * [UNLOCK]] # (x + 1) = _% ... % (x +n) — }
return x;

}

{3z.ret = x AisLock(x) * Locked(z) * (z + 1) — _%...% (z +n) — _}

Fig. 2. Verifying the compare-and-swap lock implementation: makelock.

program C' is run from a state satisfying P then it will not fault, but will either
terminate in a state satisfying) or not terminate at all.
The proof rule for atomic commands is

Fsu {p} C {q} AFP={HIQ At stable(P,Q)
A rE{PE(C){Q}

The bodies of atomic commands do not contain other atomic commands, nor do
they contain parallel composition. They can thus be specified using separation
logic. The first premise, Fs. {p} C {q}, is therefore a triple in sequential sep-
aration logic, where p,q denote separation logic assertions that do not specify
predicates, shared regions or interference.

The second premise, A F P={P14} Q, says that the interference allowed
by P enables the state to be repartitioned to @, given the change to memory
specified by {p}{q}. In our example, when the CAS performs the update the
change is {x — 0}{z — 1}. We also require that P and @ are stable, so that
they cannot be falsified by concurrently executing threads. Pre-condition and
post-condition stability is a general requirement that our proof rules have, which
for presentation purposes we keep implicit in the rest of the paper.

The repartitioning arrow P => () used earlier for constructing a new region
is a shorthand for P ={emPHemp}) i ¢. a repartitioning where no concrete state
changes. We use this repartitioning in the rule of consequence to move resources
between regions. The operator = includes conventional implication, so this rule
of consequence subsumes the traditional one.

AFP=P ATH{P}C{Q} A+Q=Q
A I'={P} C {Q}

(AToMIC)

(CONSEQ)

We now introduce a rule that allows us to combine a verified module with a
verified client to obtain a complete verified system. The idea is that clients of
the module are verified with respect to the specification of the module, without
reference to the internal interference and the concrete predicate definitions.

Our proof system for programs includes abstract specifications for functions.
In previous work on verifying fine-grained concurrent algorithms [23], interfer-
ence had to be specified explicitly for each function. Here we can prove a spec-
ification for a module and then represent the specification abstractly without
mentioning the interference internal to the module.

As we have seen, our predicates can describe the internal interference of a
module. Given this, we can define high-level specifications for a module where
abstract predicates correspond to invariant assertions about the state of the
module (that is, they are ‘self-stable’). As these abstract assertions are invariant,
we can hide the predicate definitions and treat the specifications as abstract.

The following proof rule expresses the combination of a module with a client,
hiding the module’s internal predicate definitions.

AF{P}CHQ1} - AF{P.}C.{Qn}
A A AP Q1) AP Qe F {PYC{Q}
}—{P}let Hi=C...fn= ninC{Q}

This rule defines a module consisting of functions fi ... f,, and uses it to verify
a client specification {P}C{Q}.

If — the implementation C; of f; satisfies the specification {P;}C;{Q;} under
predicate assumptions A, for each i;
— the axioms exposed to the client in A’ are satisfied by the predicate as-
sumptions 4; and
— the specifications { P } f1{Q1}, ..., {Pn}fn{Q@xr} and just the predicate as-
sumptions A’ can be used to prove the client {P}C{Q};
then the composed system satisfies {P} let f1 =C;... f, =C, in C {Q}.
Using this rule, we can define an abstract module specification and use this
specification to verify a client program. Any implementation satisfying the spec-
ification can be used in the same place. We are only required to show that the
module implementation satisfies the specification.

2.4 Example: A Ticketed Lock

We now consider another, more complex lock algorithm: a lock that issues tickets

to clients contending for the lock. This algorithm is used in current versions of

Linux, and provides fairness guarantees for threads contending for the lock. De-

spite the fact that the ticketed lock is quite different from the compare-and-swap

lock, we will show this module also implements our abstract lock specification.
The lock operations are defined as follows:

lock(x) { unlock(x) { makelock(n) {

(int i := INCR(x.next);) (x.owner++;) local x := alloc(n+2);
while((i # x.owner)) skip; T (x+1) .owner := 0;

} (x+1) .next := 1;

return (x+1);

}

Here field names are encoded as offsets (.next = 0, .owner = —1).

The implementation assumes an atomic operation INCR that increments a
stored value and returns the original value. To acquire the lock, a client atomi-
cally increments x.next and reads it to a variable i. The value of i becomes the
client’s ticket. The client waits for x.owner to equal its ticket value i. Once this is
the case, the client holds the lock. The lock is released by incrementing x.owner.

The algorithm is correct because (1) each ticket is held by at most one client
and (2) only the thread holding the lock can increment x.owner.

Interpretation of Abstract Predicates. The actions for the ticketed lock are:

T(t.2) def (TAKE: Jk. ([NEXT(K)]{ * z.next — k ~» z.next — (k+ 1)),)

NEXT(k): x.owner — k ~» z.owner — (k+ 1) * [NEXT(k)]{

Intuitively, TAKE corresponds to taking a ticket value from x.next, and NEXT(k)
corresponds to releasing the lock when x.owner = k. The shared state contains
permissions on NEXT(k) for all the values of k not currently used by active
threads. Note the 3k is required to connect the old and new values of the next
field in the TAKE action.

The concrete interpretation of the predicates is as follows:

3k, k'. x.owner — k x z.next — k' *

k<K s ®K" > k. [NEXT(K")]{ * true

isLock(z) = 3t.3n. * [TAKE] !

T(t,xz)

Locked(z) = 3t,k.|x.owner — k x true | * [INEXT(K)]{

t
T(t,x)

(® is the lifting of * to sets; it is the multiplicative analogue of V.)

isLock(x) requires values x.next and x.owner to be in the shared state, and
that a permission on NEXT(k) is in the shared state for each value greater than
the current ticket x.next. It also requires a permission on TAKE to be in the local
state. Locked(z) requires just that there is an exclusive permission on NEXT(k)
in local state for the current value, k, of x.owner.

