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The dynamic nature of JavaScript and its complex semantics make it a di�cult target for logic-based veri�cation.
We introduce JaVerT, a semi-automatic JavaScript Veri�cation Toolchain, based on separation logic and aimed
at the specialist developer wanting rich, mechanically veri�ed speci�cations of critical JavaScript code. To
specify JavaScript programs, we design abstractions that capture its key heap structures (for example, prototype
chains and function closures), allowing the developer to write clear and succinct speci�cations with minimal
knowledge of the JavaScript internals. To verify JavaScript programs, we develop JaVerT, a veri�cation pipeline
consisting of: JS-2-JSIL, a well-tested compiler from JavaScript to JSIL, an intermediate goto language capturing
the fundamental dynamic features of JavaScript; JSIL Verify, a semi-automatic veri�cation tool based on a
sound JSIL separation logic; and veri�ed axiomatic speci�cations of the JavaScript internal functions. Using
JaVerT, we verify functional correctness properties of: data-structure libraries (key-value map, priority queue)
written in an object-oriented style; operations on data structures such as binary search trees (BSTs) and lists;
examples illustrating function closures; and test cases from the o�cial ECMAScript test suite. The veri�cation
times suggest that reasoning about larger, more complex code using JaVerT is feasible.
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1 INTRODUCTION
Separation logic was developed in order to reason about programs that manipulate data structures
in the heap. The reasoning has been shown to be tractable, with compositional techniques that
scale [Reynolds 2002] and properly engineered tools applied to real-world code. In particular,
separation logic has been used to reason about programs written in static languages: for example,
the semi-automatic veri�cation tool Verifast [Jacobs et al. 2011] for reasoning about C and Java
programs; the automatic veri�cation tool Infer [Calcagno et al. 2015], being developed at Facebook,
for reasoning about C, Java, C++ and Objective C programs; and the interactive Coq development
for reasoning about, for example, ML-like programs [Krebbers et al. 2017] using Iris [Jung et al.
2015]. In contrast, separation logic has hardly been used to reason about programs written in
dynamic languages in general, and JavaScript in particular. The goal of this paper is to explore
the extent to which techniques from separation logic, proven to work for C, C++, and Java, can
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Naudžiūnienė, Imperial College London, UK, daiva.naudziuniene@imperial.ac.uk; Thomas Wood, Imperial College London,
UK, thomas.wood@imperial.ac.uk; Philippa Gardner, Imperial College London, UK, p.gardner@imperial.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
2475-1421/2018/1-ART
https://doi.org/10.1145/3158138

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article . Publication date: January 2018.



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98
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be applied to full, non-simpli�ed JavaScript. This is part of a wider, more general study, done by
ourselves and others, to assess the trade-o� between static and dynamic analysis for JavaScript.
JavaScript is one of the most widespread dynamic languages: it is the de facto language for

client-side Web applications; it is used for server-side scripting via Node.js; and it is even run on
small embedded devices with limited memory. It is used by 94.8% of websites1, and is the most
active language in both GitHub2 and StackOver�ow.3 Standardised by the ECMAScript committee
and natively supported by all major browsers, JavaScript is a complex and evolving language. Logic-
based reasoning about JavaScript programs poses a number of signi�cant challenges. To specify
JavaScript programs, the challenge is to design assertions that fully capture the common heap
structures of JavaScript, such as property descriptors, prototype chains for modelling inheritance,
the variable store emulated in the heap, and function closures. Importantly, these assertions should
abstract as much as possible from the details of the heap structures they describe, to provide
a speci�cation that makes sense to the JavaScript developer who has limited knowledge of the
JavaScript internals. To verify JavaScript programs, the challenge is to handle the complexity of the
JavaScript semantics, due to: (V1) the behaviour of JavaScript statements, which exhibit complicated
control �ow with several breaking mechanisms and ways of returning values; (V2) the fundamental
dynamic behaviour associated with extensible objects, dynamic property access, and dynamic
function calls; and (V3) the JavaScript internal functions, which underpin the JavaScript statements
and whose de�nitions in the ECMAScript standard are operational, intricate, and intertwined.
There has been little theoretical and practical work on logic-based reasoning about JavaScript.

Gardner et al. [2012] have developed a separation logic for a tiny fragment of ECMAScript 3 (ES3).
In JavaScript, the program state resides in the object heap, imperfectly emulating the standard
variable store. This work demonstrated that separation logic can be used to reason about this
emulated variable store: for example, to specify when programs are safe from prototype poisoning
attacks. Cox et al. [2014] have combined separation logic and abstract interpretation to show how to
specify property iteration for a simple extensible object calculus. This work focussed on a simpli�ed
version of the JavaScript for�in statement. It is intractable to extend such logic-based analysis
to full JavaScript. Instead, we must work with an intermediate representation. We build on the
work of Gardner et al. [2012] in this paper; we expect to build on the work of Cox et al. [2014] in
future. On the more practical side, Swamy et al. [2013] have used the higher-order logic of F* to
prove absence of runtime errors for higher-order ES3 programs using the Dijkstra monad, but have
stopped short of proving functional correctness properties. Ştefănescu et al. [2016] have built a
veri�cation tool for JavaScript based on their K framework and associated reachability logic. Their
aim is to provide general analysis for languages interpreted in K, not speci�c analysis for JavaScript.
We discuss this and other related work in more detail in §2.

In this paper, we present JaVerT,4 a semi-automatic JavaScript Veri�cation Toolchain for reason-
ing about JavaScript programs using separation logic, aimed at the specialist developer wanting rich,
mechanically veri�ed speci�cations of critical JavaScript code. JaVerT veri�es functional correctness
properties of JavaScript programs annotated with pre- and post-conditions, loop invariants, and
instructions for folding and unfolding user-de�ned predicates. JaVerT speci�cations are written
using JS Logic, our assertion language for JavaScript. JS Logic features a number of built-in predi-
cates (§3) that allow the developer to specify JavaScript programs with only a minimal knowledge
of JavaScript internals: for example, the DataProp predicate abstracts over data descriptors; the

1w3techs.com/technologies/details/cp-javascript/all/all
2http://githut.info
3https://exploratory.io/viz/Hidetaka-Ko/94368d12800a?cb=1469037012628.
4JaVerT is pronounced zhah-vehr (IPA: Za"vEK), like the name of the main antagonist of Victor Hugo’s ‘Les Miserables’.
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JaVerT: JavaScript Verification Toolchain 3

Fig. 1. JaVerT: JavaScript Verification Toolchain

Pi predicate captures prototype chains; the Scope predicate allows reasoning about basic variable
scoping; and the Closure predicate precisely describes JavaScript function closures.
The structure of the JaVerT veri�cation pipeline is illustrated in Figure 1 and is driven by the

three veri�cation challenges (V1)–(V3). To solve (V1), in §4 we introduce a simple intermediate goto
language, JSIL,5 and a logic-preserving compiler from JavaScript to JSIL, called JS-2-JSIL.6 JS-2-JSIL
is designed to be line-by-line close to the ECMAScript standard, without simplifying the behaviour
in any way.7 Instead of reasoning directly about code built from complex JavaScript statements, we
use JS-2-JSIL to reason about compiled JSIL code built from simple JSIL statements. JSIL is designed
so that its heap model subsumes the heap model of JavaScript. Hence, JavaScript and JSIL assertions
coincide, making the JS-2-JSIL logic translator and its correctness proof straightforward.
JSIL retains the fundamental dynamic behaviour of JavaScript given by extensible objects, dy-

namic property access and dynamic function calls. To solve the veri�cation challenge (V2), in §5
we introduce JSIL Verify, our semi-automatic veri�cation tool for JSIL. JSIL Verify is based on JSIL
Logic, a sound separation logic for JSIL. The development of JSIL Verify is challenging due to the
dynamic behaviour of JSIL. JSIL Verify comprises a symbolic execution engine and an entailment
engine, which uses the Z3 SMT solver [De Moura and Bjørner 2008] to discharge assertions in
�rst-order logic with equality and arithmetic, while we handle the separation logic assertions. As
with many tools based on separation logic, a key task during symbolic execution is to solve the
frame inference problem. This is more challenging for us, due to the dynamic nature of JSIL.
We solve our �nal veri�cation challenge (V3) in §5.3, by writing axiomatic speci�cations for

the JavaScript internal functions in JSIL Logic and providing reference implementations in JSIL.
The reference implementations are line-by-line close to the standard and are proven correct with
respect to the axiomatic speci�cations using JSIL Verify. Our use of axiomatic speci�cations of the
5JSIL is pronounced jis-suhl (IPA: "dZis@l) or jay-sill (IPA: "dZeIsil), not jay-ess-aye-ell.
6JS-2-JSIL is pronounced jay-ess-to-JSIL.
7JS-2-JSIL targets the strict mode of the ECMAScript 5 English standard. We discuss this choice in §4.2.
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internal functions enables us to: keep the compiled JSIL code visually closer to the ECMAScript
standard; and expose explicitly the allowed behaviours of the internal functions, in contrast with
their intertwined operational de�nitions given in the standard.

For us, an important part of this project was to validate the components of JaVerT: the JS-2-JSIL
compiler and logic translator; JSIL Verify; and the JSIL axiomatic speci�cations of the JavaScript
internal functions. JS-2-JSIL has broad coverage and is systematically tested against the o�cial
ECMAScript test suite, passing all 8797 tests applicable for its coverage. JSIL Logic is sound with
respect to its operational semantics. Since JSIL is designed so that the JSIL heap model subsumes
the JavaScript heap model, the correctness of the logic translator is straightforward. JS-2-JSIL is
logic-preserving, with JSIL veri�cation lifting to JavaScript veri�cation. JSIL Verify is validated by
verifying that the reference implementations of the internal functions are correct with respect to
their axiomatic speci�cations, and by verifying compiled JavaScript programs. The speci�cations
of the internal functions are validated by verifying that they are satis�ed by their well-tested
corresponding JSIL reference implementations. Further details can be found in §6.
We also validate JaVerT as a whole by verifying speci�cations of JavaScript code. As JaVerT is

a semi-automatic veri�cation tool, we believe its target should be critical JavaScript code, such
as Node.js libraries describing frequently used data structures. We have used JaVerT to verify a
simple key-value map library (§3.4) and a priority queue library modelled after a real-world Node.js
priority queue library of Jones [2016]. Libraries such as these, written in an object-oriented style,
are typical for JavaScript. The code, however, no longer guarantees the expected good behavioural
properties of these libraries due of the dynamic nature of JavaScript; our speci�cations do. In §3.5,
we have veri�ed an ID generator, a simple example illustrating JavaScript function closures and how
they can be used to emulate data encapsulation. Our speci�cations capture the achieved degree of
encapsulation. Further, we have veri�ed operations on binary search trees, targeting set reasoning,
and an insertion sort algorithm, targeting list reasoning. Finally, we have veri�ed several programs
from the ECMAScript Test262 test suite, which test complex language statements such as switch
and try�catch�finally. Due to our predicates, our speci�cations successfully abstract over the
JavaScript internals and are in the style of separation-logic speci�cations for C++ or Java. Our
veri�cation times suggest that JaVerT can be used to reason about larger, more complex code. A
detailed discussion is given in §6.4.
JaVerT has two limitations that need to be addressed. Currently, we cannot reason about the

for�in loop and higher-order functions. For the speci�cation of for�in, we will leverage on the
work of Cox et al. [2014], who have shown how to reason about property iteration in a simple
extensible object calculus. Specifying the for�in of JavaScript is substantially more complicated
because it only targets enumerable properties and iterates over the entire prototype chain. The
veri�cation of for�inwill also push the set reasoning capabilities of Z3 to their limit. It is likely that
we will need to implement complex set reasoning heuristics in JSIL Verify. Higher-order reasoning
is known to be di�cult for separation logic, involving the topos of trees of Birkedal et al. [2012].
Our current plan is to encode JSIL Logic in Iris [Jung et al. 2015], obtaining soundness for free.

2 RELATEDWORK
This paper brings together a number of techniques associated with operational semantics, compilers
and separation logic. Many of these techniques have been introduced for static languages. Their
application to dynamic JavaScript is not straightforward.

