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Abstract

We introduceexplicit fusionsof names. To ‘fuse’ two names is to declare that they
may be used interchangeably. An explicit fusion is one that can exist in parallel
with some other process, allowing us to ask for instance how a process might
behave in a context where = y. We present therz-calculus, a simple process
calculus with explicit fusions. It is similar in many respects to the fusion calculus
but has a simple local reaction relation. We give embeddings of{teculus and

the fusion calculus. We provide a bisimulation congruence for thealculus and
compare it with hyper-equivalence in the fusion calculus.

1 Introduction

We introduceexplicit fusionf names. To ‘fuse’ two names is to declare that they may
be used interchangeably. Asxplicit fusion is one that can exist in parallel with some
other process. For example, we can use the explicit fugien) to ask how a process
might behave in a context where the addressasdy are equal.

In this paper we focus on one particular application of explicit fusions. We intro-
duce therg-calculus, which incorporates these fusions. It is similar tortfealculus
in that it has input and output processes which react together. It differs from-the
calculus in how they react. In#=&reaction, names are sent by the output process to
replace abstracted names in the input process; this replacement is represented with a
substitution. In contrastag-reaction is directionless aridsesnames; this is recorded
with an explicit fusion.

The wg-calculus is similar in many respects to the fusion calculus of Parrow and
Victor [10, 13], and to the chi-calculus of FU]. These calculi also have a directionless
reaction which fuses names. The difference is in how the name-fusions have effect. In
the fusion calculus, fusions occur implicitly within the reaction relation and their effect
is immediate. In thergz-calculus, fusions are explicitly recorded and their effect may
be delayed. A consequence of this is thatreaction is a simple local reaction between
input and output processes.

Explicit fusions can be used to analyse, in smaller steps, reactions that occur in
existing process calculi. We give embedding results forsthmlculus and the fu-
sion calculus. These embeddings show that explicit fusions are expressive enough to
describe both name-substitution in thereaction, and the fusions that occur in the
fusion reaction. We are currently exploring an embedding oftiealculus in ther -
calculus [L4]. Intriguingly, explicit fusions allow for an embedding which is purely
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compositional, in contrast with the analogous embeddings intteculus and fusion
calculus.

We provide a bisimulation congruence for the-calculus, which is automatically
closed with respect to substitution. We compare it with hyper-equivalence in the fusion
calculus [L0] and open bisimulation in the-calculus [L2].

2 Themp-calculus

To illustrate the key features of the--calculus, we contrast it to the fusion calculus.
Both calculi have symmetric input and output processes. They have no abstraction
operator. Instead, they interpret thecalculus abstractiofw:) P with the concretion
(vz)(x)P. A Tp-reaction is

2P| Z.yQ | R N\urp (@=y)| P|Q|R.

The reaction in this example is a local one between the input and output processes.
However the effect of the resulting fusiam=y) is global in scopex andy can be

used interchangeably throughout the entire process, includii@ limit the scope of

the fusion, we use restriction. For example, restrictinig the above expression we
obtain

(va)((z=y|P|Q|R) = P{Yz}|Q{Yz} | R{Yf}.

Thus, using just explicit fusions and restriction, we can derive a hame-substitution
operator which behaves like the standard capture-avoiding substitution.

The corresponding reaction in the fusion calculeguiresthat eitherz or y be
restricted: for instance,

(v)(z.@PZ.@Q| R) \yu P{Yr}|Q{Y}| R{Yx}.

Thez andy are implicitly fused during the reaction. If we had restrictedhther than
z, then the substitution would have beg¥ly}. The full polyadic reaction rule, using
manyz's andys, is more complicated.

We assume an infinite set of names ranged ovet by. z, and writeZ for a se-
quence of names ard| for its length.

Definition 2.1 The setP,,. of processesf therp-calculus is defined by the grammar
P = il ‘ P|P‘ (vx)P ‘ (x) ’ (x=1) ‘ x.P ‘ T.P
We call the processr) a datum and the processe=y) a fusion

We say that a datum is at thep-levelif it is not contained within an input or output
process. Tharity of a process is the number of top-level datums in it. We wiitem
to declare that” has aritym. More general arities are also possible, such as typing
information similar to the sorting discipline for thecalculus B]. For simplicity, we
consider in this paper only that fragment of the-calculus without replication or
summation. Replication is considered elsewhé&d. [

Datums are primitive processes, with the proags$ P corresponding to the con-
ventional concretiony) P. The choice between datums and concretions does not affect
the results in this paper. Our choice to use datums is motivate?] 4], where we



