
A Certified Algorithm for AC-Unification
Mauricio Ayala-Rincón Ï

Departments of Computer Science and Mathematics, University of Brasília, Brazil

Maribel Fernández Ï

Department of Informatics, King’s College London, UK

Gabriel Ferreira Silva Ï

Department of Computer Science, University of Brasília, Brazil

Daniele Nantes Sobrinho Ï

Department of Computing, Imperial College London, UK
Department of Mathematics, University of Brasília, Brazil

Abstract
Implementing unification modulo Associativity and Commutativity (AC) axioms is crucial in rewrite-
based programming and theorem provers. We modify Stickel’s seminal AC-unification algorithm
to avoid mutual recursion and formalise it in the PVS proof assistant. More precisely, we prove
the adjusted algorithm’s termination, soundness, and completeness. To do this, we adapted Fages’
termination proof, providing a unique elaborated measure that guarantees termination of the modified
AC-unification algorithm. This development (to the best of our knowledge) provides the first fully
formalised AC-unification algorithm.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Equational logic and rewriting

Keywords and phrases AC-Unification, PVS, Certified Algorithms, Formal Methods, Interactive
Theorem Proving

Digital Object Identifier 10.4230/LIPIcs.FSCD.2022.8

Related Version Extended version available at: https://www.mat.unb.br/ayala/

Supplementary Material Source code available through hyperlinks on the paper.

Funding Research supported by a FAP-DF (DE 00193.00001175/2021-11) and a CNPq (Universal
409003/2021-2) grant. First author partially funded by a CNPq productivity research grant
313290/2021-0. Fourth author partially funded by Edital DPI/DPG n. 03/2020.

1 Introduction

Syntactic unification is the problem of, given terms s and t, finding a substitution σ such that
σs = σt. The problem of syntactic unification can be generalised to consider an equational
theory E. In this case, called E-unification, we must find a substitution σ such that σs and
σt are equal modulo E, which we denote σs ≈E σt [15].

Unification has practical applications in mathematics and computer science. It is used, for
instance, in interpreters of logic programming languages such as Prolog, in resolution-based
theorem provers, in confluence tests based on critical pairs, and so on [5]. Since associative
and commutative operators are frequently used in programming languages and theorem
provers, tools to support reasoning modulo Associativity and Commutativity axioms are
often required. The problem of AC-unification has been widely studied in this context
(see [22, 5]).

© Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, and Daniele Nantes Sobrinho;
licensed under Creative Commons License CC-BY 4.0

7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022).
Editor: Amy P. Felty; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.mat.unb.br/ayala/
https://orcid.org/0000-0003-0089-3905
https://nms.kcl.ac.uk/maribel.fernandez/
https://orcid.org/0000-0001-8325-5815
https://gabriel951.github.io/
https://orcid.org/0000-0003-1679-3597
https://www.mat.unb.br/~dnantes/index.html
https://orcid.org/0000-0002-1959-8730
https://doi.org/10.4230/LIPIcs.FSCD.2022.8
https://www.mat.unb.br/ayala/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 A Certified Algorithm for AC-Unification

Related Work. Unification in the presence of AC-function symbols was first solved by
Stickel [21]. He showed how the problem is connected to finding nonnegative integral solutions
to linear equations and proved that his algorithm was terminating, sound, and complete for a
subclass of the general case [21, 22]. However, Stickel’s proof of termination did not apply to
the general case: almost a decade after the introduction of this algorithm, Fages proposed a
measure fixing the termination proof for the general case [12, 13]. Since then, investigations
on solving AC-unification efficiently, on the complexity of AC-unification, and on formalising
unification modulo equational theories were carried out.

Regarding solving AC-unification efficiently, Boudet et al. [8] proposed an AC-unification
algorithm that explores constraints more efficiently than the standard algorithm. Further,
Boudet [7] described and compared an implementation of this algorithm to previous ones.
Also, Adi and Kirchner [1] implemented an AC-unification algorithm, proposed benchmarks
and showed that their algorithm improves over previous ones in time and space.

Regarding the complexity of AC-unification, Benanav et al. [6] showed that the decision
problem for AC-matching is NP-complete, and the decision problem for AC-unification is
NP-hard. In addition, Kapur and Narendran [16] showed that the complexity of computing
a complete set of AC-unifiers is double-exponential.

As far as we know, there are no formalisations of AC-unification algorithms. Nevertheless,
there are formalisations of related algorithms, and some preliminary work has been done.

Ayala-Rincón et al. [2] formalised nominal α-equivalence for associative, commutative and
associative-commutative function symbols. That work is in the nominal setting (see [20]),
which encompasses first-order AC-equivalence.

In 2004, Contejean [11] gave a certified AC-matching algorithm in Coq. AC-matching
is an easier problem (see Remark 8) related with AC-unification, where we must find a
substitution σ such that σs ≈AC t. A formalisation of nominal C-unification, which can
also handle nominal C-matching, is also available [3]. Additionally, Meßner et al. [17] gave
a formally verified solver for homogeneous linear Diophantine equations in Isabelle/HOL.
As we shall see, the problem of AC-unification is connected to solving linear Diophantine
equations.

It is well-known that although both C- and AC-unification problems are of finitary type,
the complexity of computing a complete set of unifiers for the former problem is exponential,
while for the latter one, it is double-exponential [16]. Indeed, to build minimal complete
sets of C-unifiers, only simple swapping-argument-combinations need to be considered to
instantiate variables. However, to build minimal complete sets of AC-unifiers, all possible
associations and permutations of arguments should be considered, which is precisely expressed
by Stickel’s method based on solving Diophantine equations.

