A Trusted Mechanised Specification of
JavaScript: One Year On

Philippa Gardner, Gareth Smith, Conrad Watt, and Thomas Wood

Imperial College London
{pg,gds,cw2312,twl509}@ic.ac.uk
http://jscert.org

Abstract. The JSCert project provides a Coq mechanised specification
of the core JavaScript language. A key part of the project was to develop
a methodology for establishing trust, by designing JSCert in such a way
as to provide a strong connection with the JavaScript standard, and
by developing JSRef, a reference interpreter which was proved correct
with respect to JSCert and tested using the standard Test262 test suite.
In this paper, we assess the previous state of the project at POPL’14
and the current state of the project at CAV’15. We evaluate the work
of POPL’14, providing an analysis of the methodology as a whole and
a more detailed analysis of the tests. We also describe recent work on
extending JSRef to include Google’s V8 Array library, enabling us to
cover more of the language and to pass more tests.

1 Introduction

JavaScript is the most widely used web language for client-side applications.
However, JavaScript is complex and the associated ECMAScript standard (edi-
tion 5.1 in this paper, abbreviated ES5) is, by necessity, large and full of cor-
ner cases. In POPL’14, Gardner, Smith and others developed a Coq mechanised
specification of the core JavaScript language, called JSCert ([?] and see acknowl-
edgements). This work provides a foundation for future research projects based
on, for example, program logics, type systems, sub-language analyses and ab-
stract interpretation. It demonstrates that modern techniques of mechanised
specification can handle the complexity of JavaScript.

An important part of the JSCert project was to develop a methodology for
establishing trust: JSCert was designed so that each line of the core language
of ES5 corresponds to one or two rules in JSCert; an executable reference inter-
preter, JSRef, was developed in parallel and proved to be correct with respect to
JSCert; and JSRef was tested using Test262, the test suite that accompanies the
ES5 standard. The methodology ensured that JSCert is a comparatively accurate
formulation of the English standard, which will only improve with time.

In this paper, we describe the state of JSCert at POPL’14 and the current
state of JSCert at CAV’15. With JSCert at POPL’14, we evaluate the method-
ology as a whole, report on the test results presented at the time, and assess our
interpretation of the tests. We have found no errors in the Coq proof showing

http://jscert.org

that JSRef is correct with respect to JSCert. We have identified a small num-
ber of cases where we have misinterpreted ES5, with these misinterpretations
occurring consistently in both JSCert and JSRef. These misinterpretations have
now been fixed; the close connection between ES5 and JSCert means that local
misinterpretations of ES5 results in local fixes to JSCert and JSRef. We have
found errors in the analysis of the tests, in particular by misattributing some test
failures to the external parser instead of our parser interface code. Since POPL,
we have greatly improved the test analysis and report on our results here.

For CAV’15, we give a snapshot of the current state of the JSCert project.
The primary criticism of the POPL’14 work was that it only dealt with the
core language, not with the associated libraries. In principle, we do not envis-
age difficulty in extending JSCert to the librariesﬂ although covering all such
libraries would be a mammoth task. Instead, we explore a different approach,
to integrate an existing industrial-strength library implementation with JSRef.
We focus on the Array library for illustration. We implement the Array library’s
low-level functionality using Coq and its high-level functionality using Google’s
V8 Array library implementation in core JavaScript. The V8 Array library is a
good choice for us, as it provides a clear separation between the low-level and
high-level functionality.

We can now run more code and pass more tests. We obtain trust in our
extended JSRef in as far as we can trust the Google V8 Array library, trust our
Coq implementation of the low-level functions, and trust the tests to identify
errors in the industry code and our Coq code. However, this does not compete
with the strong trust of the original JSCert project; for that, we need to extend
JSCert to also specify the Array library.

2 JSCert at POPL’14

JSCert is an inductively-defined Coq semantics of the core part of ES5, suit-
able for carrying out formal proofs of, for example, safety properties of ES5 and
security properties of sub-languages. It identifies the core language of ES5, com-
prising chapters 8-14 of ES5 and a small amount of chapter 15. Chapters 1-7
are not directly relevant to J SCeriﬂ Chapters 8-14 describe the bulk of the core
language. The for-in command has not been specified, since it is notoriously
difficult to understand and requires a global complication of the speciﬁcatiorﬂ

! Maksimovié and Schmitt have begun to specify the core Array specification in JSCert
and JSRef.

2 Chapters 1-7 provide hints on how to read the later chapters, information about
how the standard relates to the rest of the world and information that is only useful
for parsing.