Logic-based Veri�cation of JavaScript Programs. The existing literature covers a wide range
of analysis techniques for JavaScript programs, including: type systems [Anderson et al. 2005;
Bierman et al. 2014; Feldthaus and Møller 2014; Jensen et al. 2009; Microsoft 2014; Rastogi et al.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article . Publication date: January 2018.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

JaVerT: JavaScript Verification Toolchain 5

2015; Thiemann 2005], control �ow analysis [Feldthaus et al. 2013], pointer analysis [Jang and
Choe 2009; Sridharan et al. 2012] and abstract interpretation [Andreasen and Møller 2014; Jensen
et al. 2009; Kashyap et al. 2014; Park and Ryu 2015], among others. In contrast, there has been
comparatively little work on logic-based veri�cation of JavaScript programs.
Gardner et al. [2012] have developed a separation logic for a tiny fragment of ECMAScript 3,

to reason about the variable store emulated in the JavaScript heap. We draw partial inspiration
from this work: our property assertions are similar; our predicate for describing prototype chains is
di�erent. An extension of their logic to the full language is intractable. For example, the behaviour
of the JavaScript assignment is described in the ECMAScript standard in terms of expression
evaluation and calls to the internal functions getValue and putValue. This e�ectively means that
the assignment is described by hundreds of possible pathways through the standard; each of these
pathways would have to be a proof rule of the logic, making automation essentially impossible.
The same issues would give rise to even greater complexity when applied to the complex control-
�ow given by, for example, the switch and try�catch�finally statements. Direct veri�cation of
JavaScript programs using separation logic is, therefore, not feasible. It is necessary to move to an
intermediate representation (IR), with simpler commands and simpler control �ow. This comment
also applies to other logics for reasoning directly about JavaScript, such as the work combining
separation logic with abstract interpretation to reason about for�in [Cox et al. 2014].
Swamy et al. [2013] use F* to prove absence of runtime errors for higher-order JavaScript pro-

grams. This is achieved by: annotating JavaScript programs with assertions and loop invariants in
the logic of F*; compiling an annotated JavaScript program (a subset of ES3) to F*; using a type
inference algorithm to generate veri�cation conditions for the absence of runtime errors; automati-
cally discharging these veri�cation conditions using Z3. The authors state, but do not demonstrate,
that this methodology is extensible to functional correctness. Their assertions, abstractions, and
reasoning are all in the higher-order logic of F*. As they aim at safety, there are no abstractions
that capture, for example, JavaScript prototype chains or function closures. Our goal is to provide
systematic functional correctness speci�cations that resonate with the knowledge of the developer.
We provide assertions and carefully designed abstractions in JS Logic, together with a translation
to JSIL Logic, where the reasoning occurs, and prove that this reasoning lifts back to JavaScript.
Fournet et al. [2013] address safe library development: the developer writes library code in a

subset of F* and compiles it to JavaScript (ES3). The compilation preserves all source program
properties. As F* comes with an expressive type system, this approach can ensure code safety. Our
agenda is di�erent. We aim to verify functional correctness for existing JavaScript code. Ideas from
this paper might help us generate defensive wrappers from our veri�ed speci�cations.
Roşu and Şerbănuţă [2010] have developed K, a term-rewriting framework for formalising the

operational semantics of programming languages. In particular, they have developed KJS [Park et al.
2015] which provides a K-interpretation of the core language and part of the built-in libraries of
the ES5 standard. KJS has been tested against the o�cial ECMAScript Test262 test suite and passed
all 2782 tests for the core language; the testing results for the built-in libraries are not reported.
The coverage of JS-2-JSIL is broader; we pass all 8797 tests applicable for our coverage (cf. §6.1).

Ştefănescu et al. [2016] introduce a language-independent veri�cation infrastructure that can be
instantiated with a K-interpretation of a language to automatically generate a symbolic veri�cation
tool for that language based on the K reachability logic. They apply this infrastructure to KJS to
generate a veri�cation tool for JavaScript, which they use to verify functional correctness properties
of operations for manipulating data structures such as binary search trees, AVL trees, and lists.
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These examples, however, do not address the majority of critical JavaScript-speci�c features,8 and
also contain no JavaScript-speci�c abstractions. A developer thus has to consider all of the internals
of JavaScript in order to specify JavaScript code, making the speci�cation di�cult and error-prone.
Our approach is entirely di�erent. JaVerT is a specialised veri�cation toolchain, addressing the

reasoning challenges posed by JavaScript. We create layers of abstractions, allowing the developer
to write speci�cations with only a minimal knowledge of the JavaScript internals. Similarly to
Ştefănescu et al. [2016], we use JaVerT to verify correctness of data structure operations. In addition,
we show how to reason about common JavaScript programming idioms, such as emulating OO-style
programming via prototype-based inheritance and data encapsulation via function closures.
Veri�cationTools based on Separation Logic. Separation logic enables compositional reasoning
about programs which manipulate complex heap structures. It has been successfully used in
veri�cation tools for static languages: Smallfoot [Berdine et al. 2005a] for a simple imperative while
language; jStar [Distefano and Parkinson 2008] for Java; Verifast [Jacobs et al. 2011] for C and Java;
Space Invader [Yang et al. 2008] and Abductor [Calcagno et al. 2011] for C; and Infer [Calcagno
et al. 2015] for C, Java, Objective C, and C++.
All of these veri�cation tools compile to simple goto IRs, designed especially for the language

under consideration. These IRs cannot be reused for JavaScript veri�cation, as these tools target
static languages that do not support the fundamental dynamic aspects of JavaScript (V2). Therefore,
we would have to use custom-made abstractions to describe JavaScript object cells, losing native
support for reasoning about object properties and having to axiomatise property operations. We
attempted to do this using the CoreStar theorem prover, obtaining prohibitive performance even
for simple examples. Moreover, any program logic for JavaScript needs to take into account the
JavaScript operators, such as toInt32 [ECMAScript Committee 2011], and it is not clear that these
operators could be expressed using the assertion languages of existing tools.
Compilers and IRs for JavaScript. There is a rich landscape of IRs for JavaScript, broadly divided
into two categories: (1) those for syntax-directed analyses, following the abstract syntax tree of
the program, such as � �S [Guha et al. 2010], S5 [Politz et al. 2012], and notJS [Kashyap et al. 2014];
and (2) those for analyses based on the control-�ow graph of the program, such as JSIR [Livshits
2014], WALA [Sridharan et al. 2012] and the IR of TAJS [Andreasen and Møller 2014; Jensen et al.
2009]. SAFE [Lee et al. 2012], an analysis framework for JavaScript, provides IRs in both categories.
The IRs in (1) are normally well-suited for high-level analysis, such as type-checking/inference,
whereas those in (2) are generally the target of separation-logic tools and tools for tractable symbolic
evaluation [Cadar et al. 2008; Kroening and Tautschnig 2014]. We believe that an IR for logic-based
JavaScript veri�cation should belong to the latter category.

Our aim for JSIL was to: (1) natively support the fundamental dynamic features of JavaScript (V2);
(2) have JSIL heaps be identical to JavaScript heaps, to keep correctness proofs simple; and (3) keep
JSIL minimal to simplify JSIL logic. For control �ow, JSIL has only conditional and unconditional
goto statements. Having gotos in an IR for JavaScript veri�cation is reasonable, because: �rst,
separation-logic-based veri�cation tools commonly have goto IRs; second, JavaScript has complex
control �ow statements with many corner cases (for example, switch and try�catch�finally),
which can be naturally decompiled to gotos; third, JavaScript supports a restricted form of goto
statements, via labelled statements, breaks, and continues. We have only gotos because we have not
encountered the need for more structured loops: our invariants are always JavaScript assertions;
and the JavaScript internal and built-in functions implemented in JSIL use only simple loops.

8The K framework currently does not support predicates whose footprint captures some, but not all, properties of an object.
Therefore, it cannot be used to reason generally about dynamic property access, prototype inheritance, or function closures.
We were informed by the authors that a new development of K is underway and will support this.
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JSIL is similar to JSIR, and the IRs of WALA and TAJS. JSIR and the IR of WALA do not have
associated JavaScript compilers, and the design choices have not been stated so it is di�cult to
compare with JSIL. JSIL is syntactically simpler. TAJS includes a well-tested compiler, targeted for
ES3 (which is substantially di�erent from ES5), but now extended with partial models of the ES5
standard library, the HTML DOM, and the browser API. Since TAJS was designed for type analysis
and abstract interpretation, the IR that it uses is slightly more high-level than those typically used
for logic-based symbolic veri�cation. The IR of SAFE based on control �ow is not documented.

One of our main goals in the development of JS-2-JSIL was to be fully compliant with ES5 Strict.
Thus, a strong connection between the generated JSIL code and the standard was imperative.
Our design of JS-2-JSIL builds on the tradition of compilers that closely follow the operational
semantics of the source language, such as the ML Kit Compiler [Birkedal et al. 1993]. In that spirit,
JS-2-JSIL mimics ES5 Strict by inlining in the generated JSIL code the internal steps performed
by the ES5 Strict semantics, making them explicit. To achieve this, we based our compiler on the
JSCert mechanised speci�cation of ES5 [Bodin et al. 2014]. Alternatively, we could have used KJS.

We have considered using S5 of Politz et al. [2012], which targets ES5, as an interim stage during
compilation. The compilation from ES5 to S5 is informally described in this paper, and is validated
through testing against the ECMAScript test suite, with 70% success on all ES5 tests and 98% on
tests for unique features of ES5 Strict. The �gure critical for us, the success rate of S5 on full ES5
Strict tests (those testing its unique features and the features common with ES5), was not reported.
Therefore, we would have to redo S5 tests using our methodology and �x the unfamiliar code in
light of failing tests. Also, to prove correctness of our assertion translation and, ultimately, JaVerT,
we would have to relate JS Logic and JSIL Logic via S5. This would be a di�cult task.

3 SPECIFYING JAVASCRIPT PROGRAMS
We address the JavaScript speci�cation challenges highlighted in the introduction. To specify
JavaScript programs, we need to design assertions that fully capture the key heap structures of
JavaScript, such as property descriptors, prototype chains for modelling inheritance, the variable
store emulated in the heap using scope chains, and function closures. We start by introducing the
memory model of ES5 Strict and the JS Logic assertions in §3.1. We would like the user of JaVerT to
be able to specify JavaScript programs clearly and concisely, with only a minimal knowledge of
JavaScript internals. We must, therefore, build a number of predicates on top of JS Logic to describe
common JavaScript heap structures. In §3.2, we introduce our basic predicates for describing object
properties, function objects, string objects and the JavaScript initial heap. In §3.3, we introduce
the Pi predicate, which precisely captures the prototype chains of JavaScript. In §3.4, we provide
a general approach for specifying JavaScript libraries written in a typical object-oriented (OO)
style, using a simple key-value map as the example. For such libraries, we give speci�cations that
ensure prototype safety of library operations, in that they describe the conditions under which
these operations exhibit the desired behaviour. Finally, in §3.5, we show how to specify variable
scoping and function closures, using an ID generator example to show how our speci�cations can
be used to capture the degree of encapsulation obtained from using function closures.

3.1 JavaScript Specifications: Preliminaries
The basic memory model of JavaScript is straightforward. The di�culty lies in the way in which it
is used to emulate the variable store and to provide prototype inheritance using prototype chains.
JavaScript Memory Model

JS locations : l 2 L JS variables : x 2 XJS
J S values: � 2 VJS ::= n | b | m | undefined | null | l

JS heap values : � 2 Vh
JS ::= � | � | �d

JS heaps : h 2 HJS : L ⇥ XJS * Vh
JS
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8 J. Fragoso Santos, P. Maksimović, D. Naudžiūnienė, T. Wood, P. Gardner

A JavaScript heap, h 2 HJS, is a partial function mapping pairs of object locations and property
names to JS heap values. Object locations are taken from a set of locations L. Property names and
JS program variables are taken from a set of strings XJS. JS values contain: numbers, n; booleans,
b; strings, m; the special JavaScript values undefined and null; and object locations, l . JS heap
values, � 2 Vh

JS, contain: JS values, � 2 VJS; lists of JS values, � ; and function identi�ers, �d 2 Fid .
Function identi�ers, �d, are associated with syntactic functions in the JavaScript code and are used
to represent function bodies in the heap uniquely. This choice di�ers from the approach of Gardner
et al. [2012], where function bodies are also JS heap values. The ECMAScript standard does not
prescribe how function bodies should be represented and our choice closely connects the JavaScript
and JSIL heap models. Given a heap h, we denote a heap cell by (l ,x ) 7! � when h(l ,x ) = � , the
union of two disjoint heaps by h1 ] h2, a heap lookup by h(l ,x ), and the empty heap by emp.

JS Logic assertions mostly follow those introduced by Gardner et al. [2012]; the main di�erence
is that we do not use the sepish connective t⇤, which was used to describe overlapping prototype
chains. We discuss this di�erence in §3.4 and §5.3.
JS Logic Assertions

V 2 VL
JS ::= � | �set | � E 2 ELJS ::= V | x | x |  E | E � E | sc | this
� 2 Types ::= Num | Bool | Str | Undef | Null | Obj | List | Set | Type

P ,Q 2 ASJS ::= true | false | E = E | E  E | P ^Q | ¬ P | P ⇤Q | 9x.P |
emp | (E,E) 7! E | emptyFields(E | E) | types(Xi : �i |ni=1)

JS logical values, V 2 VL
JS, contain: JS heap values, �; sets of JavaScript heap values, �set; and

the special value �, read none, used to denote the absence of a property in an object (see §3.4).
JS logical expressions, E 2 ELJS, contain: logical values, V ; JS program variables, x ; JS logical
variables, x; unary and binary operators,  and � respectively; and the special expressions, sc
and this, referring respectively to the current scope chain (see §3.5) and the current this object
(see §3.4). JS Logic assertions are constructed from: basic boolean constants, comparisons, and
connectives; the separating conjunction; existential quanti�cation; and assertions for describing
heaps and declaring typing information. The emp assertion describes an empty heap. The cell
assertion, (E1,E2) 7! E3, describes an object at the location denoted by E1 with a property denoted
by E2 that has the value denoted by E3. The assertion emptyFields(E1 | E2) states that the object at
the location denoted by E1 has no properties other than possibly those included in the set denoted
by E2. The assertion types(Xi : �i |ni=1) states that variable Xi has type �i for 0  i  n, where Xi is
either a program or a logical variable and � ranges over JavaScript types, � 2 Types. We say that
an assertion is spatial if it contains cell assertions or emptyFields assertions. Otherwise, it is pure.

JaVerT speci�cations have the form {P } �d (x ) {Q }, where P andQ are the pre- and postconditions
of the function with identi�er �d, and x is its list of formal parameters. We treat global code as a
function with identi�er main. Each speci�cation has a return mode � 2 {nm, er}, indicating if the
function returns normally or with an error. If it returns normally, the return value is stored in the
(dedicated) variable ret; otherwise, the error value is stored in the variable err. Intuitively, given
a JavaScript program s and return mode �, a speci�cation {P } �d (x ) {Q } is valid if s contains a
function with identi�er �d and “whenever �d is executed in a state satisfying P , then, if it terminates,
it does so in a state satisfying Q , with return mode �”. The formal de�nition is given in §4.3.