Standard axioms fdrandnil:
Pnil = P (P|Q)|R = P|(Q|R) PIQ=Q|PifP:0

Standard scope axioms:
(ve)(P|Q) = (vz)P|Q itz & fn(Q) (va)(vy) P = (vy)(ve) P
(vz)(P|Q) = Pl(vz)Q if z & fn(P)

Fusion axioms:

@=zmy=nil  @=y)|z.P=@=y |yP (@=y | @ =@=y |
(vx)@=y) = nil (@=y) | T.P = @=y) |g.P (@=y) | z.P = @=y) | z.((x=y)| P)
(@=y) = @=x) (@=y) | (@=2) = @=y) | Wwy=2) (@=y)|zZ.P = @=y) | Z.((x=y)|P)

Figure 1: The structural congruence betwegnprocess, writters, is the smallest equivalence
relation satisfying these axioms and closed with respect to contexts

represent variables of the-calculus by datums to obtain a direct translation of the
A-calculus into therp-calculus.
The definitions offree andboundnames are standard. Thestriction operator

(vz) P bindsz; x is free in(x), z.P, .P and in fusions involving:. We write fn(P)

to denote the set of free namesih We use the following abbreviationévz) P &

_, def — o def
(1) ... (ven) P, (@ = @)y]... @, and@=9) = @1=yn)]|...[({@n=yn)-
Definition 2.2 Thestructural congruendsetween processes, written) is the smallest
congruence satisfying the axioms given in Figiyeand closed with respect to the
contexts|., (vx)-, x. andZ...

The side-condition on the commutativity of parallel composition allows for pro-
cesses of arity) to be reordered, but not arbitrary processes. For instance,

x.P|Z.Q = 7.Q|xz.P but @ || P £ w)|@)|P.

This is essentially the same as in the conventianealculus, where processes can be
reordered but the names in the concretiogm P cannot.

The fusion axioms require further explanation. Our intuition is thaty) is an
equivalence relation which declares that two names can be used interchangeably. The
fusion(x=x) is congruent to the nil process. So todus)(x=y), since the bound name
x is unused. The final six fusion axioms describe small-step substitution, allowing us
to deducex—y)| P = (x=y)| P{¥/z} anda-conversion. For example,

(vz)(T.nil)
= (va)(vy)(@=y) | Z.nil) create fresh bound namyeas an alias fox
= (va)(vy)(@=y) |7nil) substitutey for =
= (vy)(y.nil) remove the now-unused bound name

Honda investigates a simple process framework with equalities on names that are
probably the most like our fusion axioms]] the axioms are different but the spirit of
the equalities is similar. Honda and Yoshida have also introdaegebcesses called
equators[6]. In the asynchronous-calculus they simulate the effect of explicit fu-
sions; but they do not generalise to the synchronous @ase [



With the structural congruence we can factor out the datums and fusions. In partic-
ular, everyr p-process is structurally congruent to one in gti@ndard form

(u=0) | (vZ)(5) | P),

where ther's are distinct and contained in ths, andP contains no datums or fusions
in its top level. We callu=o)|(vZ) (7| - ) theinterfaceof the process. It is unique in
the sense that, given two congruent standard forms

(=t | (@) (@G| P1) = (Ua=12) | (vZ2)((F2)|F2),

the fusionsu; =v1) and(i. =) denote the same equivalence relation on nafies—=
|72 ], and the datumg; , #» are identical and the procesd@s P, structurally congruent
up to the name-equivalence anetonversion of the's. We writeE(P) for the name-
equivalence. It can be inductively defined on the structure of processes, or more simply
characterised by, y) € E(P) iff P = P|(x=y).

We define a symmetriconnectioroperator@ between processes of the same arity,
which connects them through their interfaces. The effect of the connektit® is
to fuse together the top-level namesimand Q. If P and@ have standard forms
(U =) |(v@1) (G| Pr) and(ia=12)|(vZ2) ((ij2) | P2) respectively, then

def - - o o o o
PQQ = (iiyily=011) | (v @) (=52 | PLIP2),

renaming if necessary to avoid name clashes. Because interfaces are unique, the con-
nection operator is well-defined up to structural congruence.

Definition 2.3 The reaction relation between processes, writtenis the smallest re-
lation closed with respect td_, (vz)- and_ = _, which satisfies

2.P|7.Q \, PQQ.

