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—— Abstract

As JavaScript is highly dynamic by nature, static information flow analyses are often too coarse

to deal with the dynamic constructs of the language. To cope with this challenge, we present
and prove the soundness of a new hybrid typing analysis for securing information flow in a
JavaScript-like language. Our analysis combines static and dynamic typing in order to avoid
rejecting programs due to imprecise typing information. Program regions that cannot be precisely
typed at static time are wrapped inside an internal boundary statement used by the semantics
to interleave the execution of statically verified code with the execution of code that must be
dynamically checked.

1 Introduction

The dynamic aspects of JavaScript make the analysis of JavaScript programs very challen-
ging. On one hand, one may use a purely static analysis, but either restrict the language to
exclude these dynamic aspects or over-approximate them; this is too coarse to be applicable
in practice. On the other hand, one may use purely dynamic mechanisms, such as monitor-
ing or secure multi-executions [1, 7, 9, 17]; but the gained precision comes at the cost of a
much lower performance compared to the original code [8].

The work on staged information flow [2] combines static and dynamic analyses to handle
eval operations more precisely, but it does not deal with other dynamic features of the
language. In contrast, we propose a general hybrid analysis to statically verify secure in-
formation flow in a core of JavaScript. Following the hybrid typing motto “static analysis
where possible with dynamic checks where necessary” [6], we are able to reduce the runtime
overhead introduced by purely dynamic analyses without excluding dynamic field opera-
tions. In fact, our analysis can handle some of the most challenging JavaScript features,
such as prototype-based inheritance, extensible objects, and constructs for checking the ex-
istence of object properties. Its key ingredient is an internal boundary statement inspired
by recent work in inter-language interoperability [11]. The static component of our ana-
lysis wraps program regions that cannot be precisely verified inside an internal boundary
statement instead of rejecting the whole program. This boundary statement identifies the
regions of the program that must be verified at runtime—which may be as small as a single
statement—and enables the initial set up required by the dynamic analysis. In summary, the
proposed boundary statement allows the semantics to effortlessly interleave the execution
of statically verified code with the execution of code that must be verified at runtime.

Although our work is generally motivated by the verification of dynamic features of
JavaScript, we choose to focus on the particular case of constructs that rely on dynamic
computation of object field names, which we call dynamic field operations. In JavaScript,
one can access a field £ of an object o either by writing o.f or o[e], where e is an expression
that dynamically evaluates to the string £. Dynamic computation of field names is one of
the major sources of imprecision of static analyses for JavaScript [10].
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Table 1 Core JS Syntax - Expressions and Statements

» Example 1 (Running example: the challenge of typing dynamic field operations). Listing 1
presents a program that creates an object o with a secret field secret1 and two public fields
publicl and public2.

o = {}; o.secretl = secret_input();

o.publicl = public_input(); o.public2 = public_input(); public = ol[g()]

Listing 1 Running Example - Potentially Insecure Program
The secret field secretl gets a secret input via function secret_input, while the two public
fields publici and public2 each get a public input via function public_input. The program
then assigns the value of one of the three fields to the public variable public, as determined
by the return value of function g. Concretely, when g returns the string "secreti", the
program assigns a secret value to public and the execution is insecure. On the other hand,
when g returns either "public1" or "public2", the program assigns a public value to public
and the execution is secure. However, in order to make sure that g never returns "secret1", a
static analysis needs to predict the dynamic behaviour of g, which is, in general, undecidable.

The loss of precision introduced by the dynamic computation of field names is not ex-
clusive to field projections. It also occurs in method calls, field deletions, and membership
checks. We account for the use of these operations by verifying them at runtime. When veri-
fying a statement containing a dynamic field operation, the static component of the analysis
wraps it inside a boundary statement. In the case of the running example, all statements
except the last one are statically typed. In contrast, the last assignment is re-written as
@monitor(@type_env, @pc, Cret, public = o[g()]), where the first three arguments of the mon-
itor statement are used for the setup of the runtime analysis. Hence, when the program is
executed the only overhead introduced by the dynamic component of our hybrid analysis
regards the security checks for validating or rejecting the statement public = o[g()].

Contributions. The main contribution of the paper is the design of a new hybrid
analysis for verifying secure information flow in a JavaScript-like language. To achieve this,
we introduce: (1) a type language specifically designed to control information flow in a subset
of JavaScript, (2) a static type system for verifying statements not containing dynamic field
operations, (3) a dynamic typing analysis for verifying statements containing dynamic field
operations, and (4) a novel boundary operator for interleaving the execution of statically
verified regions with dynamically verified ones. Finally, we have implemented a prototype
as well as a case study, available online at [16].

2 Core JS

Syntax. The syntax of Core JS is given in Table 1. Expressions include values, the keyword
this, variables, variable assignments, object literals, static and dynamic field projections,
static and dynamic field assignments, static and dynamic membership checks, static and
dynamic field deletions, function literals, function calls, and static and dynamic method
calls. Statements include expression statements, variable declarations, sequences, condi-
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| deletel[E] | E(e) | I(E) | E.f(e) | Ele](e) [ I[E](e) | I[f1(E)

E := FE|E;s|if(E){s }else{sy} | retumE

Table 2 Evaluation Contexts

tional statements, and return statements. We distinguish two types of values: literal val-
ues and runtime values. Literal values include numbers, booleans, strings, and undefined.
Runtime values, ranged over by v, include parsed literal values, locations, and parsed func-
tion literals. Object literals, function literals, and variable declarations are annotated with
their respective security types (which are explained in Section 3). In the following, we denote
by Expr, the set of Core JS expressions that contain dynamic field operations.

Memory Model. A heap H € Heap : Loc x X — Val is a partial mapping from
locations in Loc and field names in X’ to values in Val. We denote a heap cell by (I, f) — v,
the union of two disjoint heaps by H; W Hs, a read operation by H (I, f), and a heap update
operation by H[l.f — v]. An object can be seen as a set of heaps cells addressed by the same
location but with different field names. We use I — {f1 : v1,..., fn : v, } as an abbreviation
for the object (I, f1) —v1 W ... W (I, fn) — vp.

Every object has a prototype, whose location is stored in a special field _proto_ . In order
to determine the value of a field f of an object o, the semantics first checks whether f is one of
the fields of o. If that is the case, the field look-up yields that value. Otherwise, the semantics
checks whether f belongs to the fields of the prototype of o and so forth. The sequence of
objects that can be accessed from a given object through the inspection of the respective
prototypes is called a prototype chain. The prototype chain inspection procedure is modelled
by the semantic function 7 given in appendix. Informally, the expression 7(H, I, f) denotes
the location of the first object that defines f in the prototype chain of the object pointed to
by [. Given that most implementations of JavaScript allow for explicit prototype mutation,
we include this feature in Core JS. For instance, x._ proto__ evaluates to the the prototype
of the object bound to = and x._ proto_ = y sets the prototype of the object bound to x to
the object bound to y.

Scope is modelled using environment records. An environment record is simply an in-
ternal object that maps variable names to their respective values. An environment record is
created for every function or method call. We use act(l, z, v, s,1’) to denote the environment
record that: (1) is identified by location ! where it is stored, (2) maps x to v, (3) maps
all the variables declared in s to undefined, and (4) maps the field @Qthis to the location
. (Note that environment records map a single variable because functions have a single
argument. Moreover, in the execution of a method call, the field @Qthis is used to store
the location of the object on which the method was invoked.) Variables are resolved with
respect to a list of environment record locations, called scope chain. The variable inspection
procedure is modelled by the semantic function o given in appendix. We let o(H, L, x)
denote the location of the first environment record that defines x in the scope chain L. The
global object, assumed to be pointed to by a fixed location {4, is the environment record that
binds global variables. Since functions are first-class citizens, the evaluation of a function
literal triggers the creation of a special type of object, called function object. Every function
object has two fields: @body and Qscope, which respectively store the corresponding parsed
function literal and the scope chain that was active when the function literal was evaluated.
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Figure 1 Fragment of the Small-Step Semantics of Core JS

Functions execute in the scope in which the they were evaluated.

Semantics. Figure 1 presents a fragment of the semantics in the style of Wright and
Felleisen [20] (the full semantics is given in appendix). A configuration ¥ has the form
(H, L,s) where H is the current heap, L the current scope chain, and s the statement to
execute. Transitions are labelled with an internal event « for the use of the dynamic analysis.
The evaluation order is specified with the help of evaluation contexts, whose syntax is given
in Table 2. In the following, we use [:: L for the list obtained by prepending ! to L and
head(L) for the first element of L.