3.2 Basic JS Logic Predicates
We start by introducing the basic predicates for describing JavaScript object properties, function
objects, string objects and the JS initial heap. These predicates constitute the building blocks of our
speci�cations and are widely used throughout the paper.
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JaVerT: JavaScript Verification Toolchain 9

Object Properties. JavaScript objects have two types of properties: internal and named. Internal
properties have no analogue with C++ or Java. They are hidden from the user, are associated
directly with JS values, and are critical for the mechanisms underlying JavaScript such as prototype
inheritance. We pre�x internal properties with the @ symbol, to distinguish them from named prop-
erties. Standard JavaScript objects have three internal properties, @proto, @class, and @extensible,
which respectively denote the prototype of the object, the class of the object, and whether the
object can be extended with new properties.
JaVerT has two built-in predicates for describing internal properties of JavaScript objects. The

JSObject(o, p) predicate states that object o has prototype p, and its internal properties @class and
@extensible have their default values, �Object� and true. Its general version, the JSObjGen(o, p, c, e)
predicate, allows the user to specify the values of @class and @extensible as c and e.

JSObjectGen(o, p, c, e) := types(o : Obj, p : Str, c : Str, e : Bool) *
(o, �@proto�) -> p * (o, �@class�) -> c * (o, �@extensible�) -> e

JSObject(o, p) := JSObjectGen(o, p, �Object�, true)

Named properties are similar to object properties in C++ or Java, except that they are not associated
with values but with property descriptors, which are lists of attributes that describe the ways in which
a property can be accessed and/or modi�ed. Depending on the attributes they contain, descriptors
can be data descriptors or accessor descriptors. For lack of space, we focus on data descriptors.
Data descriptors contain the value, writable, enumerable, and con�gurable attributes, denoted

by [V], [W], [E], and [C], respectively. The [V] holds the actual property value. The [W] describes
whether the value [V] may be modi�ed. The [E] indicates whether the property is included in for-in
enumerations. The [C] denotes whether [W], [E] or the property type (data or accessor property) may
be modi�ed. Note that the modi�ability of [V] is determined by [W] and is thus not controlled by [C].

We represent descriptors as �ve-element lists; the �rst element states the descriptor type and the
remaining four represent values of appropriate attributes; for example, [�d�, �foo�, true, false, true]
is a writable, non-enumerable, and con�gurable data descriptor with value �foo�.
Depending on their associated descriptor, JavaScript named properties can be data properties

or accessor properties. Again, we focus only on data properties. JaVerT has two built-in predicates
for describing data properties. The DataProp(o, p, v) predicate states that the property p of object o
holds a data descriptor with value v and all other attributes set to true. The more general predicate,
DataPropGen(o, p, v, w, e, c), allows the user to specify the values of the remaining attributes. We also
de�ne a predicate DescVal(desc, v), stating that the data descriptor desc has value attribute v.

Function Objects. In JavaScript, functions are also stored as objects in the heap. In addition to
the @proto, @class, and @extensible internal properties common to all objects, function objects
also have the @code property, storing the function identi�er of the original function, and the @scope
property, storing the scope chain associated with the function object (discussed in detail in §3.5).
JaVerT o�ers the FunctionObject(o, fid, sc) predicate, which describes the function object o,

whose internal properties @code and @scope have values given by the function identi�er, fid, and
the location of the scope chain, sc, respectively.

String Objects. String objects are native wrappers for primitive strings. Every string object has
an internal property @pv holding its corresponding primitive string value. String objects di�er from
standard JavaScript objects in that they expose indexing properties (the i-th character of a string)
that do not exist in the heap. For instance, the statement var s = new String(�foo�); s[0] evaluates to
the string �f�, even though the object bound to s does not have the named property �0�. To reason
about properties of string objects, we de�ne the SCell(o, p, d) predicate, which states that property
p of string object o is associated with either a property descriptor or the value None.
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10 J. Fragoso Santos, P. Maksimović, D. Naudžiūnienė, T. Wood, P. Gardner

In the de�nition of SCell, we use the predicate IsStringIndex(s, i), which holds if and only if i
is a non-negative integer smaller than the length of the string s. Also, we use the operators s�nth
and str2num to retrieve the nth element of a string and convert a string to a number, respectively.
SCell (o, p, d) :=

types(o : Obj, p : Str) * (o, �@pv�) -> pv * ! IsStringIndex(pv, str2num(p)) * (o, p) -> d,
types(o : Obj, p : Str) * (o, �@pv�) -> pv * IsStringIndex(pv, str2num(p)) * (o, p) -> None *
c = s-nth(pv, str2num(p)) * d = [ �d�, c, false, false, false ]

The SCell(o, p, d) predicate has two cases (disjuncts), which are separated with a comma. In both
cases, o has to denote an object, and p has to denote a string. In the �rst case, p is not a string
index of the primitive string, in which case the associated value is looked up in the heap. In the
second case, p is a string index of the primitive string, in which case the associated data descriptor
is [�d�, c, false, false, false], as string indexes are not enumerable, writable, or con�gurable.
Please note that, in the speci�cations, we denote negation by the ! symbol. Also, we do not

distinguish between program variables (parameters of predicates and functions, for example, o, p,
and d) and logical variables (for example, pv and c), which are implicitly existentially quanti�ed.
JS Initial Heap. Prior to execution of a JavaScript program, an initial heap is established, containing
the global object and the objects associated with built-in libraries (for example, Object, Function and
String), as well as their prototypes. We provide predicates that describe the built-in library objects,
as well as the entire initial heap. These predicates come in two �avours: frozen, where changes to the
target object(s) are not allowed; and open, where changes are allowed. For instance, InitialHeap()
and ObjProtoF() describe the open initial heap and the frozen Object.prototype, respectively.

3.3 Specifying Prototype Inheritance
JavaScript models inheritance through prototype chains. In order to retrieve the value of an object
property, �rst the object itself is inspected. If the property is not present, then the prototype chain
is traversed (following the @proto internal properties), checking for the property at each object. In
general, prototype chains can be of arbitrary length (typically �nishing at Object.prototype) but
cannot be circular. Prototype chain traversal is additionally complicated in the presence of String
objects, which have indexing properties that do not exist in the heap.
While in some cases it is reasonable to expect the precise structure of a prototype chain to be

known a priori, there are cases in which this is not possible. For instance, consider the following
function for obtaining the value associated with property p in the prototype chain of object o, which
only returns the value of p if it is public, for some black-boxed notion of being public captured by
the JavaScript function isPublic(p).
function getPublicProp (o, p) { if (isPublic(p)) { return o[p] } else { return null } }

We should, ideally, be able to specify this function without knowing anything about the concrete
shape of the prototype chain of o, other than the value to which it maps the property p.

Assume that we have a predicate Pi(o, p, d, ...), describing the resource of the prototype chain of
o in which property p is mapped onto a data descriptor d, and may require additional parameters.
Also assume that Public(p) is a predicate that holds if and only if isPublic(p) returns true. Then,
we can specify getPublicProp (o, p) as follows:(

Pi(o, p, d, ...) * DescVal(d, v) * Public(p) * ...
)

getPublicProp(o, p)(
Pi(o, p, d, ...) * Public(p) * ret = v * ...

)
This speci�cation states that, when getPublicProp gets as input a public property p in object o, it
returns the value associated with that property in the prototype chain of o. It is general, as it makes
no assumptions on the structure of the prototype chain. For clarity, we have omitted the assertions
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JaVerT: JavaScript Verification Toolchain 11

capturing the resource corresponding to the function isPublic. We have also not repeated the
DescVal predicate in the postcondition, since it is pure.
For our Pi predicate, we take inspiration from the prototype-chain predicate of Gardner et al.

[2012]. Their predicate describes prototype chains of standard objects with simple values, whereas
ours describes prototype chains for property descriptors and accounts for the subtle combination
of standard objects and string objects, capturing the full prototype inheritance of JavaScript.

We de�ne the Pi predicate, Pi (o, p, d, lo, lc), stating that property p has value d in the prototype
chain of o. The value d can either be a property descriptor or the value undefined. The two additional
parameters, lo and lc, denote lists that respectively capture the locations and classes of the objects
in the prototype chain up to and including the object in which p is found, or of all objects if
the property is not found. These two parameters arise because of the complexity of the internal
functions and are justi�ed in §5.3. The JavaScript programmer does not need to consider these
parameters and can always pass logical variables in their place. Below is the full de�nition of the
Pi predicate, with four base cases and two recursive cases.
Pi (o, p, d, lo, lc) :=
T * lo = [o] * lc = [c] * (o, �@class�) -> c * !(c = �String�) * (o, p) -> d * !(d = None),
T * lo = [o] * lc = [c] * (o, �@class�) -> c * (c = �String�) * SCell(o, p, d) * !(d = None),
T * lo = [o] * lc = [c] * (o, �@class�) -> c * !(c = �String�) *

(o, @proto) -> null * (o, p) -> None * d = undefined,
T * lo = [o] * lc = [c] * (o, �@class�) -> c * (c = �String�) *

(o, @proto) -> null * SCell(o, p, None) * d = undefined,
T * lo = o :: lop * lc = c :: lcp * (o, �@class�) -> c * !(c = �String�) * (o, p) -> None *

lop = op :: lop� * (o, �@proto�) -> op * Pi(op, p, d, lop, lcp),
T * lo = o :: lop * lc = c :: lcp * (o, �@class�) -> c * (c = �String�) * SCell(o, p, None) *

lop = op :: lop� * (o, �@proto�) -> op * Pi(op, p, d, lop, lcp)

where T denotes the assertion types(o : Obj, p : Str).

3.4 Specifying OO-style Libraries: Prototype Safety
JavaScript programmers rely on prototype-based inheritance to emulate the standard class-based
inheritance mechanism of static OO languages when implementing JavaScript libraries. However,
as JavaScript objects are extensible, it is possible to break the functionality of such libraries by
adding properties either to the constructed objects or to their prototype chains. This makes the
speci�cations of these libraries challenging as they not only need to capture the resources that must
be present in the heap, but also the resources that must not be present in the heap if the library code
is to run as intended. We highlight a general methodology for specifying such libraries, introducing
the notion of prototype safety to specify when libraries behave as intended.
Example: Key-Value Map. We illustrate how JaVerT is used to specify JavaScript OO-style
libraries, using the JavaScript implementation of a key-value map given in Figure 2 (left). It contains
four functions: Map, for constructing an empty map; get, for retrieving the value associated with
the key given as input; put, for inserting a new key-value pair into the map and updating existing
keys; and validKey, for deciding if a key is valid or not. This library implements a key-value map
as an object with property _contents, denoting the object used to store the map contents. The
named properties of _contents and their value attributes correspond to the map keys and values,
respectively. As the functions get, put, and validKey are to be shared between all map objects, they
are de�ned as properties of Map.prototype, which is the prototype of the objects that are created
using Map as a constructor (for example, using new Map() in the client examples of Figure 2 (right)).
Language: Breaking the Library. In order to guarantee that this library works as intended, we
must make sure that: (1) every time one calls get, put or validKey on a map object, one reaches the
appropriate functions de�ned within its prototype; (2) one can always successfully construct an
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1 function Map () { this._contents = {} }
2
3 Map.prototype.get = function (k) {
4 if (this._contents.hasOwnProperty(k)) {
5 return this._contents[k]
6 } else { return null }
7 }
8
9 Map.prototype.put = function (k, v) {
10 var contents = this._contents;
11 if (this.validKey(k)) {
12 contents[k] = v;
13 } else { throw new Error(�Invalid�Key�) }
14 }
15
16 Map.prototype.validKey = function (k) { ... }

������ 1:
1 var m = new Map();
2 m.get = �foo�

������ 2:
1 var mp = Map.prototype;
2 var desc = { value: 0, writable: false };
3 Object.defineProperty(mp, �_contents�, desc)

������ 3:
1 var m = new Map ();
2 m.put(�hasOwnProperty�, �bar�)

Fig. 2. JavaScript OO-style Map implementation (le�); three library-breaking clients (right).

object map using the Map constructor; and (3) one can always retrieve the value of a key previously
inserted into a map as well as insert a new valid key-value pair into a map. In Figure 2 (right), we
show how a user can misuse the library, e�ectively breaking (1)-(3). To break (1), one simply has to
override get or put on the constructed map object (C����� 1). To break (2), it su�ces to assign an
arbitrary non-writable value to _contents in Map.prototype (C����� 2). To break (3), one can insert
a key-value pair with �hasOwnProperty� as a key into the map. By doing this, �hasOwnProperty� in
the prototype chain of _contents is overridden and subsequent calls to get will fail (C����� 3).
JaVerT: Capturing Prototype Safety. In general, the speci�cation of a given library must ensure
that all prototype chains are consistent with correct library behaviour by stating which resources
must not be present for its code to run correctly. In particular, constructed objects cannot rede�ne
properties that are to be found in their prototypes; and prototypes cannot de�ne as non-writable
those properties that are to be present in their instances. We refer to these two criteria as prototype
safety, and illustrate how it can be achieved through the speci�cation of the key-value map.