Contribution and Applications. In this work, we give the first (as far as we know) formal-
isation of termination, soundness and completeness of an algorithm for AC-unification. We
formalised Stickel’s algorithm for AC-unification using the proof assistant PVS [18]. We
chose PVS since we want, as future work (see Section 5), to enrich the nominal unification
library that already exists in PVS with a nominal AC-unification algorithm.

When deciding which AC-unification algorithm to formalise, we looked for concise and
well-established algorithms, which led us to select Stickel’s algorithm, using Fages’ proof of
termination. We apply minor modifications to Stickel’s AC-unification algorithm in order to
avoid mutual recursion (PVS does not allow mutual recursion directly, although this can be
emulated using PVS higher-order features, see [19]) and to ease the formalisation.

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:3

Our formalisation could be used as a starting point to prove the correctness of more
efficient algorithms. For instance, when we solve the linear Diophantine equations necessary
for AC-unification, we do it until a certain bound is reached, proved sufficient by Stickel [22].
One possible way to sharpen our formalisation is to use a smaller bound, such as the one
mentioned by Clausen and Fortenbacher [10]. Another possible way to improve the efficiency
of the algorithm is to solve the mentioned Diophantine equations more efficiently, using
the graph approach, also described in [10]. Adapting our formalisation to algorithms that
use directed acyclic graphs (DAGs) to represent terms (e.g., Boudet’s [7]) would imply a
reformulation of almost all subtheories of the formalisation due to their dependency on terms.
But such a reformulation would be possible and faster than starting from scratch as discussed
in Remark 36, Appendix B.

Organisation. Section 2 gives the necessary background; Section 3 explains the modification
of Stickel’s algorithm; Section 4 discusses the most interesting points of the formalisation;
finally, Section 5 concludes and discusses possible paths of future work. The appendices
provide further details about the algorithms, the PVS code and the proofs. In addition to
the appendices, we include cyan-coloured hyperlinks to specific points of interest of the PVS
formalisation.

2 Background and Example

From now on, we omit the subscript and write that t and s are equal modulo AC as t ≈ s.

▶ Definition 1 (Terms). Let Σ be a signature with function symbols and AC-function symbols.
Let X be a set of variables. The set T (Σ, X) is generated by the grammar:

s, t ::= a | X | ⟨⟩ | ⟨s, t⟩ | f t | fAC t

where a denotes a constant, X a variable, ⟨⟩ is the unit, ⟨s, t⟩ is a pair, f t is a function
application and fACt is an associative-commutative function application.

Terms were specified as shown in Definition 1 to make it easier to eventually adapt
the formalisation to the nominal setting in future work. That is the reason why the unit
(an element in the grammar of the nominal terms) appears in Definition 1. Pairs are used
to represent tuples with an arbitrary number of terms. For instance, the pair ⟨t1, ⟨t2, t3⟩⟩
represents the tuple (t1, t2, t3). In Definition 1 we imposed that a function application is of
the form ft, which is not a limitation since t can be a pair. For instance, the term f(a, b, c)
can be represented as f⟨⟨a, b⟩, c⟩ and its arguments are a, b and c.

▶ Definition 2 (Well-formed Terms). We say that a term t is well-formed if t is not a pair
and every AC-function application that is a subterm of t has at least two arguments.

▶ Definition 3 (AC-Unification problem). An AC-unification problem is a finite set of equations
P = {t1 ≈? s1, . . . , tn ≈? sn}. The left-hand side of the unification problem P is defined as
{t1, . . . , tn} while the right-hand side is defined as {s1, . . . , sn}.

▶ Notation 1 (AC-Unification pairs). When t and s are both headed by the same AC-function
symbol, we refer to the equation t ≈? s as an AC-unification pair.

To ease our formalisation (more details in the extended version), we have restricted the
terms in the unification problem that our algorithm receives to well-formed terms. Excluding
pairs is natural since they are used to encode (lists of) arguments of functions.

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/
https://github.com/gabriel951/ac_unification_FSCD2022/
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L10
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L619
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification.pvs#L27

8:4 A Certified Algorithm for AC-Unification

▶ Notation 2. When convenient, we may mention that a function symbol f is an AC-function
symbol, omit the superscript and write simply f instead of fAC .

▶ Notation 3 (Flattened form of AC-functions). When convenient, we may denote in this
paper an AC-function in flattened form. For instance, the term fAC⟨fAC⟨a, b⟩, fAC⟨c, d⟩⟩
may be denoted simply as fAC(a, b, c, d). In our formalisation (for instance in function
Argsf), when we manipulate an AC-function term t we are more interested in its arguments
than in how they were encoded using pairs.

▶ Notation 4 (V ars). We denote the set of variables of a term t by V ars(t). Similarly, we
denote the set of variables that occur in a unification problem P as V ars(P).

A substitution σ is a function from variables to terms, such that σX ̸= X only for a
finite set of variables, called the domain of σ and denoted as dom(σ). The image of σ is
then defined as im(σ) = {σX | X ∈ dom(σ)}. A well-formed substitution only instantiates
variables to well-formed terms. In the proofs of soundness and completeness of the algorithm,
we restrict ourselves to well-formed substitutions. Let V be a set of variables. If dom(σ) ⊆ V

and V ars(im(σ)) ⊆ V we write σ ⊆ V . In our PVS code, substitutions are represented by a
list, where each entry of the list is called a nuclear substitution and is of the form {X → t}.