3 During discussion on the es-discuss mailing list, even members of the ECMAScript
committee had differing opinions of what the standard meant. The committee came
to a consensus and we know how to specify the for-in command in JSCert. However,
this specification would involve a global change, with the enumerable fields having
to be explicitly recorded throughout the specification. The choice was to omit this

i JSRef Interpreter- — — — — — — — 1

JSCert I
Mechanised Intfcrz;e)ter

Specification

]

|
|
|
|
Extracted |
|
|
|
|

|

|

I Interpreter
: (0Caml)
|

|

Parser
OCaml Interpreter | <> (Google
Frontend Closure)

Test262
Test Suite

Fig. 1. The JSCert project at POPL’14.

The Array literal syntax has also not been specified, since the project did not
specify the Array library.

Chapter 15 specifies objects and functions that should be present in the heap
when the JavaScript interpreter is started. These functions provide both ‘core’
language functionality which must be directly implemented in the interpreter
(such as special object constructors; eval; or control of property descriptors) and
library or helper functionality which (such as URI decoding or array sorting).
Unfortunately the split is not always clear, as all of these functions are defined
in the ES5 specification in terms of the language’s internal behaviour so it is
not trivial to determine whether a function only makes use of state accessible to
regular JavaScript programs. JSCert has specifications of the ‘core’ functions of
Chapter 15, excluding the Array library.

JSCert is written using the pretty-big-step semantics of Charguéraud [?].
The original operational semantics of JavaScript, created by Maffeis, Mitchell
and Taly [?] for ECMAScript 3, was written using a small-step semantics. By
contrast, the prose of the standard has a big-step flavour. The aim was to design
JSCert to be as close to the standard as possible. However, a traditional big-step
operational semantics would lead to many duplicate rules since the JavaScript
control flow is quite complex. The pretty-big-step semantics enables JSCert to
be closer to the English prose. It was originally developed for a small ML-like
language. The JSCert specification demonstrates that it scales to ES5, a real-
world language which was not designed with formal methods in mind.

The main challenge was (and still is) to convince people (including ourselves)
that JSCert can be trusted as an accurate formulation of the ESH English stan-
dard. The design of the project is illustrated in ?7. JSCert is ‘eyeball close’
to ES5, in the sense that we can place the English prose and the formal rules
side-by-side and compare the two. This closeness is possible due to the pretty-

change, rather than complicate the specification, especially as the for-in command
has essentially been replaced by the better behaved for-of command in the next
standard.

big-step semantics. In most cases, each line of English corresponds to one or
two Coq rules. The reason for the two rules is that, for simplicity, ES5 leaves
much behaviour (such as state change and exception handling) implicit, whereas
JSCert gives the behaviour explicitly to aid comparison and help with proofs. In
some cases, the connection is not quite line by line. A typical example involves
the while specification, where two lines of ES5 English specification correspond
to two Coq rules: in ES5, the Boolean expression is evaluated to a reference then
converted to a Boolean value; in Coq, this is done in one step.

JSCert is accompanied by the JSRef reference interpreter which comprises
several parts. It comprises an interpreter written in Coq which is automatically
extracted to an interpreter written in OCaml. This interpreter is then linked
to a front-end which provides interfaces to the end-user and to a third-party
JavaScript parser (for POPL’14, the Google Closure parser). The interpreter in
Coq has been proved correct with respect to JSCert for chapters 8-14. More
precisely, if the execution of a JavaScript program in JSRef returns a result,
then there exists a reduction derivation in JSCert relating this program to this
result. The creation of the interpreter in OCaml uses automatic Coq extraction
techniques which are standard and well-used. Our trust that the extracted inter-
preter is an accurate reference interpreter for JSCert is based on the correctness
proof for the interpreter in Coq, our trust in the Coq extraction process, the
minimal amounts of unverified front-end code, and the testing using the ES5
conformance test suite, Test262.

The test results focused on chapters 8-14. Those reported in the POPL paper
and talk are given in ??ﬂ The paper stated that ‘JSRef successfully executes
all the tests we expect to pass given our coverage of ESH’. The original analysis
reported that the failed and aborted tests were due to: for-in not implemented;
chapter 15 library functionality not implemented; and failures due to a non-
conforming parser. This analysis was improved by the time of the POPL talk,
hence the two rows in the table: the for command and associated tests (28 tests)
had been omitted due to confusion with the for-in command; and some further
tests (27 tests)ﬂ had been omitted.

Evaluation An original aim of the project was to assess how much of ES5 it
was possible to specify in Coq. JSCert covers the core language of ES5 (chapters
8—14 plus the some of chapter 15), except for the for-in command and the Array
literal syntax, as discussed. The fact that the specification was able to cope
with all the corner cases was a surprise and a considerable achievement. The
‘eyeball closeness’ of JSCert with ES5 has been a success. In our experience, it

* We have separated the fails and the aborts. Most aborts are due to tests calling
functions ‘Not Yet Implemented’, although a few aborts are real parser failures.
Some fails are also due to tests calling functions ‘Not Yet Implemented’. The other
fails are more significant.