We de�ne amap object predicate below, Map, using the auxiliary predicate KVPairs, which captures
the resource of the key-value pairs in the map, and the validKey(k) predicate, which holds if and only
if the JavaScript function ValidKey(k) returns true9. Intuitively, the Map(m, mp, kvs, keys) predicate
captures the resource of a map object m with prototype mp, key-value pairs kvs (a set of pairs whose
�rst component is a string10), and keys keys (a set of strings). We write �u� for set union and omit
the brackets around singleton sets when the meaning is clear from the context.
Map (m, mp, kvs, keys) := JSObject(m, mp) *
DataProp(m, �_contents�, c) * JSObject(c, Object.prototype) *
(m, �get�) -> None * (m, �put�) -> None * (m, �validKey�) -> None *
(c, �hasOwnProperty�) -> None * KVPairs(c, kvs, keys) * emptyFields(c, keys -u- �hasOwnProperty�)

KVPairs (o, kvs, keys) :=
(kvs = { }) * (keys = { }),
(kvs = (key, value) -u- kvs�) * (keys = key -u- keys�) *
ValidKey(key) * DataProp(o, key, value) * KVPairs(o, kvs�, keys�)

The de�nition of Map achieves the �rst requirement for prototype safety by stating that a map
object m cannot have the properties �get�, �put�, and �validKey�, and that the object bound to
_contents cannot have the property �hasOwnProperty�. The emptyFields predicate, together with
the prototype safety requirement (c, �hasOwnProperty�) �> None, ensures that there are no other
properties in the contents of the map except for the keys.
9We treat the ValidKey predicate as a black box, other than requiring that hasOwnProperty is not a valid key.
10We model pairs as two-element lists and, for clarity, use the pair notation.
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Fig. 3. Graphical representation of Map (m, mp, kvs, keys) ∗ MapProto (mp)

Observe that the de�nition of Map does not include the resource of a map prototype. Since
Map.prototype is shared between all map objects, we cannot include the resource of a map prototype
in the de�nition of Map. Were we to do that, we could no longer write a satis�able assertion describing
two distinct map objects using the standard separating conjunction. Below, we show the de�nition
of MapProto, stating that a valid map prototype has the properties �get�, �put�, and �validKey�,
respectively assigned to the appropriate functions (see §3.2). The de�nition of MapProto achieves the
second requirement for prototype safety by stating that a map prototype cannot have the property
�_contents�. We could have weakened this de�nition, stating that a map prototype can have the
property �_contents�, as long as it is writable. In Figure 3, we give a graphical representation of
the assertion Map (m, mp, kvs, keys) ∗ MapProto (mp).
MapProto (mp) := JSObject(mp, Object.prototype) * (mp, �_contents�) -> None) *

DataProp(mp, �get�, gf) * FunctionObject(gf, �get�, g_sc) *
DataProp(mp, �put�, pf) * FunctionObject(pf, �put�, p_sc) *
DataProp(mp, �validKey�, vkf) * FunctionObject(vkf, �validKey�, vk_sc)

We are now in the position to specify the functions of the map library. In particular, below we
show how to use the map object predicate and the map prototype predicate to specify put(k, v).
(

Map(this, mp, kvs -u- (k, v’), ks) *
MapProto(mp) * ObjProtoF()

)

put(k, v)(
Map(this, mp, kvs -u- (k, v), ks) *

MapProto(mp) * ObjProtoF()

)

(
Map(this, mp, kvs, ks) * MapProto(mp) *
!(k -in- ks) * ValidKey(k) * ObjProtoF()

)

put(k, v)(
Map(this, mp, kvs -u- (k, v), ks -u- k) *

MapProto(mp) * ObjProtoF()

)

(
Map(this, mp, kvs, ks) * MapProto(mp) * !ValidKey(k) * ObjProtoF()

)
put(k, v)(

Map(this, mp, kvs, ks) * MapProto(mp) * ErrorObject(err) * ObjProtoF()
)

The �rst speci�cation captures the case in which the key of key-value pair to be inserted already
exists in the map, while the second one captures the case in which it does not. The third speci�cation
captures the error case, when the given key is not valid. Since put calls the function validKey, all
of its speci�cations must include the MapProto(mp) predicate, that captures the location of validKey.
Recall that the prototype safety requirements of the library extend to Object.prototype as well.

This resource is captured by the built-in ObjProtoF() predicate, describing the frozen Object.prototype
object (see §3.2). Here, the user can instead choose to use the open version of the predicate,
ObjProto(), allowing for a more �exible initial heap. In that case, they would have to manually
specify the prototype safety requirements, as we have done for maps and the map prototype.

3.5 Specifying Scoping and Function Closures

Example: Identi�er Generator. We illustrate variable scoping and function closures using a
JavaScript identi�er (ID) generator, shown in Figure 4. The function makeIdGen takes a string prefix,
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and returns a new ID generator, which is an object with two properties: getId, storing a function
for creating fresh IDs; and reset, storing a function for resetting the ID generator. getId ensures
that the returned ID is fresh by using a counter, stored in variable count, which is appended to the
generated ID string of the form prefix + �_id_� and is incremented afterwards.

1 var makeIdGen = function (prefix) {
2 var count = 0;
3
4 var getId = function () {
5 return prefix + �_id_� + (count++)
6 };
7
8 var reset = function () { count = 0 };
9
10 return { getId: getId, reset: reset }
11 }
12 var ig1 = makeIdGen(�foo�);
13 var ig2 = makeIdGen(�bar�);
14 var id1 = ig1.getId();

Fig. 4. Identifier Generator (le�); partial post-execution heap (right)

The variable count is not intended to be directly accessible by programs using makeIdGen, but
rather only through the getId and reset functions. In Java, count can be declared private. In
JavaScript, however, there is no native mechanism for encapsulation and the standard approach of
establishing some form of encapsulation is to use function closures. In our example, once an ID
generator is created, the variables count and prefix remain accessible only from within the code of
getId and reset, making it impossible for client code (such as lines 12-14 of the example) to access
or modify them directly. In the general case, however, full encapsulation cannot be guaranteed.
Language: Scope resolution in ES5 Strict. In JavaScript, scope is modelled in the heap using
environment records (ERs). An ER is an internal object, created upon the invocation of a function,
mapping variables declared in the body of that function and its parameters to their respective
values. For example, each time makeIdGen is called, two new function objects representing getId
and reset are created in the heap, as well as a new ER for that particular execution of makeIdGen.
In particular, after executing makeIdGen(�foo�), we get the objects getId1 and reset1, as well as the
ERmIG1 environment record (Figure 4 (right)); the execution of makeIdGen(�bar�) is similar.

Variables are resolved with respect to a list of ER locations, called a scope chain. When executing
a function �d, its scope chain consists of the list found in the @scope �eld of the function object
corresponding to �d, extended with the ER of �d created for that execution. For instance, during
the execution of ig1.getId(), the scope chain will be [l� , ERmIG1, ERgetId1]. We can also observe that,
for example, function objects getId1 and reset1 share the [l� , ERmIG1] part of their scope chains.
When trying to determine the value of a variable x during the execution of a function �d, the

semantics inspects the scope chain of �d and, if no binding for x is found, the prototype chain
of the global object. However, as ES5 Strict is lexically scoped, we can statically determine if x is
de�ned in the scope chain of �d and, if so, in which ER it is de�ned. Therefore, we do not model
the scope inspection procedure as a list traversal, but use instead a scope clari�cation function,
� : Str ⇥ Str * N, for determining which ER in the scope chain of a given function de�nes
a given variable. For instance, � (�getId�, �makeIdGen�) = 0 and � (�getId�, �count�) = 1, as the
variables makeIdGen and count are de�ned, respectively, in the �rst and the second ER in the scope
chain of getId. We also use the overlapping scope function, � o : Str ⇥ Str * N, which takes
two function identi�ers and returns the length of the overlap of their scope chains. For instance,
� o (�getId�, �reset�) = 2, as getId and reset share the global object and the ER of makeIdGen.
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JaVerT: Specifying Scoping. To capture variable scoping, we introduce the Scope predicate.
The Scope(x : v, sch, fid) predicate states that the variable x has value v in the scope chain de-
noted by sch of the function literal with identi�er fid. In the general case, this predicate cor-
responds to the JS Logic assertion (nth (sch,n), x) 7! v , where nth is the binary list indexing
operator and n = � (fid, x). For instance, the predicate Scope(count : c, gi_sc, getId) unfolds to
(nth (gi_sc, 1), �count�) 7! c as � (getId, count) = 1. We can also use Scope(x : v) as syntactic
sugar for Scope(x : v, sc, fid), where sc is the special logical expression denoting the current scope
chain and fid is the identi�er of the current function.

Scope(x : v, sch, fid) := (nth(sch, n), x) 7! v, when n = � (fid,x) , 0;
Scope(x : v, _, fid) := (lg, x) 7! [”d”, v, _, _, _], when� (fid,x) = 0.

(
Scope(prefix: p) * Scope(count: c) *

types(p: Str, c: Num)

)

getId()(
Scope(prefix: p) * Scope(count: c+1) *
(ret = p ++ �_id_� ++ numToString(c))

)

Fig. 5. Specification of getId

To illustrate Scope, we specify getId in Figure 5.
getId uses the prefix and count variables, de�ned in
the ER of makeIdGen. We capture this in the precondi-
tion with Scope(prefix: p) ∗ Scope(count: c). We also
state that the value of prefix (p) is a string and the
value of count (c) is a number. After execution, the
value of prefix remains the same, while the value of count is incremented, which we capture with
Scope(prefix: p) ∗ Scope(count: c+1). The return value is described using string concatenation (++)
and number-to-string conversion (numToString). This speci�cation again highlights the importance
of our abstractions: to specify getId, the user does not need to know anything about the internal
representation of scope chains. We revisit this speci�cation shortly in the context of encapsulation.
JaVerT: Specifying Function Closures. The major challenge associated with specifying function
closures in JavaScript comes from the fact that, in contrast to static languages such as Java and ML,
the JavaScript variable store is emulated in the heap and constitutes spatial resource. Since scope
chains often overlap, one can easily specify duplicated resources and end up with unsatis�able
assertions. We illustrate this challenge by specifying the makeIdGen function (Figure 6).

In the precondition, the only information we require is that prefix is a string. In the postcondition,
we would like to have an IdGenerator(ig, p, c) predicate, which captures that the object ig is an ID
generator with pre�x p and count c. Let us �rst look at only the �rst three lines, which are standard.
IdGenerator(ig, p, c) := types(p: Str, c: Num) * JSObject(o, Object.prototype) *
DataProp(ig, �getId�, gif) * FunctionObject(gif, �getId�, gi_sc) *
DataProp(ig, �reset�, rf) * FunctionObject(rf, �reset�, r_sc) *
Scope(count: c, gi_sc, getId) * Scope(prefix: p, gi_sc, getId) * OChains(getId: gi_sc, reset: r_sc)

(
types(prefix: Str)

)
makeIdGen(prefix)(

IdGenerator(ret, prefix, 0)
)

Fig. 6. Specification of makeIdGen

We have that the object ig is a standard JS object. It has
two properties, getId and reset, associated with two function
objects, respectively corresponding to functions with identi-
�ers getId and reset, and whose scope chains are respectively
denoted by gi_sc and r_sc. Now, what remains to be speci�ed
is that both getId and reset have access to the same variables
prefix and count in the environment record of makeIdGen. We could naively try to capture this
with the assertion Scope(count: c, gi_sc, getId) ∗ Scope(count: c, r_sc, reset), but this is duplicated
resource. We need a predicate that captures the scope chain overlap between two functions.

The OChains(f: f_sc, g: g_sc) predicate states that the scope chains f_sc (associated with function
f) and g_sc (associated with function g) were created during the same execution of their innermost
enclosing function, that is, that their scope chains maximally overlap. In the general case, this
predicate corresponds to the (pure) JS Logic assertion⇣0i<nnth (f_sc, i ) = nth (g_sc, i ), wheren =
� o (f, g). In particular, OChains(getId: gi_sc, reset: r_sc) unfolds to nth (gi_sc, 0) = nth (r_sc, 0) ⇤
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nth (gi_sc, 1) = nth (r_sc, 1), as� o (getId, reset) = 2. That is, the gi_sc and r_sc coincide on their
�rst two ERs, namely the global object and the ER of mainIdGen.

OChains(f : f_sc, g : g_sc) := ⇣0i<n (nth(f_sc, i) = nth(g_sc, i)), where n = �o ( f ,�)

The OChains predicate is used together with Scope to capture function closures. First, we specify
variables required by multiple closures in a single scope chain using Scope and then state the
overlap between these scope chains using OChains, as shown in the fourth line of IdGenerator.
When function closures get more involved, it can be tedious to write all necessary OChains

predicates. We o�er a more compact predicate, Closure, expressible in terms of Scope and OChains.
The Closure(x1 : v1, ... xn : vn; f1 : f1_sc, ..., fm : fm_sc) predicate states that the variables x1, . . ., xn
with values v1, . . ., vn are all shared between functions f1, . . ., fm, whose scope chains are given by
f1_sc, . . ., fm_sc, and that these scope chains all maximally overlap pairwise. Using Closure, we
can rewrite the last line of IdGenerator as Closure(count: c, prefix: p; getId: gi_sc, reset: r_sc).
We also give the speci�cation of the client program in lines 12-14 of Figure 4 (left). In the

precondition, we have the function object corresponding to makeIdGen and that the variables ig1,
ig2, and id1 all hold the value undefined. The postcondition di�ers in that the variables ig1 and
ig2 hold ID generators with respective pre�xes foo and bar and respective count values 1 and 0,
and that the variable id1 holds the generated identi�er �foo_id_0�.