Self-stability of Locked(z) is ensured by the fact that the predicate holds
full permission on the action NEXT(k), and the action TAKE cannot affect the
x.owner field. Self-stability for isLock(x) is ensured by the fact that its definition
is invariant under the action TAKE.

The axioms follow trivially from the predicate definitions, as in the CAS lock.

Verifying the Lock Implementation. Given the definitions above, the ticketed
lock implementation can be verified against the lock specification, as shown in
Fig. 3. The proofs follow the intuitive structure sketched above for the actions.
That is, lock(x) pulls a ticket and a permission out of the shared state, and
unlock(x) returns it to the shared state. (We omit the proof of makelock, which
is similar to the previous example.)

{isLock(x) } {Locked(x) }

lock(x) { unlock(x) {
3t, 7. [TAKE];, * \ 3t, k‘ x.owner — k * true ‘;(t o
dk, k" k< k' x *[NEXT(k’)]’i

x.owner — k * x.next — k' *
®kL” > K. [NExT(E")]! * true
(int i := INCR(x.next);)
3t, 7. [TAKE]L * [NEXT(1)]} *

IR k<i<K*

x.owner — k * x.next +— k' *

®kL"” > k', [NExT(K")]! * true
while((i # x.owner)) skip;

(x.owner++;)

T(tx) {Et Jk.x.ouner — (k + 1) ' }
T(t,x)

*[NEXT(K)]} * true

}
{emp)

T(t,x)

{Elt,w. [TAKE], * [NEXT(1)]] *

k.1 < k * x.ovner — 1 * x.next — K |
« ®k” > k. [NExT(K")]} * true -

}
{isLock(x) * Locked(x)}

Fig. 3. Proofs for the ticketed lock module operations: lock and unlock.

3 Composing Abstract Specifications

In the previous section we showed that our system can be used to present abstract
specifications for concurrent modules. In this section we show how these specifi-
cations can be used to verify client programs, which may themselves be modules
satisfying abstract specifications. We illustrate this by defining a specification
and two implementations for a concurrent set. The implementations assume a
lock module satisfying the specification presented in the previous section.

3.1 A Set Module Specification

A typical set module has three functions: contains(h, v), add(h, v) and remove(h, v).
These functions have the following abstract specifications:

{in(h,v)} contains(h,v) {in(h,v)*ret = true}
{out(h,v)} contains(h,v) {out(h,v) *ret = false}
{own(h,v)} add(h,v) {in(h,v)}
{own(h,v)} remove(h,v) {out(h,v)}

Here in(h, v) is an abstract predicate stating that the set at h contains v. Cor-
respondingly out(h, v) says that the set does not contain v. We define own(h,v)
as a shorthand for the disjunction of these two predicates.

These assertions not only capture knowledge about the set, but also exclusive
permission to alter the set by changing whether v belongs to it. Consequently,

out(h,v) is not simply the negation of in(h,v). The exclusivity of permissions is
captured by the module’s axiom:

own(h,v) * own(h,v) = false

We can reason disjointly about set predicates,

even though they may be implemented by a {own(h,v{) * own(h, vo)}
single shared structure. {own(h,v4)} || {own(h,v5)}
remove(h,vy) || remove(h, vy) remove(h,vy) || remove(h,vs)

{out(h, vy1)} {out(h, va)}

For example, the above command should suc-
{out(h,vy) * out(h, v3)}

ceed if it has the permissions to change the
values vy and vy (where vy # v,), and it
should yield a set without v; and v,. This in- Fig. 4. Proof outline for the set
tuition is captured by the proof outline shown module client.

in Fig. 4.

3.2 Example: The Coarse-grained Set

Consider a coarse-grained set implementation, based on the lock module de-
scribed in §2.1 and the sequential set operations scontains(h,v), sadd(h,v)
and sremove(h, v).

contains(h,v) { add(h,v) { remove(h,v) {
lock(h.lock); lock(h.lock); lock(h.lock);
r := scontains(h.set,v); sadd(h.set,Vv); sremove(h.set,v);
unlock(h.lock); unlock(h.lock); unlock(h.lock);
return r; } }

}

Interpretation of Abstract Predicates. We assume a coarse-grained sequential set
predicate Set(y,xs) that asserts that the sequential set at location y contains
values zs. The predicate Set cannot be split, and so must be held by one thread
at once. This enforces sequential behaviour. The sequential set operations have
the following specifications with respect to Set:

{Set(h,vs)} scontains(h,v) {Set(h,vs)xret = (v € vs)}

{Set(h,vs)} sadd(h,v) {Set(h, {v} Uwvs)}

{Set(h,vs)} sremove(h,v) {Set(h,vs\ {v})}
In the set implementation, the predicate Set is held in the shared state when the
lock is not locked. Then when the lock is acquired by a thread, the predicate is
pulled into the thread’s local state so that it can be modified according to the

sequential set specification. When the lock is released, the predicate is returned
to the shared state. The actions for the set module are

Jus, ws. Set(h.set, vs)
Ols.) SCHANGE(v): * [SGAP(ws)]5 A ~ Locked(h.lock)
(e:R) = vs\ v} = ws\ {0}
SGAP(ws): Locked(h.ock) ~~ Set(h.set,ws) * [SGAP(ws)];