3 Embedding ther-calculus and the Fusion Calculus

The 7 p-calculus naturally embeds thecalculus, ther;-calculus [L1] and the fusion
calculus. For the embeddings we consider the fragment of the calculus without sum-
mation or replication. The interesting part in the translations concerns the abstractions
and concretions:

(Z)P - (v@)(@|P*)  Abstraction
W) HP ——  (vD)((5|P*) Concretion

For example, ther-reactionz.(x)P | Z.()Q \.» P{Yx}|Q corresponds to the -
reaction

z.(vo) ()| P*) | Z.(w)] Q%)
Nerp (vw)g<w>lP*) Q@ (")
vx)((

= (vo)(z=y) | P*| Q") renaming if necessary
= (vo)(@=y) | P*{Yx}| Q") substitutingy for x
=  PY{Ya}|Q* removing unused bound

There is a key difference between the (straightforward) embeddings of thed
wr-calculi, and the embedding of the fusion calculus. Forstkmalculus, reaction of



a wp-process in the image df)* necessarily results in a process congruent to one
in the image. Even though the reaction temporarily results in a fusien), one of
those fused names must have arisen from an abstrdetjghand so the fusion can be
factored away. The same is not true with the fusion calculus. For example,

2.(@|P*) [ Z.( Q") \mp (x=y) | P | Q™.

The process on the left is in the image of the fusion calculus upgferbut the one on

the right has an unbounded explicit fusion and so is not. Essentially, because the fusion
calculus has unbound input and output processes and yet lacks explicit fusions, it can
only allow those reactions that satisfy certain restriction properties on names (given
at the end of this section). We do obtain an embedding result in the sense that, by
restrictingxz or y we obtain arz-reaction which corresponds to a valid fusion reaction.
This embedding result is as strong as can be expected: the fusion reaction requires that
a side-condition on restricted names be satisfiedrheeaction does not.

Embedding the r-calculus

We define a translatiofn)* from 7-processes te z-processes. We also define a reverse
translation(_)° and prove embedding results. (The embedding ofithealculus is
similar.) Following B], the setP, of w-processes is generated by the grammar

P = nil |P|P|(va)P|2.A|z.C  Processes
A o= (PP Abstractions
cC == (v)@P Concretions

where ther's are distinct and, in the concretion, contained inghe The structural
congruence on processes and the reaction relation are standard. In order to define the
reverse translatiofL)?, we identify ther-imagein P .:

P u= il | PIP | (vz)P | A Processes
A = 2. (v@D)((@|P) \ z.(v@) ()| P) Input/ Output Processes

Definition 3.1 The translation_)* : P, — P, is defined inductively by

(nil)* = n|| (z.(D)P)* =z
(PIQ)’: PrQr Z.(wd) @) P)* = Z.(vd) (@) | P*)
( ) (vz)P*

The translation-)° : m-image— P is the reverse of this.

Theorem 3.2 The translation§_)* : P, — P,, and(.)° : m-image— P, are mu-
tually inverse, preserve the structural congruence, and strongly preserve the reaction
relation:

PeP, and P \,Q implies P*\,, Q"
P erw-image and PN\, Q implies P°\, Rand R*=., Q



Embedding the Fusion Calculus

The set of fusion process&y, is generated by the grammar
P :=nil | P|P | (va)P | 2Z.P | 2Z.P.
Its structural congruence is standard, and its reaction relation is generated by the rule
(vd)(2Z.P | zy.Q | R) \, Po|Qo|Ro,

where raffo),dom(c) C {Z,y} andid = dom(o)\ran(c) ando(v) = o(w) if and

only if (v,w) € E((Z=%)). The side-conditions describe a natural concept. Consider

the equivalence relation generated from the equalitigs The side-conditions ensure

that, for each equivalence class, every element is mappeddwg single free witness.
Thefusion-imageof the fusion calculus in the z-calculus is similar to that of the

m-calculus, but with input and output processes given by

A u= 2.(a@plP) | Z.(@|P) Input/ Output Processes

Translations between the fusion calculus and the fusion-image are straightforward.

Theorem 3.3 The translations.)* : P, — Pr,. and(-)° : P, — Py, are mutually
inverse and preserve structural congruence as in Theden They also preserve
reaction in the sense that

P e Py, andP g, Q implies P* N\ r,. QF
P € fusion-image and®® \,,,. @ implies 3d. (v&)P \ RandR* =, (vi)Q

As discussed, reaction of a process in the fusion-image does not necessarily result in a
process also in the fusion-image. Note that the restricted naraes precisely those
needed to satisfy the side-conditions on reaction in the fusion calculus.