Rule VARIABLE uses ¢ to determine the location I’ of the environment record that defines
x and reads its value from the heap. Rule DYN FIELD PROJECTION uses 7 to determine
the location I” of the object that defines f in the prototype chain of the object pointed
to by I’ and then reads that field’s value from the heap. Rule DYN FIELD ASSIGNMENT
updates the current heap with a mapping from [ and f to v. Rule MEMBERSHIP CHECK
- TRUE checks if f is defined in the prototype chain of the object pointed to by [ and
evaluates to true. Rule DELETE - TRUE removes the cell (I, f) — v from the heap and
evaluates to true. Rule FUNCTION LITERAL adds a new function object to the heap. Rule
FuncTiON CALL extends the heap with a new environment record for the evaluation of the
function pointed to by I. The current scope chain L is replaced with the scope chain L’
that was active when the corresponding function literal was evaluated extended with the
location I"” of the newly created environment record. The semantics makes use of an internal
statement @FunExe(L, s) for keeping track of the caller’s scope chain during the execution of
the function’s body. Rule IF - TRUE checks if the guard of the conditional does not belong
to the set of falsy values —{false, 0, undefined, null}— and replaces the whole conditional with
its then-branch followed by an internal statement @QEndIf used for notifying the dynamic
analysis of the end of that branch.

3 Static Typing Secure Information Flow in Core JS

In this section, we present both a new type language for controlling information flow in
JavaScript and the static component of our analysis. Here, the specification of security
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policies relies on two key elements: a lattice of security levels and a typing environment
that maps resources to security types, which can be viewed as safety types annotated with
security levels. In the examples, we use £ = {H, L} with L © H, meaning that L-labelled
resources (low resources) are less confidential than those labelled with H (high). We use LJ,
1, and T for the least upper bound (lub), the bottom level, and the top level, respectively.
Security Types. A security type 7 is obtained by pairing up a raw type T with a security
level o, called its external level. The external level of a security type establishes an upper
bound on the levels of the resources on which the values of that type may depend. For
instance, a primitive value of type PRIM” may only depend on low resources. The syntax of
raw types is given and explained below:

Tu=pRM | (7.7 D7) | (kD7) | pef7 ty o 7o, ) | pr(f7 oAy f7 )

The type PRiM is the type of expressions which evaluate to primitive values.
The type (70.71 — 72) is the type of expressions which evaluate to functions that map
values of type 71 to values of type 75 and during the execution of which, the keyword
this is bound to an object of type 7y. Level o is the writing effect [15] of functions of
this type, that is, a lower bound on the levels of the resources updated or created during
their execution. When specifying a function type inside an object type, one can use the
type variable bound by that object type as the type of the keyword this (in the syntax
of types, k ranges over the set of type variables).
The type pr.(f5° : 70, -+, [7™ : 70, %7 ¢ 7x) is the type of expressions which evaluate to
objects that may define the fields fy to f, mapping each field f; to a value of security
type 7;. The security type assigned to * is the default security type, which is the security
type of all fields not in {fo,- - , fn}. Every field f; is further associated with an existence
level o; that establishes an upper bound on the levels of the contexts in which the field
can be created or deleted. The level o, is the default existence level. When no default
security type is declared, the objects of the type may only define explicitly declared fields.
The reason why we do not precisely track the presence of fields in object types is that
we do not want the type of an object to change at runtime even though its structure
may change. Furthermore, the absence of a field in a type does not mean it cannot be
accessed in objects of that type: this field may still be defined in the prototype chain. We
could have flattened security types for objects by requiring every object type to explicitly
declare all the fields accessible through the prototype chains of the objects of that type,
but this would have two disadvantages. First, object types would be less precise, and
second, they would be much larger as the types of prototype fields would be duplicated.
The cost of this design choice is a more complex STATIC FIELD PROJECTION typing rule
that has to take the prototype chain into account.

Given a security type 7, the expression lev(7) denotes its external level and |7] its raw type

lev(®)Ho (for example,

(for instance, lev(prim*) = L and |priv*| = prim). We define 77 as |7|
(PprIMEYH

7.ret, and 7.wef to denote 7y, 71, 72, and o, respectively. Given an object security type 7,

. . . . . . 0. . / . . .
= PRlMH). Given a function security type 7 = (7‘0.71 — Tg)" , We use 7.this, 7.arg,

we use dom(7) for the set containing all field names explicitly declared in 7 (including , if
present). Given a field name f and an object security type 7, 7.f (7.f, resp.) denotes either
the security type (existence level resp.) with which 7 associates f or its default security type
(existence level, resp.) when f ¢ dom(7) and x € dom(7). The ordering C on security levels
induces a simple ordering =< on security types: 79 < 71 iff lev(7p) C lev(71) and |7p] = |71].
We use 7, for the type of the global object. Finally, a typing environment I' is simply a
mapping from variables to security types.
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I'(public) = prIM" publici® : prim®, "
I'(secret) PRIM™ ) public2” : primE,
I'(secret_input) = <7.'g.7£> PRIMT )L T secret1? : privH
I'(public_input) (Tg.__ A PrIME) T secret2” : privH
I'lg) = (fq._ A prIME )L I'(00) = pk.(_proto_ T :7,)L

I'(o) =T(01) =T(02) =17,

Table 3 Typing Environment for the Examples of Listings 1, 2, and 3 .

» Example 2. Table 3 presents the typing environment used to type the programs given in
Listings 1, 2, and 3. Since secret_input, public_input, and g are to be used as functions,
their respective types use the type of the global object as the type of the keyword this. Since
none of these three functions expects an argument or updates the heap, their respective
types omit the type of the argument and declare a high writing effect. Our design choice of
not flattening object types can also be seen in this example: the type of 00 is much shorter
as it does not need to mention at top level the fields declared in 7,.

Static Type System. The key insight of the static type system is that it wraps program
regions which cannot be precisely analysed at static time within a boundary statement
@monitor(T, pc, 7, s) responsible for turning on the typing analysis at runtime. The para-
meters I, pe, and 7, are the typing environment, the context level [15], and the type of the
function whose body is being typed, respectively. Given a typing environment I'; a level pc,
and an expression e, the typing judgment I',pc k. e < ¢’ : ¥ means that e is rewritten as a
semantically equivalent expression €', which may include boundary statements, has raw type
| 7], and reads variables or fields of level at most lev(7). Typing judgements for statements,
with the form T, pc, 7 s s — ', differ from typing judgements for expressions in that they
do not assign a type to the statement. When e (s resp.) coincides with e’ (s’ resp.), we
omit — €’ (= s’ resp.) from the typing rules. The typing rules are given in Figure 2 and
described below.

STATIC FIELD PROJECTION As a given field may be defined anywhere in the prototype
chain of the inspected object, this rule needs to take into account the whole prototype
chain of that object. To this end, we overload function 7w to model a static prototype chain
inspection procedure. Informally, 7w(7, f) computes the lub between the security types of f
in the prototype chain of objects of type 7 and upgrades the external level of this type with
the lub between the existence levels of the field _ proto__ in that prototype chain.

» Example 3 (Leaks via Prototype Mutations). The program below creates three empty
objects: 00, o1, and o2. Then, it creates a field named public1 in both o1 and o2, which is
set to 0 in o1 and to 1 in o2. Depending on the value of a high variable secret, the prototype
of 00 is either set to o1 or to o2. Finally, the low variable public1 is set to the value of the
field publict of the prototype of 00 (because o0 does not define that field), thereby creating
an implicit information flow between secret and public.
= {}; ol = {}; 02 = {}; ol.publicl = 0; o2.publicl = 1;
if (secret) { 00._proto_ = ol } else { 00._proto_ = 02 }; public = o.publicl
Listing 2 Security Leak via Prototype Mutation