(
Scope(makeIdGen : mIG) * FunctionObject(mIG, �makeIdGen�, mIG_sc) *

Scope(ig1 : undefined) * Scope(ig2 : undefined) * Scope (id1 : undefined)

)

var ig1 = makeIdGen(�foo�), ig2 = makeIdGen(�bar�), id1 = ig1.getId();

8>><>>:
Scope(makeIdGen : mIG) * FunctionObject(mIG, �makeIdGen�, mIG_sc) *

Scope(ig1: IDG1) * Scope(ig2: IDG2) * Scope(id1: id) *
IdGenerator(IDG1, �foo�, 1) * IdGenerator(IDG2, �bar�, 0) * id = �foo_id_0�

9>>=>>;
JaVerT: Encapsulation. The speci�cation of get shown in Figure 5, albeit correct, does not
re�ect the key property of the counter implementation, which is encapsulation. That is, since the
variable count is not accessible by the clients using the get function, it should not be exposed in the
speci�cation of get either. We revisit this speci�cation to demonstrate how to capture encapsulation.
First, we extend the IdGenerator predicate to maintain information about the scope chain in

which the ID generator was created:
IdGenerator(ig, p, c, ig_sc) := types(p: Str, c: Num) * JSObject(ig, Object.prototype) *
DataProp(ig, �getId�, gif) * FunctionObject(gif, getId, gi_sc) *
DataProp(ig, �reset�, rf) * FunctionObject(rf, reset, r_sc) *
Closure(count: c, prefix: p; getId: gi_sc, reset: r_sc, makeIdGen: ig_sc).

With this de�nition in place, the postcondition of makeIdGen (Figure 7, left) can be restated as
IdGenerator(ig, prefix, 0, sc), where, as mentioned earlier, sc denotes the scope chain in which this
IdGenerator is to be executed. We can now state the speci�cation of get in terms of the IdGenerator
predicate (Figure 7, right). Note that, in the precondition, we now need to make sure that the
instance of the get function that we are executing is, in fact, the one captured by the IdGenerator.

(
types(prefix: Str)

)
makeIdGen(prefix)(

IdGenerator(ig, prefix, 0, sc)
)

(
(this = ig) * OChains(getId: sc, makeIdGen: ig_sc) *

IdGenerator(ig, prefix, c, ig_sc))

)

getId()(
IdGenerator(ig, prefix, c + 1, ig_sc) *

(ret = prefix ++ �_id_� ++ numToString(c))

)

Fig. 7. Revisited specifications of makeIdGen (le�) and getId (right).

This speci�cation of get no longer exposes the internal state of the ID generator and hints at
encapsulation. In general, using function closures in JavaScript does not guarantee encapsulation,
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and client programs can still access and modify parts of the internal state that are intended to
be private, as shown by the priority queue example of Fragoso Santos et al. [2017]. One way of
achieving full encapsulation would be to disallow the unfolding of predicates by client programs
(in this case, the IdGenerator predicate), in the style of Parkinson and Bierman [2005, 2008].

4 JS-2-JSIL: LOGIC-PRESERVING COMPILER
We describe how we use our veri�cation pipeline to move the reasoning from JavaScript to JSIL,
solving the veri�cation challenge (V1) of coping with the complexity of JavaScript commands. We
introduce JSIL, our intermediate language for JavaScript veri�cation in §4.1. Using an example
assignment, we demonstrate how JS-2-JSIL compiles JavaScript to JSIL in §4.2. In §4.3, we introduce
JSIL Logic assertions, show how annotations are translated from JS Logic to JSIL Logic by the
JS-2-JSIL Logic Translator, and prove correct the translation of assertions and speci�cations.

4.1 The JSIL Language
JSIL is a simple goto language with top-level procedures and commands operating on object heaps.
It natively supports the dynamic features of JavaScript, namely extensible objects, dynamic property
access, and dynamic procedure calls.
Syntax of the JSIL Language

Numbers: n 2 Num Booleans: b 2 Bool Strings:m 2 Str Locations: l 2 L Variables: x 2 XJSIL
Types: � 2 Types Literals: � 2 Lit ::= n | b | m | undefined | null | l | � | �d | empty | �lst | �set
Expressions: e 2 EJSIL ::= � | x |  e | e � e

Basic Commands: bc 2 BCmd ::= skip | x := e | x := new () | x := [e, e] | [e, e] := e |
delete (e, e) | x := hasField (e, e) | x := getFields (e)

Commands: c 2 Cmd ::= bc | goto i | goto [e] i, j | x := e(e)with j | x := � (x)

Procedures : proc 2 Proc ::= proc �d (x){c}
Notation : x, �lst, e, and c, respectively, denote lists of variables, literals, expressions, and commands.

�set denotes a set of literals.

JSIL literals, � 2 Lit , include JavaScript literals, as well as procedure identi�ers �d, types � , the
special value empty, and lists and sets of literals. JSIL expressions, e 2 EJSIL, include JSIL literals,
JSIL program variables x, and a variety of unary and binary operators.

The JSIL basic commands provide the machinery for the management of extensible objects and
do not a�ect control �ow. They include skip , variable assignment, object creation, property access,
property assignment, property deletion, membership check, and property collection.

The JSIL commands include JSIL basic commands and commands related to control �ow: condi-
tional and unconditional gotos; dynamic procedure calls; and �-node commands. The two goto
commands are standard: goto i jumps to the i-th command of the active procedure, and goto [e] i, j
jumps to the i-th command if e evaluates to true, and to the j-th otherwise. The dynamic procedure
call x := e(e)with j �rst obtains the procedure name and arguments by evaluating e and e, respec-
tively, then executes the appropriate procedure with these arguments, and �nally assigns its return
value to x. Control is transferred to the next command if the procedure does not raise an error, or
to the j-th command otherwise. Finally, the �-node command x := � (x1, . . . , xn ) is interpreted as
follows: there exist n paths via which this command can be reached during the execution of the
program; the value assigned to x is xi if and only if the i-th path was taken. We include �-nodes in
JSIL to directly support Static-Single-Assignment (SSA), well-known to simplify analysis [Cytron
et al. 1989]. The JS-2-JSIL compiler generates JSIL code directly in SSA.
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A JSIL program p 2 P is a set of top-level procedures proc �d (x){c}, where �d is the name of
the procedure, x its sequence of formal parameters, and its body c is a command list consisting of a
numbered sequence of JSIL commands. We use p�d and p�d (i ) to refer, respectively, to procedure
�d of program p and to the i-th command of that procedure. Every JSIL program contains a special
proceduremain , corresponding to the entry point of the program. JSIL procedures do not explicitly
return. Instead, each procedure has two special command indexes, inm and ier, that, when jumped to,
respectively cause it to return normally or return an error. Also, each procedure has two dedicated
variables, ret and err. When a procedure jumps to inm, it returns normally with the return value
ret; when it jumps to ier, it returns an error, with the error value err.

JSIL Operational Semantics. We introduce the JSIL semantic judgement for program behaviour;
the full JSIL semantics is omitted due to lack of space. A JSIL variable store, � 2 Sto, is a mapping
from JSIL variables to JSIL values, and a JSIL heap, h 2 HJSIL, is a mapping from pairs of locations
and property names (strings) to JSIL values, v 2 VJSIL, which coincide with the JSIL literals. The
JSIL semantic judgement has the form p ` hh, �, j, ii +�d hh0, � 0,oi, meaning that the evaluation
of procedure �d of program p, starting from its i-th command, to which we arrived from its j-th
command, in the heap h and store �, generates the heap h0, the store � 0, and returns the outcome o.
JSIL outcomes are of the form �hvi, where � 2 {nm, er} denotes the return mode of the function.

4.2 JS-2-JSIL: Compilation by Example
The JS-2-JSIL compiler targets the strict mode of the ES5 English standard (ES5 Strict). ES5 Strict is a
variant of ES5 that intentionally has slightly di�erent semantics, exhibiting better behavioural prop-
erties, such as being lexically scoped. It is developed by the ECMAScript committee, is recommended
for use by the committee and professional developers [Flanagan 1998], and is widely used by major
industrial players: for example, Google’s V8 engine [Google 2017] and Facebook’s React library
[Facebook 2017]. We believe that ES5 Strict is the correct starting point for JavaScript veri�cation.
We illustrate how JS-2-JSIL compiles JavaScript code to JSIL code using an assignment from

our key-value map example (§3.4): the assignment contents[k] = v from the function put. This
seemingly innocuous statement has non-trivial behaviour and triggers a number of JavaScript
internal functions, as shown below. First, however, we need to introduce JavaScript references.

References. References are JS internals that appear, for example, as a result of evaluating a left-
hand side of an assignment, and represent resolved property bindings. They consist of a base
(normally an object location) and a property name (a string), telling us where in the heap we can
�nd the property we are looking for. The base can hold the location either of a standard object (object
reference) or of an ER (variable reference). To obtain the associated value, the reference needs to be
dereferenced, which is performed by the GetValue internal function. In JSIL, we encode references
as three-element lists, containing the reference type (�o� or �v�), the base, and the property name.

Compiling the Assignment. We are now ready to go line-by-line through the compilation of the
assignment contents[k] = v, which is given in Figure 8.

(1) We �rst evaluate the the property accessor contents[k] and obtain the corresponding reference.
Evaluation of property accessors is described in §11.2.1 of the ES5 standard, and is line-by-line
re�ected in lines 1-9 of the JSIL code. The resulting reference, [�o�, x_2_v, x_4_s ], points to the
property denoted by k of the object denoted by contents.

(2) Next, we evaluate the variable v. Here, we need to understandwithinwhich ER v is de�ned; as it is
a parameter of the put function, it will be in the ER corresponding to put, i.e. the second element
of the scope chain (line 10). The appropriate reference, [�v�, x_7, �v�], is then constructed in
line 11. This code is automatically generated using the scope clari�cation function.
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Fig. 8. Compiling contents[k] = v to JSIL by closely following the ES5 Standard.

(3) Next, the obtained right-hand-side reference is dereferenced using the GetValue internal function
(ES5 standard, §8.7.1). Any call to an internal function gets translated to JSIL as a procedure call
to our corresponding reference implementation, in this case i__getValue (line 12).

(4) In ES5 Strict, the identi�ers eval and arguments may not appear as the left-hand side of an
assignment (for example, eval = 42), and this step enforces this restriction. We do not inline
the conditions every time, but instead call a JSIL procedure i__checkAssignmentErrors (line 13),
which takes as a parameter a reference and throws a syntax error if the conditions are met.

(5) The actual assignment is performed by calling the PutValue internal function (ES5 standard,
§8.7.2), translated to JSIL as a procedure call to our reference implementation (line 14).

(6) In JavaScript, every statement returns a value. JS-2-JSIL, when given a statement, returns the list
of corresponding JSIL commands and the variable that stores the return value of that statement.
In this example, JS-2-JSIL returns the presented code and the variable x_8_v.
This example illustrates the following important points about JS-2-JSIL:

• Our compilation from JavaScript to JSIL closely follows the ES5 standard. Out of the 14 lines of
compiled JSIL code, 8 have a direct counterpart in the standard. The remaining six deal with
scoping, where a di�erence is expected due to our use of the closure clari�cation function.
• JS-2-JSIL moves a substantial part of the complexity of JavaScript from the reasoning to the compiled
code. As discussed in §2, program-logic-based veri�cation is not feasible for JavaScript due to the
complexity of its constructs. JS-2-JSIL moves this complexity to the compiled JSIL code. There are
more lines of JSIL to be analysed when compared to the original JS code (for example, the key-
value map example compiles to 354 lines of JSIL code), but JSIL logic is very simple, making this
analysis tractable. However, the fundamental dynamic features of JavaScript cannot be compiled
away; they remain in JSIL and JSIL Logic and are resolved by JSIL Verify, as described in §5.
• JS-2-JSIL maintains the level of abstraction of the ES5 standard. By this, we refer to the fact that the
compilation never inlines function bodies. A function call in the ES5 standard is always compiled
to a procedure call in JSIL. For example, a call to an internal function in the standard (lines 3
and 5 of Figure 8, left) is translated to a call to a JSIL reference implementation of that internal
function (lines 12 and 14 of Figure 8, right)). One tangible bene�t of this approach is that it makes
the resulting compiled JSIL code much more readable and visually closer to the ES5 standard.