® Those associated with the Argument object and those calling the hasOwnProperty
method.

is possible for a Coq expert reading JSCert and a JavaScript expert reading the
ES5 standard to have a detailed discussion about the different formulations.

Recall that JSRef comprises an interpreter in Coq which is extracted to an
interpreter in OCaml. The correctness proof between JSCert and the interpreter
in Coq has also stood the test of time. The proof was given for chapters 8-14.
This gave a precise, clear description of what had been proved. In future, we
would like extend the proof to the core language specified by JSCert. We have
not found any mistakes in this proof. We have found some misinterpretations of
the ES5 standard: for example, strict mode delete was not throwing an exception
for unresolvable references. These misinterpretations are present in both JSCert
and JSRef. JSCert and JSRef were developed separately, by different teams, but
there was much interaction between the teams. When the ES5 standard was
unclear, they reached consensus, both between themselves and with the help of
es-discuss. So far, we have discovered that just a small amount of the ES5 core
language was misinterpreted and this has been fixed.

The test analysis needs improvement. Many failed and aborted tests were due
to for-in and chapter 15 library functionality not being implemented, and this
was correct. However, the failures of many strict-mode tests (at most 237 tests)
were attributed solely to the parser, and this was incorrect: some failures were,
indeed, due to the parser; other failures were due to the misinterpretation of ES5:
for example, strict mode delete previously discussed; and most failures were due
to mistakes in our parser interface code. These mistakes were not picked up by
the tests because the test filtering at the time was ad-hoc and over-zealous for
the strict-mode tests. The test filtering is now much better, the test failures and

aborts are properly attributed, and the mistakes in our parser interface code are
fixed.

Chs. 8-14 Ch. 15.4 — Array
Pass Fail Abort | Pass Fail Abort
POPL’14 paper results | 1796 404 582 | (139) (873) (1307)
POPL’14 1851 392 539 |(149) (864) (1306)
CAV’15 2437 129 216 180 1204 935
CAV’15 (+V8 Array) |2440 126 216 | 1309 59 951

Table 1. JSRef test results as at POPL’14 and CAV’15. The Array results for POPL’14
were not previously reported and are shown for comparison. Two rows of results are
shown for CAV’15, the first without the Google V8 Array library loaded and the second
with it loaded.

3 JSCert at CAV’15

We report on the current state of the JSCert project at CAV’15. JSCert re-
mains largely the same. We have fixed the known inconsistencies with the ES5
standard as noted in the previous section. The JSRef interpreter has changed.
From POPL’14, many of the failed and aborted tests seemed to be due to li-
brary functions not yet implemented. In particular, there were many tests for
the core language that called the Array library. We therefore extend the JSCert
project with this library. One approach is to extend JSCert with a Coq specifi-
cation of the Array library; Maksimovi¢ and Schmitt are beginning to do this.
Another approach is to extend JSRef with an existing industrial-strength library
implementation; we study this approach here.

Most of the Array functions (and, indeed, most of the chapter 15 functions in
general) do not directly access the language’s internal state. They can, therefore,
be implemented in the core JavaScript language and then loaded, parsed and
interpreted to yield an initial heap state which declares these functions. The
major JavaScript interpreters are using or moving towards this approach, which
we explore here for the JSCert project. Rather than implementing this library
ourselves, we use portions of Google’s V8 Array library implementation as it has
a clear separation of core functionality, which requires access to the language’s
internal state, and the higher-level functionality, which is implemented in the
core JavaScript language.

The new structure of the JSCert project is given in ?7?7. JSCert remains
largely the same. The parser has been changed from Google’s Closure to jQuery’s
Esprima for improved correctness, execution speed and web compliance. This
change involved adding support for translation from the de facto SpiderMonkey
AST to our internal AST representation, enabling us to use a wide range of
third-party parsers for the front-end of JSRef. The JSRef interpreter has been
extended to include the V8 Array library. To support the execution of this li-
brary, we extended the interpreter written in Coq with a number of low-level
functions: some of these functions are defined in other sections of Chapter 15,
such as those associated with Object or Function; and some provide access to
a small amount of usually restricted internal state used, for example, to modify
the prototype of an object or set the normally immutable length field of a func-
tion. In addition, V8 has some minor helper functions implemented in C++ to
improve performance. We implement these helper functions in core JavaScript
to minimise the size of the native/interpreted interface.