Letting T’ be the typing environment of Table 3, it follows that 7(I'(00), public1) = prim*

because I'(00)._proto_ = H. Hence, the assignment public = o0.publicl is not typable as

the type of 00.publici, PRIM, is not lower than or equal to PRIME.
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LITERAL THIS VARIABLE
I, pc k. lit : PRIM* T, pc b this : T(this) T, pcte z:T(x)
ASSIGNMENT OBJECT LITERAL STATIC FIELD PROJECTION
Iipctee: T P <X T(z) pe C lev(7) T,pctee: T T =7(7, f)
T,pckex=e:7 Topete {}[i]:7 T,peteef: it
STATIC MEMBER CHECK STATIC FIELD ASSIGNMENT StATIC FIELD DELETION
Ipckee: T Viz1,2,pc ke e 1 73 I, pc k. deletee : 7
o =lev(7)Ur(F, f) 7o 2 71.f pellev(ti) C 71.f pcllev(7) C7.f = oy
I',pcte fine : PRIM? Dypcheer.f =e2: 72 I, pc . deletee. f : PRIM?f
FUNCTION LITERAL FuncTioN CALL
I = hoist(T'[x > 7.arg, this — 7.this], 5) Viz1,2,pcte € : 7 o = pcUlev(1)
pc’ =7.wef lev(7)UpcCpd TV pcd,7hss— s o C 7y.wef T, = 71.this 75 =< T1.arg
I, pc . function (z)[7]{s} < function (z)[#]{s'} : 7 ,pcteei(ez) : (F1.ret)?
STATIC METHOD CALL
Vici2lypckeeit i 7p=n(f1,f) o =pcUlev(r)Ulev(7y) VERIFIED EXPR STMT
o C 7p.wef #{ = #y.this 5 = Fy.arg Ipchee—e 7
I,pcteer.f(e2) : (7.ret)? T, pc, Tret Fs € — €
DYN. EXPRESSION STMT (PARTIALLY) VERIFIED CONDITIONAL
e € Expry; s = Qmonitor (T, pe, 7r, €) I,pckee—e 7 Vico1 I, pcUlev(7), 7 Fs 8; < 55
[ pe, 7 Fs e s T, pe, fret s if(e) {s1} else {s2} < if(e’) {51} else {s5}
MONITORED CONDITIONAL VERIFIED RETURN
e € Expr; s = Qmonitor (L, pc, Tret, if(e) {s1} else {s2}) Ipcleese 17 #°° < fnret pc < F.wef
T, pc, Tret s if(e) {s1} else {s2} — s T, pc, 7 ks returne < returne’
MONITORED RETURN SEQUENCE
e € Expry s = @Qmonitor (T, pc, 7, return e) Viz1,2D, pe, 7 Fs 8; < 55
I',pe, 7 Fs returne < s T, pec, 7r s 81580 <> s1; 55

Figure 2 Static Typing Core JS Expressions

STATIC MEMBERSHIP CHECK Since the domain of an object can change at execution
time and since programs can check if a given field is defined using the keyword in, the mere
existence of a field may disclose secret information. The existence security levels declared in
object security types serve to control this type of information flows. However, analogously
to field projections, this rule needs to take into account the whole prototype chain of the
inspected object, because the field whose existence is being checked may be defined anywhere
in that prototype chain. To this end, we make use of the static function 7(7, f) that computes
the lub between the existence levels of f and _ proto_ in the prototype chain of objects of

type 7.

» Example 4 (Leaks via Membership Checks). The program below creates an object with
two fields secretl and secret2. Then, depending on the value of a high variable secret, it
deletes either secretl or secret2 from the domain of o. Finally, the low variable public is
assigned to true if secretl is defined in the prototype chain of o or to false if it is not,
thereby creating an implicit flow between secret and public.
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o = {}; o.secretl = 0; o.secret2 = 0;
if (secret) { delete o.secretl } else { delete o.secret2 }; public = secretl in o

Listing 3 Security Leak via Field Membership Check
Letting I be the typing environment of Table 3, it follows that 7(T'(o), secret1) = primY
because I'(o).secretl = H. Hence, the last assignment is not typable as the type of the

H L

expression secretl in o, PRIM'', is not lower than or equal to PRIM™.

STATIC FIELD ASSIGNMENT The first constraint of the rule checks if the type of the
assigned expression is a subtype of the assigned field type, thus preventing the assignment
of a secret value to a public field. The second constraint checks if the context level is lower
than or equal to the existence level of the assigned field, thereby preventing the creation of
a visible field depending on secret information.

FI1ELD DELETION The rule checks if the context level is lower than or equal to the field’s
existence level, thereby preventing visible fields from being deleted in invisible contexts.

FUNCTIONAL LITERAL This rule checks if the context level is lower than or equal to the
writing effect of the type of the function literal, thereby preventing the evaluation of function
literals that update or create public resources inside secret contexts. Then, the type system
types the body of the function literal using the typing environment obtained by extending
the current one with the type of the the formal argument, the type of the keyword this,
and the types of the variables declared in the body of the function literal. To this end,
we make use of a syntactic function hoist that extends the typing environment given as its
first argument with the mappings from the variables declared in the statement given as its
second argument to their respective security types. Note that this rule may re-write the the
body of the function literal in order to enable the dynamic analysis.

FuNcTION CALL This rule first verifies if the context level is lower than or equal to the
writing effect of the function to call, thereby preventing the calling of a function that creates
or updates public resources depending on secret values. Then, the rule checks if the type of
the global object and the type of the function argument match the type of the keyword this
and the type of the formal parameter. (Note that during the execution of a function call
the keyword this is bound to the global object.) The function call is finally typed with the
return type of the function type upgraded with the context level. Typing static method calls
is similar to typing of function calls with the difference that the type system first determines
the type of the method to apply.

DYN. EXPRESSION STATEMENT This rule wraps every expression that contains a dynamic
field operation inside a boundary statement.

CONDITIONAL If the conditional guard contains a dynamic field operation, the whole
conditional is wrapped inside a boundary statement. In the opposite case, the type system
types both branches, upgrading the context level with the external level of the security type
of the conditional guard.

RETURN If the returned expression contains a dynamic field operation, the type system
wraps the whole return statement in a boundary statement. In the opposite case, the type
system types the returned expression and checks that its type matches the security type of
returned values. Furthermore, it must also be the case the current context level is lower than
or equal to the writing effect of the function whose body is being typed. This restriction
prevents a function from returning inside a secret context in some executions, while in others
it does not return and writes low memory afterwards.
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MONITOR SYNC UNMONITORED STEP
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MONITOR CONFIGURATION - 1 MONITOR CONFIGURATION - 2
¥ = (H, L, E[@monitor(v)]) ¥ = (H, L, E[@monitor(returnv)])
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(]\Ilv {Qov"' 7Qn} U {Q}D - (]\Illv{QOv T 7QN}D (]\I/»{QOV" 7Qn} U {Q}D - (]\Illv{QOv T 7QH}D

Figure 3 Monitored Semantics Rules

» Example 5 (Hybrid versus Static Typing of the Running Example). Consider the program
from Example 1 and the typing environment of Table 3. When typing the assignment
public = o[g()], which contains a dynamic field operation, the type system applies the DyYN.
EXPRESSION STATEMENT rule and wraps the whole assignment inside a boundary statement.
All the other statements, which do not contain dynamic field operations, are fully statically
verified and, therefore, left unchanged. Hence, the resulting program is given by:

o = {}; o.secretl = secret_input(); o.publicl = public_input();
o.public2 = public_input(); @monitor(@type_env, @pc, @ret, public = o[g()])

If, instead, the type system tried to statically type this assignment, it would need to check
that the type of o[g()] was less than or equal to the type of public, PRIMZ. Since we do not
know the value to which the call to g evaluates, the type system would need to use the lub
between the types of all the fields declared in the type of 0. Consequently, as one of those
fields has type PrIMT | the assignment would not be typable.

4 Dynamic Typing Secure Information Flow in Core JS

The goal of a boundary statement is to enable and disable the information flow analysis at
runtime. In this section, we define the semantics of the boundary operator by extending
the semantics of Core JS with optional tracking of security types and verification of security
constraints.

Monitored Core JS semantics A configuration of the monitored semantics has the
form (¥, {Q,--,Q,}) where ¥ is a Core JS configuration as defined in Section 2 and
{Q0, -+ ,Q,} is a possibly empty set of monitor configurations. Each monitor configuration
Q is associated to a specific function call and has the form (T, 7,1, 0, p) where: (1) I is a
typing environment, (2) 7, is the type of the function that is executing, (3) [ is the identifier
of the environment record associated to the function call that is being monitored, (4) o is
a control context, which is a list containing the levels of the expressions on which the mon-
itored statement branched in order to reach the current context, and (5) p is an expression
context, which is a list consisting of the security types of the values of the current evaluation
context. The rules of the monitored semantics are given in Figure 3 and described below.
We use er(€2) to denote the location of the environment record associated with €.