The SGAP(ws) action allows the thread to return the set containing ws to the
shared state. The SCHANGE(v) action allows a thread to acquire the set from the
shared state. To do so, the thread must currently hold the lock. It gives up the
permission to release the lock in exchange for the set. The thread also acquires
the permission [SGAP(ws)]$, which allows it to re-acquire the lock permission
by relinquishing the set, having only changed whether or not v is in the set.
We first define the auxiliary predicates allgaps(s), Pe(h,v,s) and Pg(h,v, s):

allgaps(s) = ®uws. [SGAP(ws)]}

_ (allgaps(s) * Set(h.set, vs))
Po(h,v,5) = Fvs. vavsA (V Locked(h.lock) * ([SGAP(vs)]; —® allgaps(s))

where < =€ ora=¢

allgaps defines the set of all SGAP permissions. Pe(h, v, s) is used to assert that
the shared state contains either the set with contents vs, where v € vs, and all
possible SGAP permissions; or it contains the Locked predicate and is missing
one of the SGAP permissions. The missing SGAP permission records the contents
of the set when it is released. Pg(h,v,s) defines the case where v ¢ vs.

The concrete definitions of in(h,v) and out(h, v) are as follows:

in(h,v) = 3s.isLock(h.ock) * [SCHANGE(v)]] x| Pc(h,v, s) Z(SM

out(h,v) = 3Is.isLock(h.lock) * [SCHANGE(v)]] *| Pg(h,v, s) Cloh)

The in(h, v) predicate gives a thread the permissions needed to acquire the lock,
isLock(h.lock), and to change whether v is in the set, [SCHANGE(v)]5. The shared
state is described by the predicate Pc(h,v,s). The out(h,v) predicate is defined
analogously to in(h,v), but with ¢ in place of €.

in(h,v) and out(h,v) are self-stable. For in(h,v), the only actions available to
another thread are SCHANGE(w), where w # v, and SGAP(vs), where v € vs.
The assertion Pe(h,v, s) is invariant under both of these changes: SCHANGE(w)
requires the disjunct allgaps * Set(h.set,vs) to hold and leaves the disjunct
Locked(h.lock)* ([SGAP(vs)]; —®allgaps(s)) holding; SGAP(vs) does the reverse.
Similar arguments hold for out(h,v).

The predicate axiom holds as a consequence of the fact that exclusive per-
missions cannot be combined.

Verifying the Set Implementation. Given the definitions above, we can verify the
implementations of the set module. Fig. 5 shows a proof of add(h,v) when the
value is not in the set. The case where the value is in the set, and the proofs of
remove and contains follow a similar structure.

The most interesting steps of this proof are those before and after the op-
eration sadd(h.set,v), when the permissions [SCHANGE(v)]§ and [SGAP(vs)]$
are used to repartition between shared and local state. These steps are purely
logical repartitioning of the state.

{out(h,v)}

add(h,v)

{Hs. isLock(h.lock) * [SCHANGE(v)]] * Sc(s h)}

lock(h.lock);

{Hs. isLock(h.Llock) * Locked(h.lock) * [SCHANGE(v)]] * | Pg(h, v, 5) Z(S h)}

// use SCHANGE to eztract Set predicate and SGAP permission.
{38, vs.isLock(h.lock) * [SGAP(vs U {v})]] * [SCHANGE(v)]] * Set(h.set, vs)}

*‘ Locked(h.lock) * ([SGAP(vs U {v})]] —® allgaps(s)) ‘

sadd(h.set,v);
{Hs, vs.isLock(h.lock) * [SGAP(vs U {v})]i * [SCHANGE(v)]] * Set(h.set,vs U {v})}

*‘ Locked(h.lock) * ([SGAP(vs U {v})]] —® allgaps(s)) ‘

C(s,;h)

C(s)h)
// use SGAP permission to put back Set and SGAP permission.

{3s-isLock(nLock) * Locked(n.Lock) * [SCHANGE(V)]] #[Pe(®,v.5) ... 1

unlock(h.lock);

{35. isLock(h.1ock) + [SCHANGE(v)]} *[Pe(n,v,9) |7, h)}
¥
{in(h, v)}

Fig. 5. Proof of the add(h, v) specification for the coarse-grained set module.

3.3 Example: The Fine-grained Set

Our previous implementation of a concurrent set used a single global lock. We
now consider a set implementation that uses a sorted list with one lock per node
in the list. Our algorithm (adapted from [13, §9.5]) is given in Fig. 6. We omit
contains for space reasons.

The three module functions use the function locate(h, v) that traverses the
sorted list from the head h up to the position for a node holding value v, whether
or not such a node is present. It begins by locking the initial node of the list. It
then moves down the list by hand-over-hand locking. The algorithm first locks
the node following its currently held node, and then releases the previously-held
lock. The following diagram illustrates this pattern of locking:

3 .. 3 . (3 .

No thread can access a node locked by another thread, or traverse past a locked
node. Consequently, a thread cannot overtake any other threads accessing the
list. Nodes can be added and removed from locked segments of the list. If a
thread locks a node, then a new node can be inserted directly after it, as long as
it preserves the sorted nature of the list. Also, if a thread has locked two nodes
in sequence, then the second can be removed.

Proof sketch We can verify this algorithm with our logic. The details are given
in the technical report [5]. Here, we just present the intuition behind the proof.

add(h, v) { remove (h,v) { locate(h, v) {

local p, c, z; local p, c, z; local p, c;

(p, ¢) = locate(h, v); (p, ¢) = locate(h, v); p = h;

if (c.val # v) { if (c.val == v) { lock(p);
z := makelock(2); lock(c); Cc := p.next;
unlock(z); Z := c.next; while (c.val < v) {
z.value := v; p.next = z; lock(c);
z.next := c; disposelock(c, 2); unlock(p);
p.next = z; ¥ p = c;

} unlock(p) ; c := p.next;

unlock(p); } }

} return(p, c);
}

Fig. 6. Lock-coupling list algorithm.