▶ Definition 4 (Nuclear substitution action on terms). A nuclear substitution {X → s} acts
over a term by induction as shown below:

{X → s}a = a

{X → s}⟨⟩ = ⟨⟩

{X → s}Y =
{

s if X = Y

Y otherwise

{X → s}⟨t1, t2⟩ = ⟨{X → s}t1, {X → s}t2⟩
{X → s}(f t1) = f ({X → s}t1)
{X → s}(fAC t1) = f ({X → s}t1)

▶ Definition 5 (Substitution acting on terms). Since a substitution σ is a list of nuclear
substitutions, the action of a substitution is defined as:

nil t = t, where nil is the null list, used to represent the identity substitution
cons({X → s}, σ) t = {X → s}(σt)

▶ Remark 6. Notice that in the definition of action of substitutions the nuclear substitution
in the head of the list is applied last. This allows us to, given substitutions σ and δ, obtain
the substitution σ ◦ δ in our code simply as append(σ, δ).

▶ Notation 5. From now on, when composing two substitutions σ and δ we may omit the
composition symbol and write σδ instead of σ ◦ δ.

We now define AC-unification unifiers and complete set of unifiers (Definition 7).

▶ Definition 7 (AC-unifiers). Let P be a unification problem {t1 ≈? s1, . . . , tn ≈? sn}. An
AC-unifier or solution of P is a substitution σ such that σti ≈ σsi for every i from 1 to n.

A substitution σ is more general (modulo AC) than a substitution σ′ in a set of variables
V if there is a substitution δ such that σ′X ≈ δσX, for all variables X ∈ V . In this case we
write σ ≤V σ′. When V is the set of all variables, we write σ ≤ σ′.

With the notion of more general substitution, we can define a complete set C of unifiers
of P as a set that satisfies two conditions: each σ ∈ C is an AC-unifier of P ; and for every δ

that unifies P , there is σ ∈ C such that σ ≤V ars(P) δ.

We represent an AC-unification problem P as a list in our PVS code, where each element
of the list is a pair (ti, si) that represents an equation ti ≈? si. Finally, given a unification
problem P = {t1 ≈? s1, . . . , tn ≈? sn}, we define σP as {σt1 ≈? σs1, . . . , σtn ≈? σsn}.

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L197
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L468
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification.pvs#L66
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/substitution.pvs#L126
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/substitution.pvs#L30
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/substitution.pvs#L53

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:5

2.1 What Makes AC-unification Hard

Let f be an associative-commutative function symbol. Finding a complete set of unifiers for
{f(X1, X2) ≈? f(a, Y)} is not as easy as it appears at first sight, since it is not enough to
simply compare the arguments of the first term with the arguments of the second term. Indeed,
this strategy would give us only σ1 = {X1 → a, Y → X2} and σ2 = {X2 → a, Y → X1} as
solutions, missing for example the substitution σ3 = {X1 → f⟨a, W ⟩, Y → f⟨X2, W ⟩}. This
solution would be missed because the arguments of σ3Y = f⟨X2, W ⟩ are partially contained
in σ3X1 = f⟨a, W ⟩ and partially contained in σ3X2 = X2.

▶ Remark 8. In contrast to AC-unification, to guarantee the completeness of AC-matching,
it is enough to explore all possible pairings of the arguments of the first term with the
arguments of the second term. Evidence of the difficulty of AC-unification is the fact that,
although Contejean formalised AC-matching in 2004 (see [11]), until now, there has been no
formalisation of AC-unification.

2.2 An Example

Before presenting the pseudocode for the algorithm we formalised, we give a higher-level
example (taken from the very accessible [22]) of how we would solve {f(X, X, Y, a, b, c) ≈?

f(b, b, b, c, Z)}. In a high-level view, this technique converts an AC-unification problem into
a linear Diophantine equation and uses a basis of solutions of the Diophantine equation to
get a complete set of AC-unifiers to our original problem.

The first step is to eliminate common arguments in the terms that we are trying to
unify. The problem is now {f(X, X, Y, a) ≈? f(b, b, Z)}. The second step is to associate our
unification problem with a linear Diophantine equation, where each argument of our terms
corresponds to one variable in the equation (this process is called variable abstraction) and
the coefficient of this variable in the equation is the number of occurrences of the argument.
In our case, the linear Diophantine equation obtained is: 2X1 + X2 + X3 = 2Y1 + Y2 (variable
X1 was associated with argument X, variable X2 with the argument Y and so on; the
coefficient of variable X1 is two, since argument X occurs twice in f(X, X, Y, a) and so on).

Table 1 Solutions for the equation 2X1 + X2 + X3 = 2Y1 + Y2.

X1 X2 X3 Y1 Y2 New Vars.
0 0 1 0 1 Z1

0 1 0 0 1 Z2

0 0 2 1 0 Z3

0 1 1 1 0 Z4

0 2 0 1 0 Z5

1 0 0 0 2 Z6

1 0 0 1 0 Z7

The third step is to generate a basis of solutions to the equation and associate a
new variable (the Zis) to each solution. As we shall soon see, the unification problem
{f(X, X, Y, a) ≈? f(b, b, Z)} may branch into (possibly) many unification problems and the
new variables Zis will be the building blocks for the right-hand side of these unification
problems. The result is shown on Table 1. Observing Table 1 we relate the “old variables”

FSCD 2022

8:6 A Certified Algorithm for AC-Unification

(Xis and Yis) with the “new variables” (Zis):

X1 = Z6 + Z7

X2 = Z2 + Z4 + 2Z5

X3 = Z1 + 2Z3 + Z4

Y1 = Z3 + Z4 + Z5 + Z7

Y2 = Z1 + Z2 + 2Z6.