Rule MONITOR SYNC corresponds to a monitored step. The transition of the monitor is
synchronised with the transition of Core JS semantics through an internal event oy, where
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LITERAL Tuis VARIABLE
o =PRIM* ::p o =T\(this)::p p=T(x):p
I, 7,1+ (o, p) i {0,p") I, 7,1+ (o, p) i {0,p") T, 7 F {o,p) v {0, p")
VARIABLE ASSIGNMENT FIELD PROJECTION
pc = head(o) 7 =head(p) 77° <XT(z) 7 =m(t1, f) o =pcUlev(i) U lev(72)
L, 7, L F {0, p) v (pc:: o, p) L, 7, L (pc:io, 7271 p) f—prﬂ(f) (pc:0,77 :p')
FIELD ASSIGNMENT
. . . /
MEMBERSHIP CHECK p=rt3ufrufiup  pe=head(o) _
o = 7(71, f) Ulev(71) U lev(72) LI head(o) o=lev(f)Ulev(2)Upc 75 X 71.f oL 7i.f
T, 7, L F {0, T2 i 71 :: p) ) {0, PRIM? :: p) T, 7,1l F (o, p) Fasai(h) (0,73::p")
FIELD DELETION _ FunctioNn CALL
p="Toutip o="1.f o =lev(71) Uhead(o) o C 71.wef
lev(71) U lev(72) U head(o) C o Ty = Ti.this 75 < fi.arg T = fi.ret
L, 7,1+ (o, p) deluff) (0, PRIM? :: p") L, 7, L F (0, 7271 2 p) e (0,77 :: p)
METHOD CALL
o = lev(71) Ulev(72) U head(o) 7 = n (71, f) IF - BRANCH
o C 7rwef 7 < 7p.this 7§ < Fparg 7 = Fp.ret o =lev(f)::o0
m-ca . . if
D, 7, L {0, 7372 71 22 p) A (0,77 :: p) L, 7,1 (o0,7::p) = (0, p)
RETURN
IF - END i, pc = head(o) 7P¢ <X 7..ret pcC 7,.wef SILENT EVENT

>

T, %, {(c::0,p) = (0, p) L, %, L (0,p) 3 (0, p)

1

L, 7l F (o, 7::p) = {0,p)

DISCHARGE PusH
. . o ush; (7
L, 7,1 {0,7::p) =5 (0, p) T, %, 0F (0,p) " ") (0,7 :: p)

Figure 4 Dynamic Typing Core JS Expressions and Statements

[ identifies the running function that performed a computation step.

Rule UNMONITORED STEP models the case where there is no matching monitor con-
figuration for the current computation step. In this case, Core JS semantics performs an
unconstrained computation step (that takes place outside a boundary statement).

Rule MONITOR CONFIGURATION + generates a new monitor configuration for verifying
the statement inside a boundary statement. In order to account for computation steps inside
boundary statements, we extend the syntax of evaluation contexts with a special boundary
context: E = @Qmonitor(E’).

Rules MONITOR CONFIGURATION - 1 and MONITOR CONFIGURATION - 2 remove a
monitor configuration from the current set of monitor configurations when its corresponding
statement finishes executing.

Transitions between monitor configurations Monitor transitions are defined in Fig-
ure 4. We use T',7,.,1 F (0,p) % (0, p') as a shorthand for (I',7,,1,0,p) &% (T, 7.,1,0, p').
The constraints enforced by the monitor are the same as the constraints enforced by the
type system of Section 3. However, in contrast to the type system, the monitor can precisely
type dynamic expressions, because it has access to the field name computed at runtime. In
fact, the internal event generated by all computations which involve inspecting the field of
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Labelled Object Low Projection

lo lo
fi:——— vy fi:———v1

o2 — Vo foress—

fs: —V3

71, = pr.(fEerRvD ) f3 s primT ) FE eI

Figure 5 A Labelled Object and Its Low Projection

an object contains the name of the inspected field.

» Example 6 (Monitoring a Dynamic Field Look-up). We present the sequence of monitor
configurations generated by the execution of @monitor(@type_env, @pc, @ret, public = o[g()])
of our running example (when using the typing environment given in Figure 3).

(L 1) S (L, 70) S8 (L, 7y B prn)E i 20) T (L, priT )
(if g() returns publicl) el (pgbict) (L, PrIME) Ve (Beiic) (L, prRIM)

f-proj; (privatel) v-ass; (public)
—

(if g() returns privatel) (L, Prim™)

We consider two different cases: the case in which g evaluates to publicl and the case
in which it evaluates to secretl. While in the first case, the execution is allowed to go
through, in the second one it gets stuck, because the program tries to assign a secret value
to a public variable.

Let us now briefly explain the rules that better illustrate our choices when designing the
monitor. Since, by default, all literal values are public, when a literal value is evaluated, the
monitor simply pushes PRIM* onto the expression stack. In contrast, when a variable is
evaluated, the monitor has to read its type from the typing environment and push it onto the
expression stack. When a field projection is evaluated, the first two types on the expression
stack are the types of the expressions that evaluate to the field name and to the inspected
object, respectively. Furthermore, the name of the inspected field is available in the internal
event that labels the transition. Hence, the monitor simply has to replace the first two
types of the expression stack with the type of the inspected field upgraded with the external
levels of the types of the current subexpressions. When an if statement is evaluated, the
type of the conditional guard is on top of the expression stack. Hence, the monitor simply
pops that type out of the expression stack and pushes its external level (upgraded with the
current pc) onto the control stack. Complementarily, when the execution leaves the branch
of a conditional, the monitor just pops out the top of the control stack.

Implementation. Instead of wrapping statements containing dynamic field operations
within boundary statements, which are not part of the JavaScript language, the prototype of
the hybrid type system [16] in-lines the monitoring logic in the statement itself [17]. This ap-
proach has the advantage of being immediately deployable. This prototype implementation
was used to verify a simple Web application described in appendix.

5 Security Guarantees

This section describes the security guarantees offered by the proposed analysis. To formally
define the absence of information leaks, we rely on an intuitive notion of low-projection [15]
that establishes the part of a heap that an attacker at a given security level can see. In-
formally, given a heap H, an attacker at level ¢ can observe:

11
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1. the existence of a field f in the domain of an object whose type has external level < o
and associates f with an existence level < o and

2. the value of a field f in the domain of an object whose type has external level < ¢ and

associates f with a security type with external level < o.
Figure 5 presents a labelled object together with its low-projection at level L. The object
in the figure has three fields: f1, f2, and f3. An attacker at level L can observe both
the existence and the value of f; since it has low existence level and is associated with
a visible value and the existence but not the value of fs5, since it has low existence level
but is associated with an invisible value. The attacker can neither observe the value nor
the existence of f3 because it has high existence level and is associated with an invisible
value. Two heaps Hy and H; are said to be low-equal at level o, written Hy ~, H; if
they coincide in their respective low-projections. Theorem 21 states that the monitored
successfully-terminating execution of a program generated by the static type system on two
low-equal heaps always yields two low-equal heaps. A sketch of the proof of Theorem 21 is
given in appendix.

» Theorem 7 (Noninterference). For any typing environment T, levels o and pec, security
type 7, statement, s, and two heaps Hy and Hy, such that T',pc,7 g s — s', Hy ~, Hy,
and ((H, (], ), () = ((HZ, [}, 02), {3) for i = 0,1, it holds that Hj ~, H.

6 Related Work

There is a wide variety of mechanisms for enforcing and verifying secure information flow,
ranging from purely static type systems [19, 15] to different flavours of dynamic analysis
[14, 3]. The main mechanisms for securing information flow in JavaScript [1, 9, 7] are
mostly-dynamic due to the dynamic language nature.

There is a long line of research on safety types for JavaScript which dates back to the
seminal work of Thieman [18]. Since then, the TypeScript programming language [12] was
proposed as a flexible language that adds optional types to JavaScript with the goal of
harnessing the flexibility of real JavaScript, while at the same time providing some of the
advantages otherwise reserved for statically typed languages, such as informative compiling
errors. Recently, Rastogi et al. [13] designed and implemented a new gradual type system
for safely compiling TypeScript to JavaScript. The soundness of the proposed approach is
guaranteed by combining strict static checks with residual runtime checks. We believe that
our work can serve as a basis for extending TypeScript types with security labels in order
to verify secure information flow in TypeScript web applications.

Gradual type systems for secure information flow have been proposed for a pure lambda
calculus [4] and for a core ML-like language with references [5]. The goal of these two
works is significantly different from ours, as their main intent is to cater for the use of
polymorphic security labels. For instance, the type language proposed in [5] includes a special
annotation “?” representing an unknown security level at static time. Expressions that use
variables whose types contain the unknown level annotation, “?”, cannot be precisely typed
at static time. The programmer can introduce runtime casts in points where values of a pre-
determined security type are expected. Then the dynamic analysis checks whether or not a
cast can be securely performed during execution. However, in order to verify such casts at
runtime, these analyses must track security labels during the execution of both dynamically
verified and statically verified program regions. In contrast, our analysis only needs to
dynamically verify the execution of program regions which were not statically verified.
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7 Conclusions

We propose a sound hybrid typing analysis for enforcing secure information flow in a core of
JavaScript that includes dynamic field operations. Furthermore, our analysis can be easily
extended to handle other dynamic constructs of the language such as eval or unknown code,
which only need to be wrapped inside the proposed boundary statement. Finally, we have
implemented our analysis and used it to verify a web application described in the appendix.