As with the course-grained example, we have actions LCHANGE and LGAP,
parameterised by value v. An LCHANGE permission allows a thread to take
locked parts of the list out of the shared state into its local state, acquiring
LGAP permissions and giving up the appropriate Locked predicates. These LGAP
permissions allow the thread to return the parts of the list it acquired, having
possibly inserted or removed a node with value v, and to regain the Locked
predicates. We can then give the definition for in(h, v), or for out(h,v), as shared
regions where the list starting at A contains, or does not contain, the value
v, respectively. Both predicates include the full permission for LCHANGE on v.
The list definition must track gaps for the currently locked segments. These gaps
correspond to missing LGAP permissions.

4 Semantics and Soundness

We present the model for interpreting our assertions and program judgements,
and sketch a proof of soundness of our logic. Details of the proof are given in [5].

4.1 Assertion Syntax

Recall from §2.3 that our proof judgements have the form A, I" - {P} C{Q}.
Here, P and @ are assertions in the set Assn. We also define a set of basic
assertions, BAssn, which omit permissions, regions and predicates. Regions in
assertions are annotated by interference assertions in the set lAssn. A is an
axiom definition in the set Axioms. Finally, I' is a function specification in the
set Triples. The syntax is defined as follows:

(Assn) P,Qu=emp | By — Ey | PxQ | P—®Q | false | P=Q | 3z. P |
T
[(Er o B3 [P | B B | @ P

(BAssn) p,q:=emp | By +— Ey | pxq | p—®q | false | p=¢q | 3z.p | Pz. P
(IAssn) T:u=~(&): 3. (P~Q) | IL,I»

(Axioms) A= @ |VE P = Q | VZ.a(X) =P | A1, A

(Triples) I' == @ | I, {P}f{Q}

In the above definitions, v ranges over the set of action names, AName; « ranges
over the set of abstract predicate names, PName; x and y range over the set
of logical variables, Var; and f ranges over the set of function names, FName.
We assume an appropriate syntax for expressions, F,r, m € Expr, including basic
arithmetic operators.

4.2 Assertion Model

Let (Heap, W, () be any separation algebra [4] representing machine states (or
heaps). Typically, we take Heap to be the standard heap model: the set of fi-
nite partial functions from locations to values, where W is the union of partial
functions with disjoint domains. We let h denote a heap.

Our assertions include permissions which specify the possible interactions
with shared regions. Hence, we define LState, the set of logical states, which pair
heaps with permission assignments (elements of Perm, defined below).

| € LState &' Heap x Perm

Assertions make an explicit (logical) division between shared state, which can be
accessed by all threads, and thread-local state, which is private to a thread and
cannot be subject to interference. Shared state is divided into regions. Intuitively,
each region can be seen as the internal state of a single shared structure, i.e. a
single lock, set, etc. Each region is identified by a region name, r, from the set
RName. A region is also associated with a syntactic interference assertion, from
the set |Assn, that determines how threads may modify the shared region. A
shared state in SState is defined to be a finite partial function mapping region
names to logical states and interference assertions:

s € SState % RName 2 (LState x |Assn)

A world in World is a pair of a local (logical) state and a shared state, subject to
a well-formedness condition. Informally, the well-formedness condition ensures
that all parts of the state are disjoint and that each permission corresponds to
an appropriate region; we defer the formal definition of well-formedness:

w € World & {(1, s) € LState x SState | wf(l, s)}

Given a logical state [, we write Iy and lp to stand for the heap and permission
assignment components respectively. We also write wy, and wg to stand for the
local and shared components of the world w respectively.

Recall from §2.2 that actions can be self-referential. For example, the action
UNLOCK moves the permission [UNLOCK]] from local to shared state. Our se-
mantics breaks the loop by distinguishing between the syntactic representation

of an action and its semantics. Actions are represented syntactically by tokens,
consisting of the region name, the action name and a sequence of value parame-
ters (e.g. the permission [SCHANGE(v)|; pertains to the token (s, SCHANGE, v)):

t, (r,v,V) € Token 4f RName x AName x Val*
The semantics of a token is defined by an interference environment (see §4.4).
Permission assignments in Perm associate each token with a permission value
from the interval [0, 1] determining whether the associated action can occur.

pr € Perm %' Token — [0,1]

Intuitively, 1 represents full, exclusive permission, 0 represents no permission,
and the intermediate values represent partial, non-exclusive permission.%

The composition operator @ on [0, 1] is defined as addition, with the proviso
that the operator is undefined if the two permissions add up to more than 1.
Composition on Perm is the obvious lifting: pr @ pr’ def \t pr(t)®pr'(t). Compo-
sition on logical states is defined by lifting composition for heaps and permission
assignments: [@ I’ def (lu Wi, lp ®1p). Composition on worlds is defined by
composing local states and requiring that shared states be identical:

I def | (wL @ wy,,ws) if wg = wg
otherwise.

We write Operm for the empty permission assignment (which assigns zero permis-
sion value to every token, i.e. At.0), and [t — 7] for the permission mapping the
token ¢ to 7 and all other tokens to 0.

We define the operator |(I,s)] which collapses a pair of a logical state [and
shared state s to a single logical state, and the operator || (I, s)|| which gives the
heap component of |(I,s)]; we use €, the natural lifting of @ to sets:

def def
[(15)] 16 (B caomin 5(1) L)) (12 5)
The action domain of an interference assertion, adom(I), is the set of action

names and their appropriate parameters:

adom(y(z1,...,2) 1 3. (P~ Q) = {(7,(v1,...,vn)) | v; € Val)}

adom(Iy, I3) L adom(I;) U adom(I3)
We are finally in a position to define well-formedness of worlds, wf(l, s):

wf(l, s) JLUS |(1,s)] is defined A

vr,y, 0. [(1, 8)p(r,vy,0) >0 = 3U',1.s(r) = (I',I) A (v, 7) € adom(I)

5 This is the fractional permission model of Boyland [2]. With minimal changes we
could add a deny permission prohibiting both the environment and thread from
performing the action (see Dodds et al. [8]). We can achieve much the same effect
in the Boyland-style system by placing a full permission in the shared state.