(1)

In order to explore all possible solutions, we must consider whether we will include or not
each solution on our basis. Since seven solutions compose our basis (one for each variable Zi),
this means that a priori there are 27 cases to consider. Considering that including a solution
of our basis means setting the corresponding variable Zi to 1 and not including it means
setting it to 0, we must respect the constraint that no original variables (X1, X2, X3, Y1, Y2)
receive 0. Eliminating the cases that do not respect this constraint, we are left with 69 cases.

For example, if we decide to include only the solutions represented by the variables Z1,
Z4 and Z6, the corresponding unification problem, according Equations (1), becomes:

P = {X1 ≈? Z6, X2 ≈? Z4, X3 ≈? f(Z1, Z4), Y1 ≈? Z4, Y2 ≈? f(Z1, Z6, Z6)}. (2)

We can also drop the cases where a variable that does not represent a variable term is
paired with an AC-function application. For instance, the unification problem P should
be discarded, since the variable X3 represents the constant a, and we cannot unify a with
f(Z1, Z4). This constraint eliminates 63 of the 69 potential unifiers.

Finally we replace the variables X1, X2, X3, Y1, Y2 by the original arguments they substi-
tuted and proceed with the unification. Some unification problems that we will explore will be
unsolvable and discarded later, as: {X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}
(we cannot unify both a with Z4 and b with Z4 simultaneously). In the end, the solutions
computed will be:

σ1 = {Y → f(b, b), Z → f(a, X, X)}, σ2 = {Y → f(Z2, b, b), Z → f(a, Z2, X, X)},

σ3 = {X → b, Z → f(a, Y)}, σ4 = {X → f(Z6, b), Z → f(a, Y, Z6, Z6)}.
(3)

▶ Remark 9. When using the technique described in this section to unify f(X, X, Y, a, b, c)
with f(b, b, b, c, Z), we obtained unification problems that only contain the variables X1, X2,
X3, Y1, Y2 or AC-functions whose arguments are all variables (for instance P in Equation 2).
However, this does not mean that our technique cannot be applied to general AC-unification
problems, since we eventually replace the variables X1, X2, X3, Y1, Y2 by their corresponding
arguments (X, Y, a, b, Z respectively) and proceed with unification.
▶ Remark 10 (Cases on AC1-Unification). If we were considering AC1-unification, where our
signature has an identity id function symbol, we could consider only the case where we
include all the AC solutions in our basis and instantiate the variables Zis later on to be id.

3 Algorithm

For readability, we present the pseudocode of the algorithms, instead of the actual PVS code.
We have formalised Algorithm 1 to be terminating, sound and complete. Moreover, the
algorithm is functional and keeps track of the current unification problem P , the substitution
σ computed so far, and the variables V that are/were in the problem. The output is a list of

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification_alg.pvs#L28

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:7

Algorithm 1 Algorithm to Solve an AC-Unification Problem P .

1: procedure ACUnif(P, σ, V)
2: if nil?(P) then return cons(σ, nil)
3: else let ((t, s), P1) = choose(P) in
4: if (s matches X) and (X not in t) then
5: σ1 = {X → t}
6: return ACUnif(σ1P1, append(σ1, σ), V)
7: else
8: if t matches a then
9: if s matches a then return ACUnif(P1, σ, V)

10: else return nil
11: else if t matches X then
12: if X not in s then
13: σ1 = {X → s}
14: return ACUnif(σ1P1, append(σ1, σ), V)
15: else if s matches X then return ACUnif(P1, σ, V)
16: else return nil
17: else if t matches ⟨⟩ then
18: if s matches ⟨⟩ then return ACUnif(P1, σ, V)
19: else return nil
20: else if t matches f t1 then
21: if s matches f s1 then
22: (P2, bool) = decompose(t1, s1)
23: if bool then return ACUnif(append(P2, P1), σ, V)
24: else return nil
25: else return nil
26: else
27: if s matches fAC s1 then
28: InputLst = applyACStep(P, nil, σ, V)
29: LstResults = map(ACUnif, InputLst)
30: return flatten (LstResults)
31: else return nil

substitutions, where each substitution δ in this list is an AC-unifier of P . The first call to
the algorithm, in order to unify two terms t and s, is done with P = cons((t, s), nil), σ = nil

(because we have not computed any substitution yet) and V = V ars((t, s)).
The algorithm explores the structure of terms. It starts by analysing the list P of terms

to unify. If it is empty (line 2), we have finished, and the algorithm returns a list containing
only one element: the substitution σ computed so far. Otherwise the algorithm calls the
auxiliary function choose (line 3), that returns a pair (t, s) and a unification problem P1,
such that P = {t ≈? s} ∪ P1. The algorithm will try to simplify our unification problem P

by simplifying {t ≈? s}, and it does that by seeing what the form of t and s is.
▶ Remark 11. The algorithm does not check arity consistency of the input.

3.1 The Functions choose and decompose
The function choose selects a unification pair from the input problem, avoiding AC-
unification pairs if possible. This means that we will only enter on the if of line 27 of
ACUnif (see Algorithm 1) when P = {t1 ≈? s1, . . . , tn ≈? sn} is such that for every i,

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L317

8:8 A Certified Algorithm for AC-Unification

ti ≈? si is an AC-unification pair. This heuristic aid us in the proof of termination; makes
the algorithm more efficient, since it guarantees that we only enter on the AC-part of the
algorithm when we need it (the AC-part is the computationally heaviest); and is not a
significant deviation from Stickel’s algorithm [22].