This work follows a well-established trend on combining static and dynamic analysis to
devise more permissive and efficient hybrid mechanisms [14]. Our approach can be applied
to other scenarios, such as the verification of isolation properties [10], where it could be
used to derive mostly-static lightweight enforcement mechanisms from prior purely static
specifications.
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A  Auxiliary Definitions

This appendix formally introduces all the definitions omitted in the paper. In particular,

the full semantics is given in Figure 6.

A.1 Semantics

Scope resolution: o(H, L,x)

(I,x) € dom(H)

n(H,lg,z) =1'

o(H,l:L,z) &1

o(H,[],z) =1

Prototype resolution: w(H,l,x)

I
l,x) € dom(H
(H,null,z) £ null (o) )

(I, x) & dom(H) I'=H(l, _proto_)

r(H, L z) 21

n(H,l,z) & n(H,1, z)

Environment Records: act

O defs(s) = {1 )

H =1w {x:v,@this: ',y : undefined, - - -,y : undefined}

A

act(l,z,v,s,0') 2 WwH

A.2 Static Typing
Type Field Projection

I
DEFINED FIELD

Fo=ps e fT A,

NoN DEFINED FIELD
. O % . o
7= pRr( %7 T

f & dom(7)

(r.f,7.) & ({7/K}i,00)

(7.f,7.f) & ({7/k}e,04)

Type Field Look Up - Security Type

I
DEFINED FIELD WITH PROTO - 1

f €dom(7) V€ dom(7) __proto_ € dom(7)
o =1*._proto_ 1 =m(i._proto_,f)# L

DEFINED FIELD WITH PROTO - 2
f € dom(7) V * € dom(7)
_proto__ € dom(7) w(7._proto_, f) =@

7w, f) & (&' Y +.f)7

UNDEFINED FIELD WITH PROTO - 1
f &dom(7) = ¢&dom(7) _ proto_ € dom(7)

o =17._proto_ i =n(t._proto_,f)# O

(7, f) £ 7.f

UNDEFINED FIELD WITH PROTO - 2
f &dom(7) = ¢&dom(7) _ proto_ € dom(7)
w(7._proto_,f) =

n(7, f) £ (7)°
DEFINED FIELD WITH NO PROTO

f € dom(7) V % € dom(7)
__proto__ ¢ dom(7)

(7, f) £ 7.f

w(F, f) £ @

UNDEFINED FIELD WiTH NO PROTO
f &dom(7) x ¢& dom(7)
__proto__ & dom(7)

(7. f) £ @
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LITERAL THis VARIABLE
I = head(L) I = head(L) ' = H(l, Qthis) I'=0(H,l:L,z) v=H( z)
(H,L,lit) ™ (H, L, lit) (H, L,this) ™' (H,L,1') (H,1:Lyz) ™S (H1:L,0)

ASSIGNMENT

l=head(L) I'=0o(H,L,x) H =H[l'zr

(H,L,z =) 3 (1, L,v)

STATIC FIELD PROJECTION

DyNAMIC FIELD PROJECTION

OBJECT LITERAL
I = head(L) ' = fresh(H, 1)
H =HuWw (', _proto_) > lop

(H,L,{}[7]) "7 (1, L1

DyNAaMIC FIELD ASSIGNMENT

" = head(L) "=nxHI,f) v=HI",T) " = head(L) H' = H[.f > v

(HLLLf) ™ (H, L, 1(1) L) A Ly L) = Y L)
DyNAMIC FIELD ASSIGNEMENT MEMBERSHIP CHECK - FALSE MEMBERSHIP CHECK - TRUE

I' = head(L) ' =head(L) =(H,I,f)=null ' =head(L) =(H,L,f)# null

(H,Ll[z) =¢) " (H,Llz=e) (H,L, [f]inl) "7 (1, L, false) (H, L, [f]inl) " (H, L, true)

DELETE - FALSE DELETE
I' = head(L)

STATIC MEMBERSHIP CHECK
' = head(L)

(I, f) & dom(H)

DELETE - TRUE
I'=head(L) H=H W (l,f)—v

(H,L,[f)inl) % (H,L,finl)  (H, L, deletel[f]) “"S"

STATIC DELETE

I' = head(L) ' = fresh(H, 1)

(H, L,false)

dell/(f)
LN

(H, L,delete ([ f]) (H', L, true)

FuNCTION LITERAL
H' =H Wl {Qscope:1::L,Qbody : \x:7.s}

(H, L, deletel.z) % (H, L, deletel.z)

Funcrion CALL
I"=head(L) 1" ¢ dom(H)
\:7.s = H(l,@body) L' = H(l,Qscope)
H =HWact(l",z,v,s,1)

(H,1:: L, function (z)[#]{s}) "7 (H',1::L,1)

DyNnaMic METHOD CALL
I' = head(L)
Az :7.s = H(ly, Qbody)

1" & dom(H)

U'=n(H1f) lp=H("[)
L' = H(ly, Qscope)

H =HWact(l",z,v,s,1)

f-call;/

(H,L,1(v)) =" (H',I"::L' QFunExe(L,s))

DyNnamMmIic METHOD CALL
I' = head(L)

(H,L,1[z](v)) % (H,L,lLa(v))

RETURN UNDEFINED

SEQUENCE
I = head(L)

SEQUENCE - RETURN
I = head(L)

(H, L, QFunExe(L,v)) —% (H, L', undefined)

(H, L) () "N (1 1" I, @FunExe(L, 5))

VAR DECLARATION
! = head(L)

(H,L,varz [f]) >3 (H, L, undefined)

RETURN VALUE
I = head(L)

(H,L,v;s) % (H,L,s)

IF - FALSE
I = head(L) false(v) s = s9; QEndIf

(H, L,if (v) {s1} else {s2}) % (H,L,s')

Ir END
I = head(L)

(H,L,QEndIf) =% (H, L, undefined)

(H, L,return v; s) 23 (H, L,returnv)

(H, L, @QFunExe(L’, returnv)) = (H, L', v)

Ir - TRUE
I = head(L) s’ = s1; QEndIf

(H, L,if (v) {s1} else {s2}) % (H,L,s')

—false(v)

CONTEXTUAL PROPAGATION
(H, L, s) (H',L',s")

(H,L,E[s]) = (H',L', E[s'])

[e%
—

[e%
-

Figure 6 Small-Step Semantics of Core JS
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Type Field Look Up - Existence Level

I
DEFINED FIELD WITH PROTO - 1

f €dom(7) V€ dom(7) _ proto_ € dom(7)
o=17._proto_ o =7(r._proto_,f)# @

DEFINED FIELD WITH PROTO - 2
f € dom(7) V * € dom(7)
_proto__ € dom(7) 7(7._proto_, f) =@

7(r, f) & +.fuoUdo’

UNDEFINED FIELD WITH PROTO - 1
f&dom(7) = ¢&dom(7) _ proto_ € dom(7)

o=17._proto_ o =7(t._proto_,f)# @

w(t,f) £ +.f

UNDEFINED FIELD WITH PROTO - 2
f &dom(7) = ¢&dom(7) _ proto_ € dom(7)
w(7._proto_,f) =9

n(t, f) £ oo’
DEeFINED FIELD WITH NO PROTO

f € dom(7) V % € dom(7)
__proto__ ¢ dom(7)

77 D) 2T

w(F, f) £ @

UNDEFINED FIELD WiTH NO PROTO
f &dom(7) x ¢& dom(7)
__proto__ ¢ dom(7)

(7 f) £ @

» Definition 8 (Hoisting a Variable Environment). Given a typing environment I' and a
statement s, we define hoist(I', s) inductively as follows:

T if s € Expr

Tz — 7] if s = vara [7]
hoist(hoist(T, 1), s2) if s = s1; 82
hoist(hoist(T', 1), s2) if s =if(e) {s1} else {s2}
r if s =returne

hoist(T, s) =

A.3 Low-Equality for Lists

Informally, two lists of labeled values are low-equal with respect to a given security level o,
if for each position of both sequences, either the two values in that position coincide, or the
levels that are associated with both of them are IZ . Definition 9 formalizes this notion.

» Definition 9 (Low-Equality for Lists). Two lists of values U and U’ respectively labeled
by two lists of security levels o and o' are said to be low-equal w.r.t. a security level o,
written ¥, @ ~, ¥, " if the following hold: ((1)) Yo<icn @ (1)1 &' (i) C o = T (i) =
T(i) A (i) = T(i) T o, ((2) Yacicyz| 0 (1) Z 0, and ((3)) Yycicizr (i) € 0, where
n = min(|7|,|7]).

Given a list of security levels used as a control context 7, we define the low-projection
of @ w.r.t. a given security level o, written el [9 as the prefix of 7 that only contains levels
Co.