(=D__ : Assnx PEnv x Interp — P(LState x SState)

e dom(lu) = {[E1]:} A lu([E1]i) = [E2]:
(£ = EQD‘W = {(l’ 5) Alp = Operm A 8 € SState}

(emp);; = {((0,0pem),s) | s € SState}
(P1* P2y, Lof {wi @ wa | w1 € (Pr)s, Nw2 € (P2))5,}
(Pr-® P2y, = {w | Fwi,wewe = w@wi Awr € (Pa)y, Aws € (P}
(®=P), < Uy {® Ww)|ve. W) € (P ...y}

(ST R (UG 6 1 121 PN 28 R D0 it

(1), & @.0nm).) 13 (15) € (Phs, As(DrL) = (1 111))
(a(Br,... En))s, = 6(a,[Er;, ..., [En],)

[-]__ : AssnxPEnvx Interp — P(World)
[Pls; = A{s)e(Phs, | wi((l,s))}

Fig. 7. Semantics of assertions. The cases for conjunction, implication, existential, etc.
are standard, simply distributing over the local and shared state.

4.3 Assertion Semantics

Fig. 7 presents the semantics of assertions, [P[;;. We first define a weaker
semantics (P)s,; that does not enforce well-formedness, then define [P];,; by
restricting it to the set of well-formed worlds. The semantics of assertions de-
pends on the semantics of expressions, [—]_ : Expr x Interp — Val. We have
not formally defined this, and just assume an appropriate semantics. The se-
mantics of |Assns can also depend on the semantics of free variables. We define
[—]_ : 1Assns x Interp — IAssns to replace the free variables with their values.

The semantics is parameterised by a predicate environment, , mapping ab-
stract predicates to their semantic definitions, and an interpretation, ¢, mapping
logical variables to values:

5 € PEnv % PName x Val* — P(World) i € Interp < Var — Val

We assume that RName U (0, 1] C Val, so that variables may range over region
names and fractions.

The cell assertion +—, the separating star * and the existential separating
implication —® are standard. The quantifier & is the iterated version of *; that
is, the finite, multiplicative analogue of V. The empty assertion emp asserts that
the local state and permission assignment are empty, but that the shared state
can contain anything.

Abstract predicates, a(E1,..., E,), are used to encapsulate concrete prop-
erties. For example, in the lock specification (§2.1), we used Locked(z) to assert
that x is held by the current thread. The meaning of an abstract predicate is
simply given by the predicate environment, J.

The permission assertion [y(E1, .. .)|, states that the token ([r],,~, [E1]; - ..)
is associated with permission value [7],.

A shared-state assertion ; asserts that P holds for region [r]; in the shared
state, and that the region’s interference is given by the interference assertion,
[1];. For example, in the compare-and-swap lock implementation (§2.2), P as-
serts that the shared state for a lock is either locked or unlocked, and I defines
the meaning of actions LoCcK and UNLOCK. We use [I], to bind the location x
and region 7 to the correct values.

Separating conjunction behaves as conventional (non-separating) conjunction
between shared-state assertions over the same region: that is, ; * ; =

;. We permit nesting of shared-state assertions. However, nested asser-

tions can always be rewritten in equivalent unnested form:

r’ ’
(7l =9, = 7~ @)

In this paper, we only use nesting to ensure that shared and unshared elements
can be referred to by a single abstract predicate. In the future, nesting may be
useful for defining mutually recursive modules.

4.4 Environment Semantics

An interference assertion defines the actions that are permitted over a region.
For example, in the compare-and-swap lock implementation (§2.2), the assertion
I(r,z) defines the action LOCK as x + 0 % [UNLOCK]|] ~» = — 1.

Semantically, an interference assertion defines a map from tokens to sets of
shared-state pairs (what we call an interference environment):

[—]_ : 1Assn x PEnv — Token — P(SState x SState)

A primitive interference assertion defines an interference environment that maps
the token (r,~,) to an action relation corresponding to transitions from states
satisfying ; to ; The relation does not involve local state, and only the
region r of the shared state changes. The action LOCK defines a relation from
shared states where the lock region is unlocked, to ones where it is locked. Com-
position of interference assertions is defined by union of relations.

[, L] 5(r, 7, @) € [Ls(r,7,7) U [L2]5(r,7, D)

Y =y A A s() = 8()
AL Do, I.s(r) = (L@ 1o, I) A
[4(%): 37. (P~ Q)s(r.v".7) & {(s.8) s'(r) = (' ®1o, 1) A
37 (1,8) €(Pg g1 gy A

l',s") €(Qs 3,57

Given a region name r and an interference assertion I, all(I, r) is the logical state
assigning full permission to all tokens with region r defined in I.

a”(I7T) déf (®7 @(mﬁ)Gadom(I)[(ﬁWaﬁ)'_)1])

The guarantee G describes which updates, from world w to w’, the thread is
allowed to perform. A thread can update its local state as it pleases, but any
change to a shared region, r, must correspond to an action, v(¥), for which the
thread has sufficient permission, (wr,)p(r, 7, ¥) > 0. For example, in the CAS lock
proof (§2.2), the thread must hold permission 1 on UNLOCK before unlocking.
Without this restriction, other threads could potentially unlock the lock.

It is important that each update preserves the total amount of permission in
the world, that is, |w|p = |w’]p, so that threads cannot acquire permissions
out of thin air. This does not hold for heaps, as we permit memory allocation.