If the function decompose receives two terms t and s and these terms are both pairs,
it recursively tries to decompose them, returning a tuple (P, bool), where P is a unification
problem and bool is a boolean that is True if the decomposition was successful. If neither t nor
s is a pair, the unification problem returned is just P = {t ≈? s} and bool = True. If one of
the terms is a pair and the other is not, the function returns (nil, False). In Algorithm 1, we
call decompose (t1, s1) when we encounter an equation of the form ft1 ≈? fs1 and therefore
guarantee that all the terms in the unification problem remain well-formed. Although it
would have been correct to simplify an equation of the form ft1 ≈? fs1 to t1 ≈? s1, if t1 or
s1 were pairs we would not respect our restriction that only well-formed terms are in our
unification problem.

▶ Example 12. Below we give examples of function decompose.
decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨X, Y ⟩⟩) = ({a ≈? c, b ≈? X, c ≈? Y }, T rue)
decompose(a, Y) = ({a ≈? Y }, T rue)
decompose(X, ⟨c, d⟩) = (nil, False)

3.2 The AC-part of the Algorithm
The AC-part of Algorithm 1 relies on function applyACStep (Section 3.2.4), which depends
on two functions: solveAC (Section 3.2.1) and instantiateStep (Section 3.2.3). Since
there are multiple possibilities for simplifying each AC-unification pair, applyACStep will
return a list (InputLst in Algorithm 1), where each entry of the list corresponds to a branch
Algorithm 1 will explore (line 28). Each entry in the list is a triple that will be given as
input to ACUnif, where the first component is the new AC-unification problem, the second
component is the substitution computed so far and the third component is the new set of
variables that are/were in use. After ACUnif calls applyACStep, it explores every branch
generated by calling itself recursively on every input in InputLst (line 29 of Algorithm 1).
The result of calling map(ACUnif, InputLst) is a list of lists of substitutions. This result is
then flattened into a list of substitutions and returned.

3.2.1 Function solveAC
The function solveAC does what was illustrated in the example of Section 2.2. While
applyACStep or ACUnif take as part of the input the whole unification problem, solveAC
takes only two terms t and s. It assumes that both terms are headed by the same AC-function
symbol f . It also receives as input the set of variables V that are/were in the problem (since
solveAC will introduce new variables, we must know the ones that are/were already in use).

The first step is to eliminate common arguments of both t and s. This is done by function
elimComArg, which returns the remaining arguments and their multiplicity.

To ease the formalisation we do not calculate a basis of solutions for the linear Diophantine
equation, but a spanning set (which is not necessarily linearly independent). To generate
this spanning set, it suffices to calculate all the solutions until an upper bound, computed
by function calculateUpperBound. Given a linear Diophantine equation a1X1 + . . . +
amXm = b1Y1 + . . . + bnYn, our upper bound (taken from [21]) is the maximum of m and

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification.pvs#L206
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L202
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L67
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/diophantine.pvs#L55

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:9

n times the maximum of all the least common multiples (lcm) obtained by pairing each
one of the ais with each one of the bjs. In other words, our upper bound is: max(m, n) ∗
maxi,j(lcm(ai, bj)).

D =

0 0 1 0 1
0 1 0 0 1
0 0 2 1 0
0 1 1 1 0
0 2 0 1 0
1 0 0 0 2
1 0 0 1 0

The function dioSolver receives as input the multiplicity of the arguments of t and s

and the upper bound calculated by calculateUpperBound and calculates the spanning
set of solutions, returning a matrix. For instance, the Table 1 of the Example in Section 2.2
would be represented in our code as the matrix D. Each row of D is associated with one
solution and thus with one of the new variables. Each column of D is associated with one of
the arguments of t or s. Modifying dioSolver to calculate a basis of solutions (for instance,
by using the method described in [10]) instead of a spanning set would certainly improve the
efficiency of the algorithm.

To explore all possible cases, we must decide whether or not we will include each solution.
In our code, this translates to considering submatrices of D by eliminating some rows. In
the example of Section 2.2, we mentioned that we should observe two constraints:

no “original variable” (the variables X1, . . . , Xm, Y1, . . . , Yn associated with the arguments
of t and s) should receive the value 0. In terms of D, it means every column has at least
one coefficient different than zero.
an original variable, which does not represent a variable term, cannot be paired with an
AC-function application. In terms of D, it means that a column corresponding to one
non-variable argument has one coefficient equal to 1 and all the remaining coefficients
equal to 0.

The function in our PVS code that extracts (a list of) the submatrices of D that satisfies
these constraints is extractSubmatrices. Let SubmatrixLst be this list.

Finally, we translate each submatrix D1 in SubmatrixLst into a new unification problem
P1, by calling function dioMatrix2acSol. For instance, the unification problem P1 =
{X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)} would be obtained from submatrix
D1.

D1 =
(

0 1 1 1 0
1 0 0 0 2

)

Notice that this is the submatrix associated with a solution including only the rows 4
and 6 (of the variables Z4, Z6).

The function dioMatrix2acSol also updates the variables that are/were in the uni-
fication problem, to include the new variables Zis introduced. In our example, the new set
of variables that are/were in the problem is V1 = {X, Y, Z, Z4, Z6}. Therefore, the output
of dioMatrix2acsol is a pair, where the first component is the new unification problem
(in our example P1) and the second component is the new set of variables that are/were in
use (in our example V1). The output of solveAC is the list of pairs obtained by applying
dioMatrix2acSol to every submatrix in SubmatrixLst.