The test results are given in ??7. We provide a more careful analysis of the
tests for chapters 8-14. We also execute and analyse the tests for the chapter
15.4. For the chapter 8-14 tests, we believe that all the failed and aborted tests
are doing so for valid reasons. These are mostly due to parts of the language that
are not yet implemented: namely, the for-in statement (93 tests failing); array
literal syntax (26 tests); 78 tests failing for missing chapter 15 functionality;
and 135 tests failing for other non-implemented features. In addition: 7 tests
are failing because they use strictly invalid, but commonly used, syntax; 1 test
is failing due to a parser bug (reported to the vendor); and 2 tests are failing

i JSRef Interpreter- — — — — — — — 1

JSCert I
S le A e P

Specification

* v8 Array
Library
(0Caml) 4

OCaml Interpretef | ~ Parser
P ~<€>| (Esprima,...)

Frontend

|

|

| Extracted (JS)
| Interpreter % T
|

|

|

ECMAScript 5
Standard

Test262
Test Suite

Fig. 2. The JSCert Project at CAV’15.

due to the method of executing multiple programs in sequence by the unverified
interpreter front-end.

We have run the tests for the chapter 15.4, but currently have only a partial
analysis of the tests. Since we use Google’s V8 Array library, we can probably
trust the implementation of the high-level functions and do not expect many
test failures associated with them. We do expect test failures in our Coq and
JavaScript code which replaces the V8 C++ code, partially because it is code
we have written and partially because the interface between the JavaScript and
C++ code is not documented. The only way to establish trust in our code is
through testing.

At the moment, 904 tests fail or abort due to Array literal syntax from
chapters 8-14 not being implemented. This is potentially masking many bugs.
For POPL’14, the Array literal syntax was not implemented because we were
not calling the library. Now, the library is being called and the Array literal
syntax needs to be specified in JSCert, interpreted in JSRef and the correctness
proof extended. This is currently being done by Maksimovi¢ and Schmitt as
part of their specification of the Array library. Many of the other tests fail due
to parts of the language that are not yet implemented: namely, 30 tests because
of the missing for-in statement; 53 because of missing chapter 15 functionality;
19 tests because of other non-implemented features; and 1 test because of the
use of invalid syntax. Additionally, 3 tests are failing due to an error in the
ES5 speciﬁcatiorﬂ This error was introduced as a typographic error between
versions 3 and 5 of the ECMAScript specification. Test262 captures the intended
semantics as per ES3, JSCert captured the incorrect semantics of ES5. The
resulting discrepancy revealed itself as a set of test failures discovered during
this test evaluation.

5 https://bugs.ecmascript.org/show_bug.cgi?id=162

https://bugs.ecmascript.org/show_bug.cgi?id=162

Evaluation This paper assesses the current state of the JSCert project, re-
ports on the improved analysis of the tests for chapters 8-14, and describes the
extension of JSRef with Google’s V8 Array library implementation.

JSCert provides a mechanised specification of the core JavaScript language,
as described by the ES5 standard. It comprises chapters 8-14 and parts of chapter
15, omitting the for-in command and the Array literal syntax. Following our work
in POPL’14, the ES5 standard has also been specified in the K framework [?].
In this work, the definition of the core language is that required to pass the
core tests. In fact, it is not completely clear what the core language should be,
since it is not precisely described by the ES5 standard. We should at some point
compare the choices in the JSCert and the K specifications.

The proof that JSRef is correct with respect to JSCert has only been done
for chapters 8-14, not the core language. The choice to focus on chapters 8-
14 was made to present a clear boundary of what had been proved. However,
in future, we would like to extend the proof to the core language. For now, the
analysis of the tests focused on chapters 8-14 and the chapter 15.4 Array library.
The infrastructure for analysing the tests has been vastly improved: the test run
takes considerably less time; the filtering is more accurate; and the test analysis
can be more trusted. We believe the tests for chapters 8-14 are well done. The
tests for chapter 15.4 Array library are on-going. Many tests involve the Array
literal syntax from chapters 8-14 which has not being implemented. These might
be hiding many bugs, and we will investigate this once Maksimovi¢ and Schmitt
have extended JSCert, JSRef and the proof to include the Array literal syntax.
Otherwise, the other failed tests are understood.

We believe our experiment to extend JSRef with Google’s V8 Array library
has been a success. A next step is to extend this approach to the String, Boolean
and Number libraries. Our overall aim is to pass as many tests as we can.

Acknowledgements Two of the authors of this paper, Gardner and Smith, were
part of the original team working on JSCert. We would like to thank the other co-
authors for continuing invaluable discussions about this project: Martin Bodin,
Arthur Charguéraud and Alan Schmitt from Inria; and Daniel Filaretti, Sergio
Maffeis and Daiva Naudziuniené from Imperial. We also would like to thank
Petar Maksimovié and Alan Schmitt for interesting discussions and interaction
about the Array library. They are beginning to specify the core Array library in
Coq.

Gardner and Smith are supported by EPSRC Grant EP/K032089/1. Watt
was supported by a GCHQ Undergraduate Internship Project award. Wood is
supported by an EPSRC DTA award.