4 Bisimulation for the 7r-calculus

We define a bisimulation relation for thg--calculus using a labelled transition system
(LTS) in the standard way. The LTS consists of the usual CCS lahelsand 7,
accompanied by a definition of bisimulation which incorporates fusions:

PSQ : 0 implies for allz, y, if (z=y)|P = P; then@=1)|Q — Q; andP,SQ;.

We call this bisimulation thepen bisimulationby analogy with open bisimulation for
ther-calculus.

In this definition of open bisimulation, labelled transitions are analysed with respect
to all possible fusion contexts| (z=y). In fact, we do not need to consider all such
contexts. Instead we introdufigsion transitionsgenerated by the axiom

+.P|7.Q “¥ Paq.

The label?z=y declares that the process can react in the presence of an explicit fusion
(x=y). Fusion transitions allow us to define bisimulation without having to quantify
over fusion contexts. However, the label also declares additional information about the

structure of the process. P fns § @, then we infer that? must contain input and



«P-ZpP FP-LpP
_ - Tr=y _ T
z.P|y.Q — PQQ z.P|7.Q — PQQ

PP P p PSP, zda P =P5Q=Q
PIQ -5 P|Q QIP-% QP (vz)P - (vz)Q P

Figure 2:Quotientedabelled transition system. We do not distinguish betw&eny and?y=x.
The final rule closes the LTS with respect to the structural congruence

output processes on unbounded channeddy. In order to define a bisimulation
relation which equals the open bisimulation, we remove this additional information:

PSQ:0 andP = implies eitherQ =¥ @, or @ —~ Q1, and@—y)| P,S@—y)|Q:

The resulting bisimulation equals open bisimulation. A consequence of adding fusion
transitions is that we can use standard techniques to prove congruence.

We give two labelled transition systems for thg-calculus: aquotiented LTSn
which we explicitly close the labelled transitions with respect to the structural congru-
ence, and atructured LTSn which the labelled transitions are defined according to
the structure of processes. These LTSs are equivalent; the quotiented LTS is simpler to
understand, and the structured LTS is easier to use. We define corresponding bisimu-
lation relations and prove that they are the same. Finally we use the structured LTS to
prove that bisimulation is a congruence.

The Quotiented LTS

The quotiented LTS is given in Figuz Notice that the structural congruence rule
allows fusions to affect the labels on transitions: for example, the pracegs|z. P

can undergo the transitiod~ as well as—, because it is structurally congruent to
(x=y) |y.P. We have defined transitions for arbitrary processes instead of just pro-
cesses of arity 0. This requires two rules for parallel composition, since parallel com-
position does not commute in the presence of datums.

Proposition 4.1 P\, Q iff P - Q.

We now define the bisimulation relation. Our basic intuition is that two processes
are bisimilar if and only if they have the same interface and, in all contexts of the form
_Qqgp, if one process can do a labelled transition then so can the other. In fact we do
not need to consider all such contexts. Instead it is enough to factor out the top-level
datums and analyse the labelled transitions for just the processes of arity O.

Definition 4.2 (Fusion bisimulation) A symmetric relatior$ is afusion bisimulation
iff wheneverPS(Q then

1. P,Q : m > 0 implies P and Q have standard formgi=)|(vZ)((7)|P1) and
(=0)|(vZ)((5)|Q1) respectively andu=v)| Py S (i=0)|Q1;

2. P,Q : 0 implies they have standard forms=2)| P, and (i=v)|Q1, and



x _ L =z P25,Q o1 =pp) a2
r.P —, P Tz.P —, P S *

P=.Q
Po. P QL. PP QL. q P Q
PlQ Y, prag PlQ 7Y, prag P—=,Q

P2, P P, p P-5.Q, zda

PlQ <, P'|Q QIP %, QP! (vz)P =55 (v2)Q

*We write o =g (py B if o, 3 are identical up tdv(P)

Figure 3: Structuredlabelled transition system. This LTS does not include a rule involving the
structural congruence. Recall thaf P) is the equivalence relation on names generated by
A simple characterisation is given iy, y) € E(P) ifand only if P = P|(z=y)

(a) if P = P’ wherea is z, T or 7, thenQ —— @’ and P'SQ’
(b) if P“=Y P’ then either) =Y Q' or Q - @, and(x=y)| P'Sx=y)|Q";
3. similarly for Q.