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/diophantine.pvs#L118
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L143
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L190

8:10 A Certified Algorithm for AC-Unification

3.2.2 Common Structure of Unification Problems Returned by solveAC
Suppose function solveAC receives as input the terms u and v, both headed by the same
AC-function symbol f . Let u1, . . . , um be the different arguments of u and let v1, . . . , vn

be the different arguments of v, after eliminating the common arguments of u and v. If
P1 = {t1 ≈? s1, . . . , tk ≈? sk} is one of the unification problems generated by function
solveAC, when it receives as input u and v then:

1. k = m + n and the left-hand side of this unification problem (i.e., the terms t1, . . . , tk)
are the different arguments of u and v:

ti =
{

ui, if i ≤ m

vi−m otherwise.

2. The terms in the right-hand side of this problem (i.e., the terms s1, . . . , sk) are introduced
by solveAC and are either new variables Zis or AC-functions headed by f whose
arguments are all new variables Zis (This is how we obtained the problem in (2)).

3. A term si is an AC-function headed by f only if the corresponding term ti is a variable.

3.2.3 Function instantiateStep
After the application of function solveAC, we instantiate the variables that we can by
calling function instantiateStep. Indeed, for the proof of termination, it is necessary to
compose the substeps of the algorithm with some strategy, as the following example (adapted
from [13]) shows.

▶ Example 13 (Looping forever). Let f be an AC-function symbol. Suppose we want to
solve P = {f(X, Y) ≈? f(U, V), X ≈? Y, U ≈? V } and instead of instantiating the variables
as soon as we can, we decide to try solving the first equation. Applying function solveAC
to try to unify f(X, Y) with f(U, V) we obtain as one of the branches the unification
problem {X ≈? f(X1, X2), Y ≈? f(X3, X4), U ≈? f(X1, X3), V ≈? f(X2, X4)}. We can
solve this branch by instantiating X, Y , U and V . After these instantiations, we have
to unify the remaining two equations: {f(X1, X2) ≈? f(X3, X4), f(X1, X3) ≈? f(X2, X4)}.
Solving the first equation, one branch obtained is {X1 ≈? X3, X2 ≈? X4}, which get us
back to P ′ = {f(X1, X3) ≈? f(X2, X4), X1 ≈? X3, X2 ≈? X4}, which is essentially the same
unification problem we started with.

This infinite loop in our example would not have happened if we had instantiated
{X → Y } and {U → V } in the beginning. To prevent this from happening, Algorithm 1
only handles AC-unification pairs when there are no equations s ≈? t of other type left, and
as soon as we apply the function solveAC we immediately instantiate the variables that we
can by calling function instantiateStep.

3.2.4 Function applyACStep
Function applyACStep relies on functions solveAC and instantiateStep, and is called
by Algorithm 1 when all the equations s ≈? t ∈ P are AC-unification pairs. In a very
high-level view, it applies functions solveAC and instantiateStep to every AC-unification
pair in the unification problem P . It receives as input a unification problem, which is
partitioned in sets P1 and P2, a substitution σ, and the set of variables to avoid V . P1 and
P2 are, respectively, the subset of the unification problem for which functions solveAC and

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/aux_unification.pvs#L267
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/apply_ac_step.pvs#L77

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:11

instantiateStep have not been called, and the subset to which we have already called
these functions. The substitution σ is the substitution computed so far. Therefore, the first
call to this function is with P2 = nil and as the function goes recursively calling itself, P1
diminishes while P2 increases.

4 Interesting Points on the Formalisation

4.1 Avoiding Mutual Recursion
When specifying Stickel’s algorithm, we tried to follow closely the pseudocode presented
in [13] (the papers [21, 22] give a higher-level description of the algorithm). In [13] there is a
function uniAC used to unify terms t and s and a function unicompound used to unify a list
of terms (t1, . . . , tn) with a list of terms (s1, . . . , sn). These functions are mutually recursive,
i.e. uniAC calls unicompound and vice-versa, something not allowed in PVS1 [19].

We have adapted the algorithm to use only one main function, which receives a unification
problem P and operates (except for the AC-part of the algorithm, see Section 3.2) by
simplifying one of the equations {t ≈? s} of P . The main modification is that the lexicographic
measure we use (adapted from [13]) would not diminish if in the AC-part of the unification
problem we had simplified only one of the equations {t ≈? s} of P (see the discussion in
Section 4.3.2).

4.2 The Lexicographic Measure
To prove termination in PVS, we must define a measure and show that this measure decreases
at each recursive call the algorithm makes. We have chosen a lexicographic measure with four
components: lex = (|VNAC(P)|, |V>1(P)|, |AS(P)|, size(P)), where VNAC(P), V>1(P),
AS(P), size(P) are given in Definitions 14, 18, 21 and 23, respectively. Table 2 shows which
components do not increase (represented by ≤) and which components strictly decrease
(represented by <) for each recursive call that Algorithm 1 makes.

▶ Definition 14 (VNAC(P)). We denote by VNAC(P) the set of variables that occur in the
problem P excluding those that only occur as arguments of AC-function symbols.

▶ Example 15. Let f be an AC-function symbol and let g be a standard function symbol.
Let P = {X ≈? a, f(X, Y, W, g(Y)) ≈? Z}. Then VNAC(P) = {X, Y, Z}.

Before defining V>1(P), we need to define the subterms of a unification problem.