A.4 Low Equality for Memories and Scope

» Definition 10 (Low-Projection and Low-Equal Scope Chains). The low-projection of a scope
chain L stored in a heap H at a security level o wrt a typing environment I' is given by:

(H, L)[F"’: {(v,2)|H(lz,z) =v Alev(I'(z)) Co A o(H,L,z) =1,}

Two scope chains (Hy, Lg) and (Hy,Lq) are said to be low-equal at level o, written I' -
Hy, Lo ~, Hi, L if they coincide in their respective low-projections, (Ho, Lo)["°= (Hi, L1)[7°.
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» Definition 11 (Low-Projection and Low-Equality for Heaps). The low-projection of a heap
H at a security level o is given by:

Hi7 = {(l+, )|+, f) € dom(H) A 7.f U lev() C o}
U{(l+, f,v)|(ls+ f) € dom(H) A H(l+, f) =v A lev(7.f) U lev(7) C o}

Two heaps Hy and H; are said to be low-equal at level o, written Hy ~, H if they coincide
in their respective low-projections, Ho|"= H1|°.

A.5 Low-Equality for Contexts

We introduce a new function pvalues that given a context, returns the list containing the val-
ues in that context that were already evaluated in evaluation order. Definition 12 formalizes
this notion.

» Definition 12 (Context Parsed Values). Given a context E, we recursively define pvalues(E)

as follows:
pvalues(D) = ] R pvalues(ai =F) = pvaIues(E:‘)
pvalues(E. f) = pvalues(E) pvalues(E ]) = pvalues(E)
pvalues(lLED = I pvaluef(E) pvalues(E =e) = pvalues(E)
pvalues(E[e1] = e2) = pvalues(E) pvalues(/[E] = e) = [:pvalues(E)
pvalues(I[f] :AEA‘) = fulx pvalueAs(EA) pvalues([£] in 2 = pvaIues(E:‘)
pvalues([f]in E) = f:pvalues(F) pvalues(delete E. f) = pvalues(E)
pvalues(delete Efe]) = pvalues(E) pvalues(dele el[E]) = l:pvalues(E)
pvaIues(Li?(e)) = pvalues(E ) pvalues(lg ) = I= pvalues(E)
pvalues(EAf(e)) = pvalues( 2) pvalues(E[e ]( ) = pvalues(E) R
pvalues({[E](e)) = [:pvalues(E) pvalues(l [f}A( 7)) = fulz pv:illues(E)
pvalues(E; s) R = pvalues( ) pvalues(if ( ) {s1}else{s2}) = pvaIues(EA‘)
pvalues(return E) = pvalues(E) pvalues(if(E) {s1}else {s2}) = pvalues(E)

We extend the notion of low-projection to contexts paired up with a list of security levels
corresponding to the control context. Hence, given an execution context E and a control
context o, F F?*’ denotes the context obtained from E by removing its subcontext that is
not observable. For instance, @EndIf(QEndIf(x = []);x = 1)[¥#H:L = QEndIf([];z = 1).

» Definition 13 (Context Low-Projection). Given a context E and control context o, we
define the low-projection of E at a level o w.r.t. i recursively as follows:

B coo_ | E ifo'Co
flush(E ){ 7 otherwise

where flush(E) = E’ if and only if E = E'[@QEndIf(E"”)] and there are no contexts £ and £’
such that B = E[QEndIf(£")].

Using the definition of low-projection for contexts, we extend the definition of low-
equality for contexts paired up with the corresponding control and expression contexts.
In the following, we use: ((1)) |E| as an abbreviation for |pvalues(E)|, ((2)) [L], for the
list containing the first n elements of L, and ((3)) | L], for the list containing the last n
elements of L.

» Definition 14 (Low-Equality for Contexts). Given two contexts Ey and E; each paired up
with two lists of security levels 7 and ?; for ¢ = 0,1 and a security level o, we say that
Ey is low-equal to By w.r.t. g, 0h, 01, @4 and o, written Ey, @0, 0 ~o E1, @1, 0%,
if and only if: pvalues(E}), L?Ole()\ ~s pvalues(E1), L?lJlEﬂ where E| = Ey 190:9 and
El=E, 1700,

17
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A.6 Low Equality for Redexes

Let us define a redex as a statement s for which there is no context E different from [J and
statement s such that § = E[s]. Definition 15 extends pvalues to rexedes.

» Definition 15 (Runtime Values of a Redex). Given a redex 3, we define pvalues(s) as follows:

pvalues(v) = ] pvalues(this) = ]
pvalues(z) = ] pvalues(z = v) =
pvalues({ } )] = ] pvalues(I[f]) = ful
pvalues(l[f] = v) = w:uful pvalues([f]inl) = ful
pvalues(delete [ f]) = ful pvalues(function (z)[7]{s}) = []
pvalues(l(v)) = w:l pvalues({[f](v)) = wuf:ul
pvalues(var z [7]) = ] pvalues(v; s2) = v
pvalues(if(v) {s1}else{s2}) = wv pvalues(return v) = v

We say that two redexes s and 5’ are equal up to runtime-values, written 5 = &, if they
only differ in runtime values. We use |5| as an abbreviaton for |pvalues(s)|. We extend
the definition of low-equality to redexes, each paired up with a list of security levels in the
following way. Two redexes sy and 51 paired up with two lists of security levels 7o and
?1 respectively are said to be low-equal at level o, written 5, ?0 ~g 81, ?1, if and only if
50 = 81 and pvalues(sp), To~o pvalues(s1), 7.

A.7 Low Equality for Configurations of the Monitored Semantics

Definition 16 extends the notion of low-equality for JavaScript configurations respectively.
An intermediate configuration is never low-equal to a final configuration.

» Definition 16 (Low-Equality for Monitored Intermediate Confs). Two JavaScript confs.
(H,L, E[8]), (H',L', E'[§']) monitored by two monitor configurations (T, pe, 7,0, p) and
(T, pe, 7,0, p') are said to be low-equal at level o, written T',pc, 7. + (H, L, E[3]),0,p ~¢
(H',L',E'[§']),0,p, if and only if:

1. H~y H'

2. THFHL~, H,L'

3. E,o,p~, E', 0, p

4. o]°=0|°

5

lev(o) Mlev(o') E o = lev(o) = lev(d’) A 3,[0]|5 ~o &, [0 ]3|
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B Case Study

This appendix presents a small Web application used to demonstrate the applicability of the
type system. It consists of a simple contact manager online application, given in Listing 4.
The variable CM holds the Contact Manager object. The contact manager stores contacts
in an object that is bound to its field contact_list. This object is used as a table whose
entries are the last names of the contacts (extended with unique integers to avoid collisions)
and whose values are the actual contacts. A contact is simply an object containing a first
name (stored in field £st), a last name (stored in field 1st), an e-mail address (stored in
field email), and a flag favourite (whose existence indicates that that contact is among
the user’s favourite contacts).

This example illustrates the typical use of prototype-based inheritance in JavaScript. We
create a “fixed” object for storing all the methods contact objects must implement and we
assign this object to the field proto_contact of the Contact Manager. Every time a contact
object is created, its prototype is set to CM.proto_contact. Hence, every contact object
implements the methods: (1) printContact that generates a string with a description of
the contact, (2) makeFavourite that marks the contact as favourite, (3) isFavourite that
checks whether the contact is marked as favourite, and (4) unFavourite that deletes the
property that marks the contact as favourite.

cM = {};
CM.proto_contact = {};
CM.contact_list = {};

CM.proto_contact.printContact = function() {
return this.lst + "," + this.fst

CM.proto_contact.makeFavourite = function() {
this.favourite = null

CM.proto_contact.unFavourite = function() {
if ("favourite" in this) {
delete this.favourite
} else {
true

CM.proto_contact.isFavourite = function() {
return "favourite" in this

g

CM.createContact = function(fst_name, lst_name, email) {
var contact;
contact = {};
contact._prot_ = CM.proto_contact;
contact.fst = fst_name;
contact.lst = 1lst_name;
contact.email = email;
return contact

CM.storeContact = function(contact, i) {
var list, key;
list = this.contact_list;
key = contact.lst+i;
if (key in list) {
return CM.storeContact(contact, i+1)
} else {
list[key] = contact;
return i
i
}

CM.getContact = function(lst_name, i) {

19
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L
fstl: primL, 1stl : PRIME,
Teontact = UK+ id" : priMT | favourite! : priM!,

L. -
_Proto_~ ! Tproto contact

. H
printContact® : (k.prRIME = PRIME)E,

: H
makeFavoritel : (k.PriME = prIMI)L

T, = UK -
proto__contact /14 H>L
b

. . H
isFavorite® : (k.PRIMLY = PRIM

. H
unFavorite” : (k.PrIME = prIMIT)E

proto_contactL : Tproto_contact

contact_list® : uk.(x" : Teontact)®,
L H L . L
,PR”Vl ) — Tcontact> 9

) b,

Fom = pik - createContact?” : (k.(PRIME, PRIM

. L
storeContact” : (k.(Teontact, PRMY) = PRIM

L

getContact? : (k.(PrRML, PRIME) ki Teontact)”

Figure 7 Typing Environment for the Contact Manager - l'car = [CM — o]

return this.contact_list[lst_name+i]

Listing 4 A Simple Contact Manager

In the following, we give a brief description of the methods that compose the Contact

Manager example.