Compiling Function Literals. Each ES5 Strict function literal function fid(x1, ..., xn) { ... } is com-
piled to a JSIL procedure procedure fid(xsc, xthis, x1, ..., xn) { ... }, whose name is the identi�er of
the original function and whose �rst two arguments are bound, respectively, to the scope chain
and the this object active during the evaluation of the function body. The remaining arguments
correspond to the original arguments of the function.
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4.3 JS-2-JSIL Logic Translator
JaVerT veri�es programs annotated with pre- and postconditions, loop invariants, and instructions
for folding and unfolding of user-de�ned predicates. The JSIL Logic Translator translates these
annotations to equivalent annotations in JSIL Logic, and then integrates them into the compiled
JSIL code. It also automatically inserts additional fold/unfold annotations for the Pi predicate, as
they are required by some of the internal functions (see §5.3 for more details).
JSIL Logic Assertions

V 2 VL
JSIL ::= v | � E 2 ELJSIL ::= V | x | x |  E | E � E

� 2 Types ::= Num | Bool | Str | Undef | Null | Obj | List | Set | Type
P ,Q 2 ASJSIL ::= true | false | E = E | E  E | P ^Q | ¬ P | P ⇤Q | 9x.P |

emp | (E,E) 7! E | emptyFields(E | E) | types(Xi : �i |ni=1)

JSIL Logic Assertions. There is a strong correspondence between JavaScript and JSIL at the level
of the logics. JSIL logical values, V 2 VL

JSIL, consist of JSIL values extended with �, subsuming JS
logical values. JSIL logical expressions, E 2 ELJSIL, coincide with JS logical expressions, except that
they do not contain sc and this. JSIL types coincide with JavaScript types. Finally, as ES5 Strict
heaps are by design a proper subset of JSIL heaps, we have that JSIL Logic assertions, P ,Q 2 ASJSIL,
coincide with JS Logic assertions.
JS-2-JSIL: Logic Translation. Translating JS Logic assertions to JSIL Logic assertions amounts to
replacing the occurrences of the sc and this special logical values of JS Logic with the variables
xsc and xthis of JSIL logic, which hold their associated values at the JSIL level. The translation of
a JS Logic assertion P to JSIL Logic is denoted by T (P ).
Translation Correctness: Assertions. We de�ne satis�ability for JSIL Logic assertions with
respect to abstract heaps, which di�ers from concrete heaps in that they may map object properties
to the special value �. The satis�ability relation for JSIL Logic assertions has the form: H , �, � |= P ,
where: (1) H is an abstract heap; (2) � is a JSIL variable store; (3) and � is a JSIL logical environment,
mapping JSIL logical variables to JSIL values. The satis�ability relation for JSIL Logic assertions
builds on the semantics of JSIL logical expressions. A JSIL logical expression E is interpreted with
respect to � and � , written JEK�� . Both the satis�ability relation and the expression interpretation
are mostly standard; we show the non-standard cases below. We also use a function TypeOf, which
given a JSIL value, outputs its type.
Interpretation of JSIL Logic Expressions and Satis�ability Relation for Assertions (fragment)

Semantics of Logical Expressions: JV K�� , V JxK�� , � (x ) JxK�� , � (x)

Satis�ability Relation:
H , �, � |= emptyFields(E1 | E2) , H =

U
m<{JE2K�� } ((JE1K

�
� ,m) 7! �)

H , �, � |= types(Xi : �i |ni=1) , H = emp and for all i 2 {1, ...,n}, TypeOf (JEK�� ) = �i

Satis�ability of JS Logic assertions, H , �,L, lt , � |= P , is de�ned analogously, except that JS logical
expressions are interpreted not only with respect to the JS store � and JS logical environment � , but
also the current scope chain L and the binding of the this object lt . Given how close the semantics
of JS and JSIL assertions are, it immediately follows that:

H , �,L, lt , � |= P () H , �[xsc 7! L, xthis 7! lt ], � |= T (P )

Translation Correctness: Speci�cations. First, we de�ne what it means for a JSIL Logic spec-
i�cation to be valid. This de�nition is expressed in terms of the JSIL semantic judgement, p `
hh, �, j, ii +�d hh0, � 0,oi, given in §4.1. Also, it makes use of a deabstraction function b.c : H ;

JSIL !
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HJSIL, transforming abstract JSIL heaps to concrete JSIL heaps. Intuitively, bHc denotes the concrete
JSIL heap obtained by removing the cells of H that are mapped to �.

De�nition 4.1 (Validity of JSIL Logic Speci�cations). A JSIL Logic speci�cation {P } �d (x ) {Q } for
return mode � is valid with respect to a program p, written p,� ✏ {P } �d (x ) {Q }, if and only if, for
all logical contexts (H , �, � ), heaps hf , stores �f , �ags �0, and JSIL values v, it holds that:

H , �, � |= P ^ p ` hbHc, �,�, 0i +�d hhf , �f ,�0hvii =)
�0 = � ^ 9Hf .Hf , �f , � |= Q ^ bHf c = hf

The validity of JS Logic speci�cations is de�ned in a similar way, with respect to an ES5 Strict
semantic relation of the form s,L, lt ` hh, �i +�d hhf ,oi, meaning that, given a JavaScript program s ,
scope chain list L and the this object lt , when executing the function of s with identi�er �d and
parameter values given by � in the heap h, one obtains the �nal heap hf and outcome o. We write
s,� ✏ {P } �d (x ) {Q } to denote that a JS Logic speci�cation {P } �d (x ) {Q } for return mode � is valid
with respect to a JavaScript program s .

To be able to state the next theorem, we lift the translation of assertions to speci�cations:
T ({P } �d (x ) {Q }) = {T (P )} �d (xsc, xthis,x ) {T (Q )}. Also, we say that a JS-2-JSIL compiler C is
correct if compiled programs preserve the behaviour of their original versions. Put formally:

s,L, lt ` hh, �i +�d hhf ,�h�ii () 9�f . C (s ) ` hh, �[xsc7!L,xthis7!lt ],�, 0i +�d hhf , �f ,�h�ii
Due to our extensive validation, which we discuss in detail in §6.1, we strongly believe that the
JS-2-JSIL compiler is correct. Finally, Theorem 4.2 states that under the assumption of a correct
compiler, a JavaScript speci�cation is valid if and only if its translated JSIL speci�cation is valid.

T������ 4.2 (JS�2�JSIL L���� ��������������). Given a correct JS-2-JSIL compiler, C, for any
JavaScript program s , return mode �, and JS speci�cation {P } �d (x ) {Q }, it holds that:

s,� ✏ {P } �d (x ) {Q } () C (s ),� ✏ T ({P } �d (x ) {Q })
5 JSIL VERIFY
We present JSIL Verify, a semi-automatic veri�cation tool for JSIL, and discuss how it tackles the
veri�cation challenge of reasoning about the dynamic features of JavaScript (V2). Given a JSIL
program annotated with the speci�cations of its procedures, JSIL Verify checks whether the program
procedures satisfy their speci�cations. JSIL Verify consists of: (1) a symbolic execution engine based
on JSIL Logic, the sound separation logic for JSIL, presented in §5.1; and (2) an entailment engine for
resolving frame inference and entailment questions, presented in §5.2. Finally, in §5.3, we explain
how we used JSIL Verify to specify and verify the JSIL implementations of the JavaScript internal
functions and how these speci�cations are used in the veri�cation of compiled JavaScript code (V3).

5.1 JSIL Verify: Symbolic Execution

Axiomatic Semantics of Basic Commands. The Hoare triples for the JSIL basic commands are
of the form {P }bc{Q }, and are interpreted as: “if bc is executed in a state satisfying P , then, if it
terminates, it will do so in a state satisfying Q”. We assume that JSIL programs are in SSA form,
taking away the need for standard substitutions in many of the axioms. Below, we give selected
axioms for the JSIL basic commands. We write E1 ⌘ E2 to denote E1 = E2 ^ emp. The G�� F�����
axiom states that if the object bound to e only contains the properties denoted by X1, ..., Xn , then,
after execution of x := getFields (e), x will be bound to a list containing precisely X1, ..., Xn in an
order described by the ord predicate, which stands for an implementation-dependent ordering of
property names. The P������� D������� axiom forbids the deletion of @proto properties. The
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O����� C������� axiom states that the new object at x only contains the@proto property with
value null. The remaining axioms are straightforward.
Axiomatic Semantics of Basic Commands (selected axioms): {P }bc{Q }
P������� A�����
P ⌘ (e1, e2) 7! X ⇤ X 6⌘ �
{P } x := [e1, e2] {P ⇤ x ⌘ X}

G�� F�����
P ⌘ ((e,Xi ) 7! Yi |ni=1) ⇤ emptyFields(e | {Xi |ni=1 }) ⇤ (Yi 6⌘ �|ni=1)
{P } x := getFields (e) {P ⇤ (x ⌘ [X1, ...,Xn]) ⇤ (ord (x) ⌘ true)}

P������� A���������
{(e1, e2) 7! _}
[e1, e2] := e3
{(e1, e2) 7! e3}

P������� D�������
P ⌘ (e1, e2) 7! X⇤

X 6⌘ � ⇤ e2 , @proto
{P } delete (e1, e2) {(e1, e2) 7! �}

O����� C�������
Q = (x,@proto) 7! null ⇤

emptyFields(x | {@proto })
{emp} x := new () {Q }

Symbolic Execution. Our goal is to use symbolic execution to prove the speci�cations of JSIL
procedures. As procedures may call other procedures, we group speci�cations in speci�cation
environments, SE : Fid * F la� * Spec , mapping procedure identi�ers and return modes to
speci�cations. To avoid clutter, we assume in the formalisation that each procedure has a single
speci�cation per return mode. Hence, SE(�d,�) = spec means that spec is the speci�cation of the
procedure with identi�er �d for the return mode �. In the following, we use the terms symbolic
state and assertion interchangeably. Below, we give all of the operational rules of the symbolic
execution. Rules have the form p,�d, SE,� ` hP ,k, ii ; hQ, j i, meaning that: (1) we are currently
symbolically executing the code of the procedure with identi�er �d in the JSIL program p assuming
the speci�cation environment SE; (2) the symbolic execution of the entire procedure must terminate
with return mode �; and (3) the symbolic execution of the i-th command on P results in Q when j
is the index of the next command to be executed, whilst k is the index of the command executed
before i . As p, �d, SE, and � do not change during symbolic execution, we leave them implicit. In
the operational rules, we write post(spec ) to denote the postcondition of spec .
Operational Rules for JSIL Logic Symbolic Execution: p,�d, SE, f l ` hP ,k, ii ; hQ, j i
B���� C������
p�d (i ) = bc {P } bc {Q }
h P ,�, i i ; hQ, i + 1 i

F���� R���
h P , i, j i ; hQ,k i i < {inm, ier}
h P ⇤ R, i, j i ; hQ ⇤ R,k i

P���A���������

p�d (i ) = x := � (x1, ..., xn ) j
k7!�d i

h P , j, i i ; h P ⇤ (x ⌘ xk ), i + 1 i
G���
p�d (i ) = goto k

h P ,�, i i ; h P ,k i

C���. G��� � T���
p�d (i ) = goto [e] k1, k2
h P ,�, i i ; h P ⇤ e ⌘ true,k1 i

C���. G��� � F����
p�d (i ) = goto [e] k1, k2
h P ,�, i i ; h P ⇤ e ⌘ false,k2 i

C���������
h P , i, j i ; hQ,k i P 0 ) P Q ) Q 0

h P 0, i, j i ; hQ 0,k i

E���������� E����������
h P , i, j i ; hQ,k i i < {inm, ier}
h (9X. P ), i, j i ; h (9X.Q ),k i

P�������� C��� � N�����
p�d (i ) = x := e0 (ei |n1

i=1)with j SE(�d 0, nm) = {P } �d 0(x1, ..., xn2 ) {Q ⇤ ret ⌘ e} ei = undefined |n2i=n1+1
h (P[ei/xi |n2

i=1] ⇤ e0 ⌘ �d 0), i i ; h (Q[ei/xi |n2
i=1] ⇤ e0 ⌘ �d 0 ⇤ x ⌘ e[ei/xi |n2

i=1]), i + 1 i
P�������� C��� � E����
p�d (i ) = x := e0 (ei |n1

i=1)with j SE(�d 0, er) = {P } �d 0(x1, ..., xn2 ) {Q ⇤ err ⌘ e} ei = undefined |n2i=n1+1
h (P[ei/xi |n2

i=1] ⇤ e0 ⌘ �d 0), i i ; h (Q[ei/xi |n2
i=1] ⇤ e0 ⌘ �d 0 ⇤ x ⌘ e[ei/xi |n2

i=1]), j i
N����� R�����
� = nm Q ` post(SE(�d, nm))

hQ,�, inm i ; hQ, inm i

E���� R�����
� = er Q ` post(SE(�d, er))
hQ,�, ier i ; hQ, ier i
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We discuss the non-standard rules. The N����� R����� rule �rst checks if the symbolic execution
is associated with a nm-mode speci�cation, and then checks if the current symbolic state entails
the postcondition of that speci�cation. This rule cannot be used during the symbolic execution of
an er-mode speci�cation, as the �rst check would fail. The E���� R����� rule is analogous. The
P�������� C��� � N����� rule checks if the current symbolic state entails the precondition of the
nm-speci�cation of the procedure being called, in which case the rule updates the symbolic state
with the postcondition of that procedure. The P�������� C��� � E���� rule is analogous.

The reader may notice that the symbolic execution rules presented above are not syntax-directed.
Therefore, we needed to develop a strategy for applying the Frame and Consequence rules. In prac-
tice, we apply both rules before the symbolic execution of every basic command and procedure call.
Soundness of Symbolic Execution. Since JSIL programs contain goto operations, we cannot rely
on the standard sequential composition rule of Hoare logic to derive speci�cations for sequences of
JSIL commands. Instead, we introduce proof candidates. A proof candidate, pd2D :Fid ⇥ F la� ⇥
N * }(ASJSIL ⇥ N), maps each command in a procedure to a set of possible preconditions,
associating each such precondition with the index of the command that led to it. To illustrate, if
(P , j ) 2 pd(�d,�, i ), then P is the precondition of the i-th command of procedure �d that resulted
from the symbolic execution of its j-th command during the symbolic execution associated with
the �-mode speci�cation of �d. A proof candidate is a valid proof derivation i� it is well-formed
(De�nition 5.1 below), meaning that (1) the set of preconditions of the �rst command of every
procedure contains the precondition of the procedure itself and (2) one can symbolically execute
every command on all of its possible preconditions. In the de�nition, we use i 7!�d j to denote that
i is an immediate predecessor of j , and i

k7!�d j to state that i is the k-th element of the list containing
all the predecessors of j in chronological order.