▶ Definition 16 (Subterms(P)). The subterms of a unification problem P are given as:
Subterms(P) =

⋃
t∈P Subterms(t), where the notion of subterms of a term t excludes all

pairs and is defined recursively as follows:

Subterms(a)={a}
Subterms(Y)={Y }
Subterms(⟨⟩)={⟨⟩}

Subterms(⟨t1, t2⟩)=Subterms(t1) ∪ Subterms(t2)
Subterms(f t1)={f t1} ∪ Subterms(t1)
Subterms(fACt1)=

⋃
ti∈Args(fAC t1) Subterms(ti) ∪ {fACt1}

Here, Args(fACt1) denote the arguments of fAC t1.

1 Despite this restriction, since PVS has higher-order logic foundations, mutual recursion can be emulated,
as usual, using functional parameters. However, this would imply a treatment of such parameter
functions that restricts their domains according to the chosen measure.

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/termination_alg.pvs#L82
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification.pvs#L90
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L533

8:12 A Certified Algorithm for AC-Unification

▶ Remark 17 (Subterms of AC and non-AC functions). The definition of subterms for non-AC
functions cannot be used for AC functions, as the following counterexample shows. Let f be
an AC-function symbol and consider the term t = f⟨f⟨a, b⟩, f⟨c, d⟩⟩. Then Subterms(t) =
{t, a, b, c, d}. However, if we had used the definition of subterms for non-AC functions, we
would obtain Subterms(t) = {t, f⟨a, b⟩, f⟨c, d⟩, a, b, c, d}.

▶ Definition 18 (V>1(P)). We denote by V>1(P) the set of variables that are arguments
of (at least) two terms t and s such that t and s are headed by different function symbols
and t and s are in Subterms(P). The informal meaning is that if X ∈ V>1(P) then X is an
argument to at least two different function symbols.

▶ Example 19. Let f be an AC-function symbol and let g be a standard function symbol.
Let P = {X ≈? a, g(X) ≈? h(Y), f(Y, W, h(Z)) ≈? f(c, W)}. In this case V>1(P) = {Y }.

We define proper subterms in order to define admissible subterms in Definition 21.

▶ Definition 20 (Proper Subterms). If t is not a pair, we define the proper subterms of t,
denoted as PSubterms(t) as: PSubterms(t) = {s | s ∈ Subterms(t) and s ̸= t}. We define
the proper subterm of a pair ⟨t1, t2⟩ as:

PSubterms(⟨t1, t2⟩) = PSubterms(t1) ∪ PSubterms(t2).

▶ Definition 21 (Admissible Subterm AS). We say that s is an admissible subterm of a term
t if s is a proper subterm of t and s is not a variable. The set of admissible subterms of t

is denoted as AS(t). The set of admissible subterms of a unification problem P , denoted as
AS(P), is defined as AS(P) =

⋃
t∈P AS(t).

▶ Example 22. If P = {a ≈? f(Z1, Z2), b ≈? Z3, g(h(c), Z) ≈? Z4} then AS(P) = {h(c), c}.

▶ Definition 23 (Size of a Unification Problem). We define the size of a term t recursively as
follows:

size(a) = 1
size(Y) = 1
size(⟨⟩) = 1

size(⟨t1, t2⟩) = 1 + size(t1) + size(t2)
size(f t1) = 1 + size(t1)
size(fAC t1) = 1 + size(t1)

Given a unification problem P = {t1 ≈? s1, . . . , tn ≈? sn}, the size of P is defined as:

size(P) =
∑

1≤i≤n

size(ti) + size(si).

▶ Remark 24 (s ∈ AS(t) =⇒ size(s) < size(t)). If s ∈ AS(t), we have that s is a proper
subterm of t and therefore the size of s is less than the size of t.

Table 2 Decrease of the components of the lexicographic measure.

Recursive Call |VNAC(P)| |V>1(P)| |AS(P)| size(P)
line 6, 14 <

lines 9, 15, 18, 23 ≤ ≤ ≤ <

case 1 - line 29 ≤ <

case 2 - line 29 ≤ ≤ <

case 3 - line 29 ≤ ≤ ≤ <

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/termination_alg.pvs#L44
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L559
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/termination_alg.pvs#L159
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification.pvs#L138
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/terms.pvs#L53

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:13

4.3 Proof Sketch for Termination
4.3.1 Non AC Cases
To prove termination of syntactic unification, we can use a lexicographic measure lexs

consisting of two components: lexs = (|V ars(P)|, size(P)), where V ars(P) is the set of
variables in the unification problem. We adapted this idea to our proof of termination, by
using |VNAC(P)| as our first component and size(P) as the fourth. The proof of termination
for all the cases of Algorithm 1 except AC (line 29) is similar to the proof of termination of
syntactic unification, with two caveats.

First, we need to use |VNAC(P)| instead of |V ars(P)| to avoid taking into account the
variables that are arguments of the AC-function terms introduced by solveAC (see Section
3.2.2). We would still have to take into account the variable terms introduced by solveAC,
but those are instantiated by function instantiateStep and therefore eliminated from the
problem.

Second, in some of the recursive calls (lines 9, 15, 18, 23) we must ensure that the
components introduced to prove termination in the AC-case (|V>1(P)| and |AS(P)|) do not
increase. This is straightforward.

4.3.2 The AC-case
Our proof of termination for the AC-case uses the components |V>1(P)| and |AS(P)|,
proposed in [13]. To explain the choice for the components of the lexicographic measure, let
us start by considering the restricted case where P = {t ≈? s}. The idea of the proof of
termination is to define the set of admissible subterms of a unification problem AS(P) in a
way that when we call function solveAC to terms t and s, every problem P1 generated will
satisfy |AS(P1)| < |AS(P)|.