Moreover, the thread can create a new region by giving away some of its local
state and gaining full permission on the newly created region. This is described
by G€. Conversely, it can destroy any region that it fully owns and grab ownership
of the state it protects (cf. (G)~1).

Gge {(w,w’)

G5 déf {(w7 ’LU,)

Some permitted updates do not modify the heap, but simply repartition it be-
tween shared regions. This is captured by Gs e Gsn {(w,w") | [w]| = ||[w']} In
practice, we allow an unlimited number of repartitionings in a single step, only
one of which actually modifies the heap. This is captured by Gy, defined as:

Ar,I,01,0s. r ¢ dom(ws) A ws = ws[r — (€1,1)] A
wi, :fl @EQ/\’ll)i :ég @all([,r)

((HTv Y, U (wS7 wIS) € [[(ws('l"))g]](;(ﬁ s 77) A
(wr)p(r,v,7) > 0) Vws =w§) A (wlp = (v]|p

} UGcU(Ge)~L

~

Gs ¥ (Gs)";Gs: (Gy)"

We now define the notion of repartitioning with respect to an update from p to
q, written P Eép }{q}Q. This asserts any world w satisfying P can be collapsed
to a heap ||w; || that has a subheap hy satisfying the separation logic assertion
p; furthermore, when this subheap is replaced with any subheap ho that satisfies
g, the resulting heap can be reconstructed into a world wy that satisfies @ and
for which the transition from w; to wy is permitted by the guarantee, G5. The
guarantee limits the repartitioning that takes place between the regions.

Definition 1 (Repartitioning). PE;p}{q} Q holds iff, for every variable in-
terpretation i and world w1 in [P]; ;, there exists a heap hy in [p]; and a residual
heap h' such that

— hi®h = ||w]]; and

— for every heap hy in [q];, there exists a world wy in [[Qﬂé,i such that
o ho A = ||ws]; and
o the update is allowed by the guarantee, i.e. (w1, ws) € Gs.

~

Note that, if p = ¢ = emp, then the repartitioning preserves the concrete state,
and only allows the world to be repartitioned. We write P =5 @ as a shorthand
for P Eéemp}{emp} Q@. Recall from the proof of the compare-and-swap lock im-
plementation (§2.2) that repartitioning was used to create a new shared regions
when making a lock.

The rely R;s describes the possible world updates that the environment can
do. Intuitively, it models interference from other threads. At any point, it can
update the shared state by performing one of the actions in any one of the shared
regions r, provided that the environment potentially has permission to perform
that action. For this to be possible, the world must contain less than the total
permission (|w|p(r,7,¥) < 1). This models the fact that some other thread’s
local state could contain permission 7w > 0 on the action.

In addition, the environment can create a new region (cf. R°) or can destroy
an existing region (cf. (R¢)~!) provided that no permission for that region exists
elsewhere in the world.

Re ¥ {(w,w')

3r, 0, 1.1 ¢ dom(ws) A wy, = wi, A w§ = ws[r—(¢,I)] A
|w'| defined A (W, 0. |[w'|p(r,7,¥) =0)

R; ¢ {(w,w’)

EITa’Yﬂ_f' (w ’w/) € [[(w (r))Q]] (T,’}/,’I_f) A C c\—1
Swf_w'LASLwJp(i,%ﬁ)a} URCU (R

These definitions allow us to define stability of assertions. We say that an asser-
tion is stable if and only if it cannot be falsified by the interference from other
threads that it permits.

Definition 2 (Stability). stables(P) holds iff for all w, w" and i, if w € [P,
and (w,w') € Rs, then w' € [Pl ;.

Similarly, we say that a predicate environment is stable if and only if all the
predicates it defines are stable.

Definition 3 (Predicate Environment Stability). pstable(d) holds iff for
all X € ran(d), for all w and w', if we€ X and (w,w') € Rs, then w' € X.

A syntactic predicate environment, A, is defined in the semantics as a set of

stable predicate environments:

[2] % {5 | pstable(5)} [A1, As] € [A] N [As]
[VZ. a() = P] = {5 | pstable(d) A V5. 6(cv,) = [Pls i}

[¥Z. P = Q] ' {5 | pstable(8) AV5. [Pls 75 € [Qls 5y}

4.5 Programming Language and Proof System

We define a proof system for deriving local Hoare triples for a simple concurrent
imperative programming language of commands:

(Cmd) C = Skip|C|f|<C>|Cl,Cg | Ci+ Oy | c* ‘ ClHCQ‘
let flzC’lfn:C’n in C

Fsu {p} C {q¢} AFP=tHdqg Fsu {p} C {q}

ATEPE (O @y ATove) arrpcig
i o eaour v e LU 5o AR
A;THA{P} C{Q} AT H {P'} C {Q'}
AT I—A{; it;zle(gR{)Q Ry (FRAME) = PA? I:I{P}Ac#{?gl}E> ¢ (Consra)
AF stable(R) a¢ A, I, P,Q
s spainow oy SIS
AT AP} CL{@Q1} ... AT EA{P} Cn {Qn}

A {Pi} fi{@i} - AP} fo {@u}, T H{P} C {Q}
AT {P}let fi = Cy1... fn = Cn in C {Q}

(LET)

Fig. 8. Selected proof rules.

We require that atomic statements (C) are not nested and that function names
fi... fn for a let are distinct. Here ¢ stands for basic commands, modelled se-
mantically as subsets of P(Heap x Heap) satisfying the locality conditions of [4].

Judgements about such programs have the form A; " - {P} C{Q}. This
judgement asserts that, beginning in a state satisfying P, interpreted under
predicate definitions satisfying A, the program C' using procedures specified by
I' will not fault and, if it terminates, the final state will satisfy Q.