De�nition 5.1 (Well-formed proof candidate). Given a program p 2 P and a speci�cation envi-
ronment SE 2 Str * F la� * Spec , we say that a proof candidate pd 2 D is well-formed with
respect to p and SE, written p, SE ` pd, if and only if for all procedures �d in p, and index i the
following statements hold:
(1) 8�, P ,Q . SE(�d,�) = {P }�d (x){Q } () pd(�d,�, 0) = {(P , 0)}
(2) 8�, P ,k . (P ,k ) 2 pd(�d,�, i ) ^ (P 0 false) =)⇣

8j . i 7!�d j =) 9Q . (Q, i ) 2 pd(�d,�, j ) ^ p,�d, SE,� ` h P ,k, i i ; hQ, j i
⌘

_
⇣
i 2 {inm, ier} =) p,�d, SE,� ` h P ,k, i i ; h P , i i

⌘

The operational rules for JSIL symbolic execution are sound with respect to the JSIL operational
semantics. Hence, if we have that there is a well-formed proof candidate derivation with respect to
a program p and speci�cation environment SE, then we have that all of the the speci�cations in the
co-domain of SE are valid.

T������ 5.2 (S�������� �� S������� E�������� ��� JSIL). For all JSIL programs p and
speci�cation environments SE, if there exists a proof candidate pd 2 D such that p, SE ` pd, then:

8�d,�, P ,Q, x . SE(�d,�) = {P }�d (x){Q } =) p,� ✏ {P }�d (x){Q }
5.2 JSIL Verify: Entailment Engine

Frame Inference. As JSIL features dynamic property access, the �eld of a cell assertion is an
arbitrary logical expression and not a concrete string. This makes symbolic evaluation of object
manipulation commands non-trivial. Consider, for instance, the property assignment [e1, e2] := e3.
To symbolically execute this command in a symbolic state P , JSIL Verify must solve the following
instance of the frame inference problem (FIP) P ` (o,p) 7! � ⇤ ?F , where ?F denotes the resources to
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be framed o�. In this case, solving the FIP involves: (1) traversing all the cell assertions (E1,E2) 7! �
in P , checking for each one whether P ` ei = Ei |i=1,2; and (2) traversing all the emptyFields
assertions emptyFields(E1 | E2) in P , checking for each one whether P ` e1 = E1 and P ` e2 < E2
(for the case in which the required resource is captured by the emptyFields assertion).

Similarly to Berdine et al. [2005b], given the FIP P ` Q ⇤ [?F ], what we do �rst is decompose P
andQ into pairs of the form (�,�), where � and � denote, respectively, their spatial and pure parts.
Hence, what we are left with is (�p ,�p ) ` (�q ,�q ) ⇤ [?F ], which can then be further decomposed
into: (i) (�p ,�p ) ` (�q , True) ⇤ [?F ] and the pure entailment (ii) �p ` �q . Below, we present a proof
system for solving (i), which we rewrite, for readability, as �p | �p ` �q ⇤ [?F ]. We note that this
proof system makes use of a pure entailment oracle in order to check entailments between pure
assertions of the form �1 ` �2.

Proof System for Frame Inference - �1 | � ` �2 ⇤ [?F ]
C����C���
� ` Ei = E 0i |i=1,2,3 �1 | � ` �2 ⇤ [?F ]
�1 ⇤ (E1,E2) 7! E3 | � ` �2 ⇤ (E 01,E 02) 7! E 03 ⇤ [?F ]

F����
�1 | � ` �2 ⇤ [?F ]
�1 ⇤ � | � ` �2 ⇤ [?F ⇤ �]

E��
emp | � ` emp ⇤ [emp]

E����F������N����C���
� ` E1 = E 01 � ` E 02 < E2 �1 ⇤ emptyFields(E1 | E2 [ { E 02 }) | � ` �2 ⇤ [?F ]
�1 ⇤ emptyFields(E1 | E2) | � ` �2 ⇤ (E 01,E 02) 7! � ⇤ [?F ]

E����F������E����F������E�����R��������L���
� ` E0 = E 00 � ` E ] {Ei |ki=1} = E 0 �1 ⇤ ⇣1ik (E0,Ei ) 7! � | � ` �2 ⇤ [?F ]
�1 ⇤ emptyFields(E0 | E) | � ` �2 ⇤ emptyFields(E 00 | E 0) ⇤ [?F ]

E����F������E����F������E�����R��������R����
� ` E0 = E 00 � ` E\{Ei |ki=1} = E 0 �1 | � ` �2 ⇤ [?F ]
�1 ⇤ ⇣1ik (E0,Ei ) 7! � ⇤ emptyFields(E0 | E) | � ` �2 ⇤ emptyFields(E 00 | E 0) ⇤ [?F ]

The C����C���, F����, and E�� rules are standard, whereas the remaining three deal with
negative resource and are tightly connected to the dynamic nature of JSIL and, by extension,
JavaScript. They are all based on the following insight: emptyFields(E1 | E2) ⇤ E1 =̇ E 01 ⇤ E 02 <̇ E2 ,
emptyFields(E1 | E2[ {E 02}) ⇤ (E 01,E 02) 7! �, which shows how a single none-cell can be taken out of
or put into an emptyFields assertion, highlighting how the footprint of emptyFields is contravariant
on the cardinality of the set E2. The E����F������N����C��� rule places the left-to-right direction
of this equivalence into the context of the FIP. The remaining two rules, E����F������E����F������
E�����R��������L��� and E����F������E����F������E�����R��������R����, illustrate the
two scenarios in which an emptyFields assertion for the same object exists on both sides of the
FIP. In the �rst rule, the footprint of emptyFields on the left-hand-side is greater than that of the
emptyFields on the right. There, we have to carry the extra resource, ⇣1ik (E0,Ei ) 7! �, into
the left-hand-side of the remaining derivation. In the second rule, the extra resource is present
immediately on the left-hand-side of the FIP, and no emptyFields are carried over into the remaining
derivation. Note that, in the �rst rule, the union E ] {Ei |ki=1} in the premise has to be disjoint to
avoid resource duplication. In the second rule, this is taken care of by the separating conjunction.
Consider, for example, the symbolic execution of the compilation of put(k, v) from §3.4 on a

symbolic state P , such that the key to be inserted, k, is valid and not contained in the given map.
Then, to symbolically execute the compilation of contents[k] = v, we must prove that k is not
de�ned in contents, which implies solving the following FIP: P ` (contents, k) 7! � ⇤ [?F ], with
P = emptyFields(contents | keys [ { hOP }) ⇤ � ⇤ � and � = �alidKe� (k) ^ k < keys, where �
denotes the remaining spatial resource and hOP denotes the string hasOwnProperty. Figure 9 shows
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� ` k < keys [ { hOP }
emp | � ` emp ⇤ [emp] E��
�F | � ` emp ⇤ [�F ]

F����

emptyFields(contents | keys [ { hOP }) | � ` (contents, k) 7! � ⇤ [�F ]
EF � N���

emptyFields(contents | keys [ { hOP }) ⇤ � | � ` (contents, k) 7! � ⇤ [�F ⇤ �]
F����

� = �alidKe� (k) ⇤ k < keys �F = emptyFields(contents | keys [ { hOP, k })
Fig. 9. Example - proof system for frame inference - derivation

the appropriate derivation, concluding that: ?F = emptyFields(contents | keys [ { hOP, k }) ⇤ �.
Intuitively, the computed frame ?F coincides with the spatial part of the original symbolic state P
except that the property k is removed from the in�nite footprint of the emptyFields assertion.
Pure Entailment. JSIL Verify discharges the pure entailments of the form �1 ` �2 to the Z3
SMT solver [De Moura and Bjørner 2008]. To this end, it encodes JSIL Logic pure assertions as Z3
formulae. Z3 gives native support for arithmetic, bit-vectors, arrays, and uninterpreted functions.
It additionally supports the de�nition of new algebraic datatypes. We encode JSIL Logic values
as a Z3 algebraic data type taking advantage of Z3 native types when possible, and specify the
operations for the JSIL value types not natively supported using uninterpreted functions.

5.3 JSIL Logic Specifications of JavaScript Internal Functions

Fig. 10. Call graphs for GetValue and PutValue

JavaScript internal functions describe the build-
ing blocks of the language, including prototype
chain traversal, object management, and type
conversions. They are called extensively by all
JavaScript commands. Therefore, in order to
reason about JavaScript code, we have to �rst
be able to reason e�ciently about the internal
functions. However, their de�nitions in the ES5 standard are operational, complex, and intertwined,
making the allowed behaviours di�cult to discern. To illustrate, in Figure 10 we show the call
graphs of GetValue and PutValue, the two main internal functions operating on references.
Symbolic execution of internal functions. In §4.2, we showed how JS-2-JSIL compiles calls to
internal functions in the standard to procedure calls to their reference implementations in JSIL. As
such, in order to symbolically execute these calls, we need the speci�cations of internal functions.
We provide functional correctness JSIL Logic axiomatic speci�cations that explicitly expose the

allowed behaviours for all cases of the internal functions that do not use higher-order reasoning,
accounting for approximately 90% of all possible cases. In creating these speci�cations, we leverage
on the built-in predicates of §3 and, in particular, on the Pi predicate, without which the speci�-
cation of internal functions would be impossible. Using JSIL Verify, we verify that our axiomatic
speci�cations are satis�ed by their corresponding, well-tested JSIL reference implementations.

Fig. 11. Automatic fold/unfold annotations

Several GetValue and PutValue speci�cations re-
quire the Pi predicate to be folded. To account for
this, JS-2-JSIL automatically inserts folding and
unfolding annotations before and after such calls.
This is illustrated in Figure 11 for the last command of the compiled JSIL code of the assignment
contents[k] = v in Figure 8. This way, we ensure that prototype chains are folded only when needed
and, therefore, do not require the sepish connective of Gardner et al. [2012].

Finally, observe that when we insert a new key into the map, in order for the Pi predicate to be
automatically folded for the precondition of PutValue in Figure 11, JSIL Verify must prove that the
supplied key does not exist in the prototype chain, which includes solving the FIP described in §5.2.
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Speci�cation by Example: PutValue. PutValue(v, w) is the JavaScript internal function that takes
a reference v and a value w, and assigns w to the property pointed to by reference v. Let us consider
the case in which v is an object reference of the form v = [ �o�, o, p ]. In this case, PutValue assigns the
descriptor [�d�, w, T, T, T] to the property p of o. Below, we present two speci�cations of PutValue(v, w),
where v is an object reference [�o�, o, p], o is an extensible object that is not a string or an array
object, and the property p is not de�ned in the prototype chain of o.
This example illustrates why we need lists of object locations and classes exposed in the Pi

predicate. Depending on the length of the prototype chain of o, the post-conditions vary slightly. In
both cases, the property p is de�ned in the object with the appropriate descriptor, the link from o to
its prototype is exposed, o remains extensible, and the return value is empty. However, when o is not
at the end of the prototype chain (right), we also have to specify (using another Pi predicate) the
tail of the prototype chain of o, in which p is still unde�ned. Since we need to be able to distinguish
these two cases given only the parameters of the Pi, we have to expose the location list.

8>>><>>>:

v = [�o�, o, p] *
Pi (o, p, undefined, {o}, {c}) *

!(c = �String�) * !(c = �Array�) *
(o, �@extensible�) -> true

9>>>=>>>;
PutValue(v, w)

8><>:
Pi (o, p, [�d�, w, true, true, true], [o], [c]) *

(o, �@proto�) -> null * (o, �@extensible�) -> true *
ret = empty

9>=>;

8>>><>>>:

v = [�o�, o, p] *
Pi (o, p, undefined, o :: op :: lop, c :: lc) *

!(c = �String�) * !(c = �Array�) *
(o, �@extensible�) -> true

9>>>=>>>;
PutValue(v, w)

8>>><>>>:

Pi (o, p, [�d�, w, true, true, true], [o], [c]) *
(o, �@proto�) -> op * (o, �@extensible�) -> true *

Pi (op, p, undefined, op :: lop, lc) *
ret = empty

9>>>=>>>;
Similarly, the classes of objects have to be exposed as parameters of the Pi because certain

internal functions behave di�erently depending on the object class. Speci�cally, GetOwnProperty
behaves di�erently for strings, and DefineOwnProperty behaves di�erently for arrays. This is even
more pronounced in ES6, with the introduction of proxies, which override all internal functions.

6 VALIDATION AND EVALUATION
We focus on the validation and evaluation of the JS-2-JSIL compiler (§6.1), the JSIL Verify tool (§6.2),
our axiomatic speci�cations of the internal functions (§6.3), and JaVerT as a whole (§6.4).

6.1 JS-2-JSIL: A Trusted Logic-Preserving Compiler
The JS-2-JSIL compiler covers a substantial, fully representative part of ES5 Strict. It does not
simplify the memory model or the semantics of JavaScript in any way. As illustrated in §4.2, there
is a direct correspondence between the lines of the ES5 standard and the compiled JSIL code.
Furthermore, we maintain, as much as possible, a step-by-step connection between lines of the
JS-2-JSIL code itself and lines of the standard. We extensively test JS-2-JSIL against the o�cial
ECMAScript test suite, Test262, passing all 8797 applicable tests. In her PhD thesis, Naudžiūnienė
[2018], also gives a formal de�nition and correctness result for part of the compiler, adapting
techniques from compiler design literature [Barthe et al. 2005; Fournet et al. 2009] to the dynamic
setting of JavaScript. A full correctness result would be feasible only in a mechanised setting: for
example, by formalising JS-2-JSIL in Coq and then leveraging on JSCert, the mechanised operational
semantics of ES5 in Coq of Bodin et al. [2014]. This e�ort, however, is beyond our manpower.
Compiler Coverage. We implement the entire kernel of ES5 Strict, except indirect eval, which
exits strict mode. We implement the entire Object, Function11, Array, Boolean, Math, and Error
built-in libraries. Additionally, we implement: the core of the Global library, associated with the
global object; the constructors and basic functionalities for the String, Number, and Date libraries,
together with the functions from those libraries used for testing features of the kernel. We do

11The Function constructor, just as indirect eval, may exit strict mode; we always execute the provided code in strict mode.
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not implement the orthogonal RegExp and JSON libraries. The implementation of the remaining
functionalities amounts to a (lengthy) technical exercise. Table 1. Detailed testing results

ECMAScript ES6 Test Suite 21301
ES6 constructs/libraries 8489
Annexes/Internationalisation 888
Parsing 565
Non-strict tests 890
ES5 Strict Tests 10469
Tests for non-impl. features 1297
Compiler Coverage 9172
ES5/6 di�erences in semantics 345
Tests using non-impl. features 30
Applicable Tests 8797
Tests passed 8797
Tests failed 0

Testing Methodology and Results. We test JS-2-JSIL
against ECMAScript Test262, the o�cial test suite for
JavaScript implementations. Currently, Test262 has two
available versions: an unmaintained version for ES5 and
an actively maintained version for the ES6 standard. ES5
Test262 has poor support for ECMAScript implementations
that enforce strict mode, rendering systematic e�orts to
target ES5 Strict tests borderline infeasible. This issue has
been fully resolved in the ES6 version of the test suite.