Two processe® and() arefusion bisimilar written P ~ @, if and only if there exists

a fusion bisimulation between them. The relatioris the largest fusion bisimulation.
Another bisimulation worth exploring is the standard strong bisimulation, which

requires that fusion transitions match exactly. This bisimulation is a congruence and

contained in the fusion bisimulation. We do not know whether the containment is

strict. This question relates to an open problem forithealculus without replication

or summation, of whether strong bisimulation is closed with respect to substitution.

The Structured LTS

Our goal is to show that the fusion bisimulation in Definitidr? is a congruence.
However, although the quotiented LTS of Figutes simple due to the presence of
the structural congruence rule, the same rule is a problem for proofs. We therefore
introduce astructuredLTS, in which the structural congruence rule is replaced. This
structured LTS is ultimately used in Theordn3to prove that bisimulation is a congru-
ence. The power of the structured LTS is that we can analyse the tranBitiéa, Q
by looking at the structure aP and the labedv.

The structured LTS is given in Figu® Note the first fusion rule. It allows us to
deduce for example that=y) | . P can undergo the transitiod—,; as well as— .

We write ~ for the bisimulation generated by the structured LTS, defined in the
same way as for the quotiented LTS in Definitib.2

Theorem 4.3
1. P ~, QimpliesC[P] ~5 C[Q].

2_N:NS

From Theoren#.3we deduce the main result of this section: that the fusion bisim-
ulation~ for the quotiented LTS is a congruence.



Towards Full Abstraction for the Fusion Calculus

We believe that hyper-equivalence for the fusion calcull® forresponds to open
bisimulation for its embedding in theg-calculus. The following examples illustrate
labelled transitions in the fusion calculus on the left, and the corresponding transitions
therp-calculus on the right:

P L, P T(@)|PY) . @|P
(voyue.p 5 p va)a.(@|P*) —onp  (va)(@)|P7)
uz.P|uy.Q ﬂfu P|Q w.(@)|P*) | w.(()|QF) Lan (x=y) |P*| Q"

First consider the transitions for the fusion calculus. The labelsnd (vz)ux are
standard. The label=y states that a fusion has occurred as a consequence of a reac-
tion. Notice that it is not the same as the labeky in the rz-calculus, which states
that an external fusion must be present for reaction to occur. Now compare the transi-
tions of the fusion calculus with those of the-calculus. The additional information
conveyed by a fusion calculus label, is conveyed imthecalculus by the interface of
the resulting process.

Victor and Parrow show that hyper-equivalence does not correspond to open bisim-
ulation for ther-calculus [LO]. The same result holds for theg--calculus with replica-
tion. The difference is illustrated by the procéss)(u.((zy)|P)). In ther-calculus
the names: andy can never be substituted for equal names. Inithecalculus they
can, using the context u.((zz)).

5 Conclusions

Several calculi with name-fusions have recently been proposed. These include the
fusion calculus 10], the related chi calculusl] and ther-calculus [L1]. In all these
calculi the fusions occumplicitly in the reaction relation. With ther-calculus we

have introduceaxplicit fusions. Explicit fusions are processes which can exist in
parallel with other processes. They are at least as expressive as implicit fusions. The
effect of explicit fusions is described by the structural congruence, not by the reaction
relation. The simplicity of therpr-calculus follows directly from its use of explicit
fusions.

We have given embedding results for thealculus and the fusion calculus in the
wr-calculus. The embedding for the fusion calculus is weaker than that far-the
calculus. This is to be expected. The-reaction is a local reaction between input
and output processes, whose result contains explicit fusions. In contrast, reaction in
the fusion calculus has the side-condition that certain names be restricted. The effect
of this is to permit only those reactions which do not result in explicit fusions. This is
why explicit fusions are not used (or needed) in the fusion calculus.

We have presented a bisimulation congruence forrthealculus. We believe that
hyper-equivalence for the fusion calculus is the same as the bisimulation arising from
its embedding in the #-calculus.

Ongoing Research

Our work on explicit fusions originally arose from a study of process frameworks. We
have developed a framework based on the structural congruence studied, [2rét [



is related to the action calculus framework of Miln8y 3]. Explicit fusions allow us to

work in a process algebra style, rather than the categorical style used for action calculi.
We are currently exploring an embedding of thealculus in ther-calculus. Ex-

plicit fusions allow for a translation that is purely compositional, unlike the analogous

translations into ther-calculus and fusion calculus. It remains further work to relate

behavioural congruence for thecalculus with the bisimulation arising from its em-

bedding in therz-calculus.
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