Methods of Contact Objects. The method printContact returns a string consisting
of the last and first names of the contact on which it was called separated by a comma
(in this context, the binary operator 4+ should be interpreted as string concatenation).
Since the mere existence of the property favourite in a contact marks it as a favourite
contact, the method makeFavourite only has to assign an arbitrary value to the property
favourite of a contact to turn that contact into a favourite contact. To stress this
fact, we choose to assign it to null. Conversely, in order for a contact to cease to be
a favourite contact, one simply has to delete the property favourite from its list of
properties. Finally, to check whether a contact is a favourite contact, it suffices to check
whether favourite belongs to its list of properties, which can be done using the program
construct in.

Methods of the Contact Manager. The method createContact creates a new con-
tact and returns it. Given a contact object and an integer n, the method storeContact
stores the contact corresponding to its first argument in the contact list of the contact
manager. As mentioned above, a contact list is an object whose entries are the last
names of the stored contacts extended with unique integers to avoid collisions. Hence,
the method storeContact first checks whether there already exists a contact with the
same last name associated with n in the contact list. If it is not the case, it stores the
contact in the corresponding property of the contact list. If it is the case, the method
calls itself recursively with the same contact but with n incremented by one. Finally, the
method getContact returns the contact associated with the name and integer given as
inputs. If no such contact exists, it returns undefined.
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Figure 7 presents a typing environment for the Contact Manager example. We diverge
from real JavaScript in that we do not specify the type of the prototype of objects of type
Tproto_contact- Lhis is equivalent to stating that objects of type 7Tproto contact do not have
a prototype, which is not true: in real JavaScript every object has an implicit prototype —
Object.prototype. This, however, does not compromise the security guarantees offered by
the analysis, because not stating the type of the prototype makes the analysis accept less
programs than when it is stated but not more. Functions that do not modify the memory
are associated with function types with high writing effects, which is the most permissive
writing effect.
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C Proofs

» Lemma 17 (Confined One-Step Transition). Given a JavaScript configuration (H, L, E|[8])

and a monitor configuration (o, p) and a security level o, such that:
L, pe,#p b ((H, L, E[s]), (0, p)) = ((H', L', E'[']), (0, p'))
and lev(o) I o, it holds that: T, pc, 7+ (H, L, E[8]),0,p ~o (H', L', E'[3']),0', p’.

Proof. By case analysis on the structure of s.

<

» Lemma 18 (Low-Value Generating One-Step Transitions). Given two monitored JavaScript

configurations and a security level o, such that:
T, pe, . b ((H, L, B[], (0, )) > ((Hy, Ly, Elel), (05, p1)) (hyp.1)
ope b (UL B, (0 /) = (. L, B, (0 o)) (hp-2)
U,pe, 7 = (H,L,E[5]),0,p ~c (H', L', E[S']),0, 0" (hyp.3)
lev(o) Ulev(o') C o (hyp.4)
Then, it holds that:
Hp~y H
U'EHy Ly ~y Hy, L
v, lev(head(py)) ~, v, lev(head(p}))

Proof. We proceed by case analysis in the shape of s.

[THis] Suppose s = this (hyp.5). We conclude that:

= H(head(o), @Qthis) and v' = H'(head(0’), Qthis) (1) - (hyp.2) + (hyp.3) - (hyp.5)
lev(T(this)) C 0 = v = v (2) - (hyp3) + (1)
head(p) = head(p') = T'(this) (3) - (hyp.1)
v lev(head(p)) ~o ' lev(head (")) @ -2+ 6
Hy=H, H;=H',Ly=L,and L, = L. (5) - (hyp.1) + (hyp.2) + (hyp.5)
Hy ~o H} (6) - (hyp.3) + (5)
Ik Hyf, Ly ~e Hy, L (7) - (hyp.3) + (5)

[VARIABLE] Suppose § = z, for some variable z (hyp.5). We conclude that there are two

locations [, and I/, such that:

§=u (hyp.3) - (hyp.5)
v=H(ls,z) and o(H, L,z) = I, (2) - (hyp.1) + (hyp.5)
v' = H'(l,,z) and o(H',L,x) = I, (3) - (hyp.2) + (hyp.5)
lev(T(z)) Co=v=10 (4) - (hyp-3) + (2) + (3)
head(ps) = head(p}) = T'(x) (5) - (hyp.1) + (hyp.2) + (hyp.5) + (1)
v, lev(head(py)) ~o v, lev(head(p’)) (6) - (4) + (5)
Hy=H,H =H}; Ly=1L,and L’y = L. (7) - (hyp.1) 4+ (hyp.2) + (hyp.5)
Hy o ] (8) - (hyp:3) + (7)
T+ Hy, Ly ~o Hy, Ly (9) - (hyp.3) + (7)

[VARIABLE ASSIGNMENT] Suppose § = x = v, for some variable z and value v, (hyp.5). We

conclude that:

§' =z = vy and vy, lev(head(p)) ~o vy, lev(head(p')) (1) - (hyp.3) -
head(p)?® < T'(x) and head(p’)?* <X T'(z) (2) - (hyp.1) + (hyp.2) +

(hyp.5)
(hyp.5)
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vy, ev(I(@) ~o ), lev(I()) (3)- (1) + (2)
v =y, and v’ = v (4) - (hyp.1) + (hyp.2) + (hyp.5) + (1)
v, lev(I(z)) ~o v/, lev(I'(z)) (6)-3)+ )
Hy~o Hy and I' - Hy, Ly ~o Hy, Ly (6) - (hyp.1) + (hyp.2) + (hyp.5) + (1) + (5)
[OBsECT LiTERAL] Suppose § = { } [7] (hyp.5) for some security type 7. We conclude that:
s ={}1[7] (1) - (hyp.3) - (hyp.5)
Hy = H W (lo,_proto_) — lop and Ly = L, where: lo = fresh(H,7) (2) - (hyp.1) + (hyp.5)
H:=H'W (ly, _proto_) — l,p and L = L', where: Iy = fresh(H',7) (3) - (hyp.2) + (1)
U,r+ Hy, Ly ~o Hy, L (4) - (hyp5) + (2) + (3)
We consider two cases: either the program does a visible object allocation (lev(7) C o) or
the program does an invisible object allocation (lev(7) [Z o). Suppose lev(7) C o (hyp.6):
lo =1 (5) - (hyp.1)-(hyp.6)
Hy7= Hy |7 U{(lo, proto_,null),(lo, proto )} (6) - (hyp.6) + (2)
H 7= H[? U{(lo, _proto_, null), (lo, _proto_)} (7) - (hyp.6) + (3) + (5)
Hy ~; Hj (8) - (hyp-3) + (6) + (7)
lev(f) Co=v =1 (9) - (2) + (3) + (5)
Suppose lev(7) IZ o (hyp.6):
Hyl7=H|? (10) - (hyp.6) + (1)
Hjl°=H'|" (11) - (hyp.6) + (2)
Hy ~, H} (12) - (hyp.3) + (10) + (11)
lev(f) Co=v =1 (13) - (hyp.6)

[FieLD ProJsecTiON] Suppose 5§ = [[f] (hyp.5). It follows that:

§ =U[f]and (f,1),lev([p]2) ~o (f',1'), lev(lev([p]2)) (1) - (hyp-3) - (hyp.5)
Hy=H,H =H; Ly=L,and L, = L'. (2) - (hyp.1) 4+ (hyp.2) + (hyp.5)
Hy ~o Hyj (8) - (hyp.3) + (2)
U'F Hy, Ly ~g Hj, Ly (4) - (hyp.3) + (2)

v=H(ly, f) and v' = H'(I}, f'), where: Iy =« (H,l, f) and I} = n(H',l', ')
(5) - (hyp.1) + (hyp-2) + (hyp.5)
It remains to prove that lev(7) C o = v = v’ for 7 = head(py). Let 7o, 7f, 7,, 7} be the last
two elements of p and p’, respectively, and assume that lev(7) C o (hyp.6); it then follows
that:
lev(7,) Ulev(7s) C o (6) - (hyp.1) + (hyp.5) + (hyp.6) + (6)
To =14, Tf =7, Iy =1}, and f = f' (7) - (hyp.6) + (1) + (6)
# = head(py) = head(py) = 7 (7o, f)P*V TN (8) - (hyp.1) + (hyp-2) + (hyp.5) + (1) +
(7)
m(H,ly, f) = n(H', 1z, f)
(9) - (hyp.3) + (hyp.6) + (7) + (8) + Prototype-Chain Indistinguishability
We consider two cases: m(H,ls, f) # null or w(H,ls, f) = null. Suppose w(H,l¢, f) # null
(hyp.7), it follows that:

+
+

w(H, Iy, £) = n(H', 15, f) = Tn (10) - (byp.7) + (9)
v=H(ly, f)and o' = H' (I3, f) (11) - (hyp.1) + (hyp.2) + (hyp.5) + (1) + (10)
7 =7 (12) - (10) + (11) + Well Labeled Prototype Chains

lev(7') C lev(,) C o (13) - (12) + (hyp.6)
v=2 (14) - (hyp.3) + (11) + (13)
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Suppose w(H, ¢, f) = null (hyp.7):
w(H', 1y, f) = null (15) - (hyp.7) + (9)
v = v’ = undefined (16) - (hyp.1) + (hyp.2) + (hyp.7) + (15)

[MEMBERSHIP CHECK] Suppose § = [f]inl (hyp.5). It follows that:

§' =[f1inl" and (f,1),lev([p]2) ~o (f',1'), lev(lev([p"]2)) (1) - (hyp.3) - (hyp.5)
Hf=H,H =H}, Ly =L,and L} = L. (2) - (hyp.1) + (hyp.2) + (hyp.5)
Hy ~, H} (8) - (hyp.3) + (2)
Uk Hy Ly ~o Hy, LY (4) - (hyp:3) + (2)

It remains to prove that lev(7) C o = v = v’ for 7 = head(py). Let 7o, 7f, 7,, 7} be the last
two elements of p and p’, respectively, and assume that lev(7) C o (hyp.6); it then follows

that:
+ — prim™ (ForfUlev(io)Ulev(#4) (5) - (hyp.1) + (hyp.5)
to = b, 7 =75, =1, and f = f’ (6) - (hyp.6) + (1) + (5)

ﬁ(%o,f)ulev(i'o)ulev(i'f)

(7) - (hyp.1) + (hyp.2) + (hyp.5) + (1) + (6)

7 = head(py) = head(p;) = Prim

7T(I_I?lfvf) :W(H/vlfvf)
(8) - (hyp.3) + (hyp.6) + (6) + (7) 4+ Prototype-Chain Indistinguishability
We consider two cases: w(H,ly, f) # null or w(H,ls, f) = null. Suppose w(H,ly, f) # null
(hyp.7), it follows that:

m(H,ly, ) = m(H' Iy, f) = L+ (9) - (hyp.7) + (8)

v = true and v’ = true’ (10) - (hyp.1) + (hyp.2) + (hyp.5) + (1) + (9)
Suppose w(H, Iz, f) = null (hyp.7):

w(H' ,lf, f) = null (11) - (hyp.7) + (8)

v = v’ = undefined (12) - (hyp.1) + (hyp.2) + (hyp.7) + (11)

[FIELD ASSIGNMENT] Suppose 5§ =[[f] = v (hyp 5). It follows that:
§ =U[f]=1vy and (v, f,1),lev([p]s) ~o (¢, f', 1), lev(lev([p']5)) (1) - (hyp.3) - (hyp.5)
Hy=H[l.f ], Ly = L, Hy = H'[l.f 1], and L; = L/
(2) - (hyp.1) + (hyp.2) + (hyp.5)
L'k Hy, Ly ~; Ht, L and v, head(py) ~o v', head(p}) (3) - (hyp.3) + (2)
Let 7y, 7¢, To, To, %}, and 7/ be the last three elements of p and p’ respectively. Suppose
that pc U lev(7,) Ulev(7y) C o for 7 = head(ps) (hyp.6), it follows that:

To =17, and 7 =74, I =1, and f = f’ (4) - (hyp.6) + (1)
%fculev(fo)ulev(ff) < 7_ f and ( )pculev(fo)ulev(‘rf) < 7_ f (5) _ (hypl) + (hyp?) + (4)
U, To-f ~o ¥ o f (6) - (1) + (5)
Hy ~o Hj (7) - (hyp.3) + (3) + (4)
Suppose that pc L lev(7,) U lev(7y) £ o for 7 = head(ps) (hyp.6), it follows that:

fof Mtof Lo (8) - (hyp.1) + (hyp.2) + (hyp.6)
Hj ~, H} (9) - (hyp.3) + (8)

[FiIELD DELETION] Suppose § = deletelf (hyp.5). It follows that:

5 = deletel'f' and (£, 1), lev([p]2) ~a (f',1),lev(lev([p']2)) (1) - (hyp.3) - (hyp.5)
Hy = H\L.f, Ly = L, Hy = H'\l'.f', and L; = L' (2) - (hyp.1) + (hyp.2) + (hyp.5)
Uk Hy Ly ~o Hy, L) (3) - (hyp.3) + (2)
Let 7¢, 7o, Tf, and 7, be the last two elements of p and p’ respectively. Suppose that

pcUlev(7,) Ulev(7s) C o for 7 = head(ps) (hyp.6), it follows that:
to =+, and 7 =+, 1 =0, and f = f' (4) - (hyp.6) + (1)
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lev(7,) U lev(7s) C 7o.f and lev(7,) Ulev(7s) C 7o.f (5) - (hyp.1) + (hyp.2) + (4)
Hj ~ Hyj (6) - (hyp.3) + (4) + (5)
Suppose that pc L lev(7,) U lev(7y) £ o for 7 = head(ps) (hyp.6), it follows that:

fo.f Mo f Lo (7) - (hyp.1) + (hyp.2) + (hyp.6)
Hp ~o HY (8) - (hyp-3) + (8)
The remaining cases follow similarly. <

» Lemma 19 (Monitored Execution of Typable Redex). Given an expression redex e, a typing
environment I', a security level pc, a security type 7, a heap H, a scope chain L, a control
context o, and an expression context p such that:

T,pctee:7 (hyp.1)

(H,L,e) &% (H',L,v) (hyp.2)
Then, it holds that:

I, pe, 7 b ((H, L, &), {0, p)) = ((H', L, v), {0,7" ::p'))
where: p' C p and 7' = 7.
Proof. We proceed by case analysis on e.

[THis] Suppose § = this (hyp.3). We conclude that:

p' = pand 7' = T'(this) (1) - (hyp.2) + (hyp.3)

7 = D(this) (3) - (hyp.1) + (hyp.3)

=7 (4)-(2)+3)
[VariABLE] Suppose § = 2 (hyp.3). We conclude that:

p'=pand #' =T(z) (1) - (hyp.2) + (hyp.3)

7 =I(z) (2) - (hyp.1) + (hyp.3)

=7 (3)-(2)+B)
[OBJECT LITERAL] Suppose § = { } [7”] (hyp.3). We conclude that:

p =pand 7 =7" (1) - (hyp.2) + (hyp.3)

=7 (2) - (hyp.1) + (hyp.3)

=17 (3)-(2)+B)

[ProjecT LiTERAL] Suppose § = [[f] (hyp.3). Letting p = 7 :: 75 :: p”/, we conclude that:

p/ — 7I_(,i_o’f)pct_llev(ﬂ"(,)ulev(-r'-f) 5:[7" and ' = 7[_(7-_0,f)pculev(i—,,)ulev(i—f) (1) _ (hyp2) + (hyp3)
=1 (2) - (hyp.1) + (hyp-3)
The remaining cases follow by similar arguments. |

» Lemma 20 (Monitored Execution of Typable Redex). Given a statement s, a typing envir-
onment I', a security level pc, two security types 7 and 7, a heap H, a scope chain L, a
control context o, and an expression context p such that:

T,pe, 7 bs s s (hyp.1)

(H,L,s) —* (H',L,v) (hyp.2)
Then, it holds that:

L.pe, 7 b ((H, L, 5), (0, p)) =" ((H', L, v), (0, p))
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Proof. By induction on the length of the derivation of (hyp.2) using the previous lemma. <

» Theorem 21 (Noninterference). For any typing environment I', levels o and pc, security
type 7, statement, s, and two heaps Hy and Hy, such that T',pc,7 b, s — s', Hy ~, Hy,
and ((Hy, [],8), {30 —=* ((H., [],vi), {}) fori=0,1, it holds that H) ~, Hj.

Proof. By induction on the length of the derivation of ((Ho,[],s), {}) —=* ((H{j,[],v0), {})
using Lemmas 20 and 18. <
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