On the other hand, there do exist certain disadvantages
in using a more recent version of the test suite than the
implementation was designed for; some test cases are no
longer applicable and need to be excluded. Also, the spec-
i�cation was comprehensively redrafted and a number of
new features were introduced for ES6. Luckily, the commit-
tee took great care in minimising the number of backwards incompatible changes and, as a result,
only a small proportion of test cases needed to be altered between the two versions. These test
cases can be identi�ed and excluded from the results. Tests for new features are easily identi�able
due to the structure of the test suite. On the whole, the strong negatives of a poorly maintained ES5
version of the test suite overshadowed the minor di�culties of having to track the incompatible
changes and new features between versions of the speci�cation. We have thus opted to test JS-2-JSIL
using the latest version of ES6 Test262.
We have created a continuous-integration testing infrastructure that, on each commit to the

JaVerT repository, runs Test262 automatically and logs the results. We have also developed an
accompanying GUI, which allows us to easily group tests, e�ciently understand the progress
between test runs and pinpoint any potential regressions. To run the tests, we set up the compiler
runtime, containing the JS initial heap and our JSIL implementations of JS internal and built-in
functions. We setup the initial heap in full (⇠750 loc). We implement all internal functions (⇠1 Kloc)
and a large part of the built-in libraries (⇠3.5 Kloc), following line-by-line the English standard.
We perform the testing as follows. First, we compile to JSIL the o�cial harness of ES6 Test262.

Then, for each test, we compile its code to JSIL. We then execute, in our JSIL interpreter, the JSIL
program obtained by concatenating the compiled harness, the compiled test, and the compiler
runtime. If the execution terminates normally, we declare that the test has passed.
The breakdown of the testing results is presented in Table 1. The version of the ES6 Test262

test suite that we have used12 contains 21301 test cases. We �rst �lter down to the 10469 tests
targeting ES5 Strict, removing the cases aimed at ES6 language constructs and libraries, speci�cation
annexes, internationalisation, parsing, and ES5 non-strict features. Next, we remove the 1297 tests
for unimplemented built-in library functions (for example, the JSON library), leaving us with 9172
tests targeting JS-2-JSIL. Not all of these tests, however, are applicable. ES6 has introduced minor
changes to the semantics of a few features with respect to ES5, and there are 345 tests targeting such
features.13 Also, 30 tests were testing features covered by the compiler by using non-implemented
features, and were thus excluded. In the end, we have the �nal 8797 tests relevant to JS-2-JSIL, of
which we pass 100%. This gives us a solid guarantee of the correctness of our JS-2-JSIL compiler.

12http://github.com/tc39/test262/tree/91d06f
13For example, the length property of Function objects is con�gurable in ES6, but was not con�gurable in ES5.
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This guarantee ultimately holds up to the coverage of the Test262 test suite, which is known to be
extensive, but is not complete. Moreover, it is stressed by the ECMAScript committee that Test262,
despite its widespread use, is not an o�cial conformance test suite.

6.2 JSIL Verify: Scalable JSIL Verification
As discussed in §5, JSIL Verify natively supports the fundamental dynamic features of JavaScript:
extensible objects, dynamic property access and dynamic procedure calls. These dynamic features
introduce an additional level of complexity compared with the static features in the IRs underlying
the familiar separation-logic tools. Therefore, the key aspect that the evaluation of JSIL Verify
needs to address is its scalability.

We evaluate JSIL Verify by verifying that our JSIL implementations of JavaScript internal functions
satisfy their axiomatic speci�cations. We have 186 speci�cations targeting 1K lines of JSIL code.
These speci�cations are non-trivial and the underlying code makes extensive use of the dynamic
features of JSIL, as the internal functions are written in a general way in the standard. We conclude
that JSIL Verify is able to handle tractably the dynamic features, as it quickly veri�es all 186
speci�cations of the JavaScript internal functions in 3.62 seconds. We have identi�ed that a sizeable
amount of that time is spent during the folding of predicates, the uni�cation of pre-conditions
for procedure calls, and, more generally, the calls to Z3, which we minimise using a number of
heuristics and simpli�cations. We have found no reason to believe that JSIL veri�cation with
JSIL Verify would not scale to much larger code. We revisit this discussion in §6.4.

6.3 JS Internal Functions: Verified Axiomatic Specifications
Using JSIL Verify, we verify that our axiomatic speci�cations of the internal functions are satis�ed by
the corresponding JSIL reference implementations. These implementations follow the ES5 standard
line-by-line and are (indirectly) substantially tested via our testing of the JS-2-JSIL compiler against
Test262. These results can be interpreted in two ways: they provide validation of the JSIL axiomatic
speci�cations, as the implementations closely follow the standard and are well tested; and, at the
same time, they provide further validation of the implementations of the internal functions.

Our axiomatic speci�cations of the internal functions directly increase the scalability of JaVerT,
as they allow it to step over the underlying implementations rather than executing them every time.
We envisage that these speci�cations will be useful beyond JaVerT. For example, starting from our
axiomatic speci�cations, we could create executable speci�cations of the internal functions, that
could then be used for di�erent types of symbolic analysis for JavaScript. They would also provide
a mechanism for restricting the semantics of JavaScript in a principled way. If, for instance, we
would like to perform an analysis that wishes to abstract a semantic feature of JavaScript, say type
coercion, we would generate executable speci�cations of the internal functions without taking into
account the axiomatic speci�cations that describe type coercion. This would be much more robust
than altering the code of the internal functions manually.

6.4 JaVerT: Verifying JavaScript Programs
We have veri�ed a number of further examples in addition to the Map and Id Generator examples
shown in §3, including: a priority queue library, modelled after a real-world Node.js priority queue
library [Jones 2016]; operations on binary search trees (BSTs), which target set reasoning in Z3; and
an insertion sort algorithm, which targets list reasoning in Z3. We have also veri�ed several Test262
programs, testing complex language statements such as the switch and try�catch�finally. The
statistics for these examples are shown in Figure 2. The columns of the table denote: the name of
the example; the number of lines of JS code; the number of lines of compiled JSIL code; the number
of veri�ed speci�cations; and the obtained veri�cation time.
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Table 2. JaVerT Verification Statistics
Example #JS #JSIL #specs t(s)
Key-value map 23 523 9 3.37
ID Generator 16 330 4 0.73
Priority queue 46 1003 10 7.14
BST 70 1032 5 7.38
Insertion sort 24 415 2 1.78
Test262 examples 113 1367 16 3.46

Understanding the scalability of JaVerT
amounts to understanding how the size of the
compiled JSIL code corresponds to the size of
the original JavaScript code and the scalability
of JSIL Verify in the presence of the reasoning
patterns of JavaScript. As Figure 2 shows, the
compiled JSIL code has approximately ten to
twenty-�ve times more lines of code than its
JavaScript counterpart. Also, it takes about 0.5 seconds to verify one hundred lines of compiled JSIL
code. With JaVerT requiring annotations in the form of pre- and postconditions, loop invariants and
folding/unfolding of user-de�ned predicates, we estimate that users will only be able to annotate
eventually up to thousands of lines of JavaScript code, not tens of thousands. For us, the results
presented in Table 2 indicate that JaVerT can meet this scalability goal. Importantly, we note
that, although the speci�cation of data structure libraries requires a potentially large annotational
bootstrap, in terms of de�ning all of the abstractions capturing the data structures, the ratio of
annotations to code decreases rapidly as the library code and veri�ed client code grow.
When it comes to veri�cation, there is little work to compare JaVerT against. In fact, there is

only KJS, the instantiation of the general K veri�cation framework to JavaScript. We compare the
performance of JaVerT and KJS on the BST and insertion sort examples, which we have in common.
On a machine with an Intel Core i7-4960X CPU 3.60GHz and DDR3 RAM 64GB, KJS takes 35.7
seconds to verify the correctness of the BST operations, and 44.8 seconds to verify the insertion
sort algorithm. On a machine with an Intel Core i7-4980HQ CPU 2.80 GHz and DDR3 RAM 16GB,
JaVerT veri�es the same BST operations in 7.38 seconds, and the insertion sort algorithm in 1.78
seconds. This di�erence in speed is not surprising, because KJS implements proof search with
automatic unfolding and folding of recursive predicates, which requires fewer code annotations than
JaVerT, but is computationally intensive. The remaining KJS examples amount to using predicates
describing more complex data structures, such as AVL trees and red-black trees. We do not envisage
major issues with verifying them using JaVerT, as they do not exercise any JavaScript-speci�c
features and only depend on designing the abstractions correctly. Such abstractions are standard in
separation logic. On the other hand, we were unable to verify our examples that illustrate dynamic
property access using the KJS tool because, at the time, KJS did not have support for predicates
whose footprint captures some, but not all properties of an object: for example, the Pi predicate.

7 CONCLUSIONS AND FUTUREWORK
We believe JaVerT constitutes an important step towards the veri�cation of real-world JavaScript
programs. It is built on top of a trusted, systematically validated infrastructure and it successfully
tackles a number of challenges that are critical for tractable reasoning about JavaScript. We con-
tain the complexity of reasoning about complex JavaScript statements by compiling JavaScript
to JSIL (V1). We reason e�ciently about the fundamental dynamic features of JavaScript using
JSIL Verify (V2), the �rst veri�cation tool based on separation logic to natively support such features.
We provide veri�ed axiomatic speci�cations of the internal functions (V3).

We design key abstractions that allow the developer to capture fundamental JavaScript concepts:
the Scope predicate to reason about basic variable scoping; the Pi predicate to capture the prototype
inheritance of JavaScript; and the Closure predicate to talk about shared variables in JavaScript
function closures. The Pi and Closure predicates are carefully designed to resolve the tension
between the overlapping of prototype and scope chains, and the heap separation inherent to
separation logic. Our speci�cations can be used by a developer who has minimal knowledge of
JavaScript internals. To demonstrate this, we specify: a key-value map implementation, written in
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a typical OO-style, where our speci�cations ensure prototype safety for library operations; and a
simple ID generator, where we show how our speci�cations can be used to capture the degree of
encapsulation obtained from using function closures.
Our immediate next steps are to prove properties of programs using the for�in statement,

leveraging on the work of Cox et al. [2014], and to extend JSIL Logic with higher-order reasoning
by encoding it in Iris [Jung et al. 2015], in order to be able to reason about JavaScript getters/setters
and arbitrary functions passed as parameters.
JaVerT was designed so that the trust in its infrastructure is maximised. To validate JSIL Verify

further rigorously, we will encode JSIL Logic in Coq, leveraging on the Iris framework; adapt JSIL
Verify to produce, for each veri�ed speci�cation, a Coq proof term supposedly certifying it; and
use Coq to verify formally that this proof term indeed certi�es it.

In terms of coverage, we expect to move JS-2-JSIL to ES6 Strict at some point, extending it with
the new language constructs of ES6. The existing speci�cations of the internal functions will remain
the same and our abstractions will still be directly relevant. We may later move to full ES6, where
we would have to model scope lookup using an inductive predicate for capturing the footprint of a
dynamic scope chain traversal, similar to the one used by Gardner et al. [2012].

There are several ways to improve the overall usability of JaVerT, the most important of which
is giving meaningful feedback to the developer when speci�cations cannot be veri�ed. This is a
non-trivial problem that requires a precise lifting of error messages from JSIL back to JavaScript,
which is possible, given our correctness results. Also, we have observed that JaVerT speci�cations
for prototype safety and function closures follow speci�c patterns, parts of which could be inferred
automatically. This gives room to the possibility of providing speci�cation templates for the
developer. Finally, JaVerT currently supports only veri�ed client code. An interesting goal would be
to automatically synthesise defensive wrappers for veri�ed library code, so that veri�ed libraries
can be safely integrated with non-veri�ed client code.
We will develop an automated tool based on bi-abduction [Calcagno et al. 2011] for verifying

large JavaScript codebases, but believe that the semi-automatic JaVerT will always have a role
to play in the development of functional correctness speci�cations of critical libraries. We may
investigate how to reason about the DOM using JaVerT, building on the work of Raad et al. [2016].
We are also looking for ways to reuse the infrastructure behind JaVerT for other styles of JavaScript
analysis. Concretely, we are building a JSIL front-end to Rosette [Torlak and Bodík 2013, 2014],
where we aim to use the symbolic execution of Rosette to obtain a bug-�nding tool for JavaScript.
We expect that such a tool could also help the developer with the debugging of JaVerT speci�cations.
Our goal is to establish our JSIL infrastructure as a common platform for JavaScript veri�cation.
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