A selection of the proof rules for our Hoare-style program logic are shown in
Fig. 8. These rules are modified from RGSep [23] and deny-guarantee [8]. All of
the rules in our program logic carry an implied assumption that the pre- and
post-conditions of their judgements are stable.

The judgement s {p} C {q} appearing in AToMIC and PRIM is a judge-
ment in standard sequential separation logic. The other minor judgements are
defined semantically to quantify over all 6 € [A]: A + P ={rHd} Q means

vV € [4] .PE;’)}{Q} Q@ (and similarly without a superscript); A F stable(P)
means Vo € [A].stables(P); and A+ A’ means [A] C [A].

To reason about predicate assumptions, we introduce two rules, PRED-I and
PRED-E. The PRED-I rule allows the assumptions about the predicate defini-
tions to be weakened. If a triple is provable with assumptions A’, then it must
be provable under stronger assumptions A. The PRED-E rule allows the intro-
duction of predicate definitions. For this to be sound, the predicate name « must
not be used anywhere in the existing definitions and assertions. We require that
recursively-defined predicate definitions are satisfiable; otherwise the premise

of a proof rule could be vacuously true. We ensure this by requiring that all
occurrences of the predicate in its definition are positive.

The PAR rule is the key rule for disjoint concurrency. In this rule we exploit
our fiction of disjointness to prove safety for concurrent programs. Our set-up
allows us to define a simple parallel rule while capturing fine-grained interactions.
The AToMIC and CONSEQ rule were discussed in §2.3. That section also discussed
a rule for modules, which can be derived using PRED-I, LET and PRED-E.

4.6 Judgement Semantics and Soundness

We define the meaning of judgements in our proof system with respect to a tran-
sition relation C,h -5 C', W’ defining the operational semantics of our language.
The transition is parameterised with a function environment, n, mapping func-
tion names to their definitions. We also define a faulting relation C,h % fault.

i € FEnv % FName — Cmd

e

— € OpTrans ef P(FEnv x Cmd x Heap x Cmd x Heap)

€

— fault € OpFault def P(FEnv x Cmd x Heap)

To define the meaning of judgements, we first define the notion of a logical
configuration (C,w,n,d,i, Q) being safe for at least n steps:

Definition 4 (Configuration safety). C,w,n,d,i,Q safe, always holds; and
C,w,n,6,1,Q safe, ., iff the following four conditions hold:

1. V', if (w,w’) € (Rs)* then C,w',n,0,1,Q safe,;

2. =((C, |w]]) 2 fault);

3. YC! I, if (C,|wl]) = (C', 1), then there Fw' such that (w,w') € G, h' =
|w']] and C',w',n,d,i,Q safe,; and

4. if C=skip, then 3w’ such that |w||=|w’], (w,w') € G5, and v’ € [Qs,-

This definition says that a configuration is safe provided that: (1) changing the
world in a way that respects the rely is still safe; (2) the program cannot fault;
(3) if the program can make a step, then there should be an equivalent step in
the logical world that is allowed by the guarantee; and (4) if the configuration
has terminated, then the post-condition should hold. The use of é(; in the third
and fourth conjuncts allows the world to be repartitioned.

Definition 5 (Judgement Semantics). A;I' = {P} C{Q} holds iff

Vi,n. V6 € [A]. V€[], 5, Yw € [Pls;. C.w,n,6,i,Q safe,

n,0,i

where [[ns: € {n | V{PYAQ} € I. Yw € [Pl . n(f),w,1,6,i,Q safe,}.

Theorem 1 (Soundness). If A; '+ {P} C{Q}, then A;T" = {P}C{Q}.

Proof is by by structural induction. Most interesting is PAR, which embodies the
compositionality of our logic. The proof requires the following lemma.

Lemma 1 (Abstract state locality).
If (C, w1 & wa])) 5 (C",h) and C,wy,n,d,i,Q safeﬁ, then 3wy, wh such that
(C’ H_wlﬂ) = (Clv H_wllﬂ)7 h = Uwi @U}IQM! (wlvwll) € Gs, and (w27wl2) € (R5)*

Proof. We require that basic commands obey a concrete locality assumption.
We must prove that the rely and guarantee obey similar locality lemmas. The
lemma then follows from the definition of configuration safety. O

This lemma shows that program only affects the resources required for it to run
safely: that is, programs are safely contained within their abstract footprints.
The soundness of PAR follows immediately.

5 Conclusions and Related Work

Our program logic allows fine-grained abstraction in a concurrent setting. It
brings together three streams of research: (1) abstract predicates [21] for ab-
stracting the internal details of a module or class; (2) deny-guarantee [8] for rea-
soning about concurrent programs; and (3) context logic [3, 7] for fine-grained
reasoning at the module level.

Our work on concurrent abstract predicates has been strongly influenced by
O’Hearn’s concurrent separation logic (CSL) [19]. CSL takes statically allocated
locks as a primitive. With CSL, we can reason about programs with locks as
if they are disjoint from each other, even though they interfere on a shared
state. CSL therefore provides a key example of the fiction of disjointness. The
CSL approach has been extended with new proof rules and assertions to deal
with dynamically-allocated locks [11, 15] and re-entrant locks [12]. Parkinson et
al. [20] have shown how the CSL approach can be used to reason about con-
current algorithms that do not use locks. However, representing the concurrent
interactions in an invariant can require intractable auxiliary state.

Jacobs and Piessens [17] have developed an approach to reasoning abstractly
that is based on CSL for dynamically allocated locks [11]. Their logic uses auxil-
iary state to express the temporal nature of interference. To deal modularly with
auxiliary state they add a special implication that allows the auxiliary state to
be changed in any way that satisfies the invariant. This implication is similar
to our repartitioning operator =>. Unlike our operator, theirs can be used in a
module specification, allowing a client’s auxiliary state to be updated during the
module’s execution. Our operator could be extended with this technique, which
may simplify the use of the lock specification in the set algorithms.

An alternative to using invariants is to abstract interference over the shared
state by relations modelling the interaction of different threads: the rely-guarantee
method [18]. There have been two recent logics that combine RG with separation
logic: RGSep [23] and SAGL [10]. Both allow more elegant proofs of concurrent
algorithms than the invariant-based approaches, but they have the drawback

that interference on the shared state cannot be abstracted. Feng’s Local Rely-
Guarantee [9] improves the locality of RGSep and SAGL by scoping interference
with a precise footprint, but this approach still has no support for abstrac-
tion. Many of our ideas on abstraction originated in Dinsdale-Young, Gardner
and Wheelhouse’s work on using RGSep to analyse a concurrent B-tree algo-
rithm [6, 22].

We have combined RGSep with resource permissions, as first introduced for
deny-guarantee reasoning [8]. Deny-guarantee is a reformulation of rely-guaran-
tee allowing reasoning about dynamically scoped concurrency. Deny-guarantee
reasoning is related to the ‘state guarantees’ of Bierhoff et al. [1] in linear logic,
which are also splittable permissions describing how a state can be updated.

We have also used ideas from context logic [3], a high-level logic for fine-
grained local reasoning about program modules. Recent work in context logic
has shown how implementations of modules can be verified, by relating local
reasoning about module specifications with the low-level reasoning about imple-
mentations [7]. As presented here, these implementations break away from the
fiction of disjointness presented by the module specifications.

Proofs in our proof system are slightly more complex in practice than RGSep
and SAGL, as can be seen by comparing the lock-coupling list proof with the
RGSep one [23]. This may be the penalty that we pay for having greater modular-
ity although, as we acquire more experience with doing proofs using concurrent
abstract predicates, we expect to be able to reduce this complexity.

An alternative approach to abstracting concurrent algorithms is to use lin-
earisability [14]. Linearisability provides a fiction of atomicity allowing “rea-
son[ing] about properties of concurrent objects given just their (sequential) spec-
ifications” [14]. With linearisability, we are forced to step outside the program
logic at module boundaries and fall back on operational reasoning. In contrast,
with concurrent abstract predicates we are able to write modular proofs within
a single logical formalism.

Acknowledgements Thanks to Richard Bornat, Alexey Gotsman, Peter O’Hearn,
Suresh Jagannathan, Mohammad Raza, Noam Rinetzky, Mark Wheelhouse,
John Wickerson and the anonymous referees for useful feedback. This work was
supported by an EPSRC DTA (Dinsdale-Young), an EPSRC Programme Grant
EP/H008373/1 (Dinsdale-Young and Gardner), an EPSRC grant EP/F019394/1
(Dodds and Parkinson), an RAEng/EPSRC research fellowship (Parkinson) and
a Microsoft Research Cambridge/RAEng senior research fellowship (Gardner).

References

[1] K. Bierhoff and J. Aldrich. Modular typestate checking of aliased objects. In
OOPSLA, pages 301-320, 2007.

[2] J. Boyland. Checking interference with fractional permissions. In SAS, 2003.

[3] C. Calcagno, P. Gardner, and U. Zarfaty. Local reasoning about data up-
date. Festschrift Computation, Meaning and Logic: Articles dedicated to Gordon
Plotkin, 172, 2007.

[4] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation
logic. In Symp. on Logic in Comp. Sci. (LICS’07), pages 366-378, 2007.

[5] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Con-
current abstract predicates. Technical Report 777, University of Cambridge Com-
puter Laboratory, 2010.

[6] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Local reasoning about a
concurrent B*-list algorithm. Talk and unpublished report, see http://www.doc.
ic.ac.uk/~pg/, 2009.

[7] T. Dinsdale-Young, P. Gardner, and M. Wheelhouse. Locality refinement. Tech-
nical Report DTR10-8, Imperial College London, 2010.

[8] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.
In ESOP, 2009.

[9] X. Feng. Local rely-guarantee reasoning. In POPL, 2009.

[10] X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In ESOP, 2007.

[11] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for
storable locks and threads. In APLAS, 2007.

[12] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s Reentrant Locks.
In APLAS, pages 171-187, 2008.

[13] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier,
2008.

[14] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concur-
rent objects. TOPLAS, 12(3):463-492, 1990.

[15] A. Hobor, A. W. Appel, and F. Z. Nardelli. Oracle semantics for concurrent
separation logic. In ESOP, 2008.

[16] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, pages 14—26, Jan. 2001.

[17] B. Jacobs and F. Piessens. Modular full functional specification and verification
of lock-free data structures. Technical Report CW 551, Katholieke Universiteit
Leuven, Department of Computer Science, June 2009.

[18] C. B. Jones. Annoted bibliography on rely/guarantee conditions. http://
homepages.cs.ncl.ac.uk/cliff. jones/ftp-stuff/rg-hist.pdf, 2007.

[19] P. W. O’Hearn. Resources, concurrency and local reasoning. T'CS, 2007.

[20] M. Parkinson, R. Bornat, and P. O’'Hearn. Modular verification of a non-blocking
stack. In POPL, pages 297-302, Jan. 2007.

[21] M. J. Parkinson and G. M. Bierman. Separation logic and abstraction. In POPL,
pages 247-258, 2005.

[22] P. Pinto. Reasoning about BL* trees. Advanced masters ISO project, Imperial
College London, 2010. Supervised by Dinsdale-Young, Gardner and Wheelhouse.

[23] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and separation logic.
In CONCUR, pages 256271, 2007.