Let t1, . . . , tm be the arguments of t and let s1, . . . , sn be the arguments of s. Then,
as described in Section 3.2.2, the left-hand side of P1 is {t1, . . . , tm, s1, . . . , sn}. Denote by
{t′

1, . . . , t′
m, s′

1, . . . , s′
n} the right-hand side of P1, which means that P1 = {t1 ≈? t′

1, . . . , tm ≈?

t′
m, s1 ≈? s′

1, . . . , sn ≈? s′
n}. This is what motivated our definition of admissible subterms:

every term t′
i of the right-hand side of P1 will have AS(t′

i) = ∅. Therefore, AS(P1) ⊆ AS(P)
always holds.

If we are also in a situation where at least one of the terms in the left-hand side of P1 is
not a variable, we can prove that |AS(P1)| < |AS(P)|. To see that, let u be the non-variable
term in the left-hand side of P1 of greatest size (if there is a tie, pick any term with greatest
size). Then, u is an argument of either t or s and therefore u ∈ AS(P). We also have
u ̸∈ AS(P1): otherwise there would be a term u′ in P1 such that u ∈ AS(u′), which would
mean that the size of u′ is greater than u (see Remark 24), contradicting our hypothesis that
no term in P1 has size greater than u. Combining the fact that AS(P1) ⊆ AS(P) and the fact
that there is a term u with u ∈ AS(P) and u ̸∈ AS(P1) we obtain that |AS(P1)| < |AS(P)|.

▶ Example 25. In the example of Section 2.2, P = {f(X, X, Y, a) ≈? f(b, b, Z)}} and we
had AS(P) = {a, b}. After applying solveAC, one of the unification problems that is
generated is: P1 = {X ≈? Z6, Y ≈? f(Z5, Z5), a ≈? Z1, b ≈? Z5, Z ≈? f(Z1, Z6, Z6)}, where
AS(P1) = ∅.

What happens if all the arguments of t and s are variables? In this case we would
have AS(P1) = AS(P) = ∅ but this is not a problem, since after function solveAC is
called, the function instantiateStep would execute (receiving as input P1) and it would
instantiate all the arguments. The result, call it P2 would be an empty list and we would
have AS(P2) = AS(P) = ∅ and size(P2) < size(P).

FSCD 2022

8:14 A Certified Algorithm for AC-Unification

Therefore, all that is left in this simplified example with only one equation t ≈? s in the
unification problem P is to make sure that when we call instantiateStep in a unification
problem P1 and obtain as output a unification problem P2 we maintain |AS(P2)| ≤ |AS(P1)|.
However, this does not necessarily happen, as Example 26 shows.

▶ Example 26 (A case where instantiateStep increases |AS|). Let f and g be AC-function
symbols and P1 = {X ≈? f(Z1, Z2), g(X, W) ≈? g(a, c)}. Calling instantiateStep with
input P1 we obtain P2 = {g(f(Z1, Z2), W) ≈? g(a, c)}. In this case we have AS(P1) = {a, c}
while AS(P2) = {f(Z1, Z2), a, c} and therefore |AS(P2)| > |AS(P1)|.

This problem motivated the inclusion of the measure |V>1(P)| in our lexicographic
measure as we now explain. First, notice that if we changed Example 26 to make it so
that X only appears as argument of AC-functions headed by f , then instantiating X to an
AC-function headed by f would not increase the cardinality of the set of admissible subterms.
This is illustrated in Example 27.

▶ Example 27 (A case where instantiateStep does not increase |AS|). If we change slightly
the problem from Example 26 to P ′

1 = {X ≈? f(Z1, Z2), f(X, W) ≈? g(a, c)} and apply
instantiateStep we would obtain: P ′

2 = {f(Z1, Z2, W) ≈? g(a, c)}, and we would have
AS(P ′

1) = AS(P ′
2) = {a, c}.

Now, let’s go back to our original example of P = {t ≈? s} and P1 = {t1 ≈? t′
1, . . . , tm ≈?

t′
m, s1 ≈? s′

1, . . . , sn ≈? s′
n}, and denote by P2 the unification problem obtained by calling

instantiateStep passing as input P1. We will show that in the cases where |AS(P2)| may
be greater than |AS(P)| we necessarily have |V>1(P)| > |V>1(P2)|.

Consider an arbitrary variable term X on the left-hand side of P1. If X was instantiated
by instantiateStep, it would be instantiated to an AC-function headed by f (see Section
3.2.2) and therefore would only contribute in increasing |AS(P2)| in relation with |AS(P1)|
if it also occurred as an argument to a function term (let’s call it t∗) headed by a different
symbol than f (let’s say g). Since X is in the left-hand side of P1 this means that it was an
argument of t or s in P (suppose t, without loss of generality) and remember that both t

and s are headed by the same symbol f . Then X is an argument of t∗ and t and therefore,
by definition, X ∈ V>1(P). However X was instantiated by instantiateStep and therefore
it is not in V>1(P2). The new variables introduced by solveAC will not make any difference
in favour of |V>1(P2)|: when they occur as arguments of function terms, the terms are
always headed by the same symbol f . Therefore |V>1(P)| > |V>1(P2)|. Accordingly, to fix
our problem we include the measure |V>1(P)| before |AS(P)|, obtaining the lexicographic
measure described in Section 4.2.

The situation described is similar when our unification problem P has more than one
equation. Let’s say P = {t1 ≈? s1, . . . , tn ≈? sn}. The only difference is that it is not enough
to call function solveAC and then function instantiateStep in only the first equation
t1 ≈? s1: we need to call function applyACStep and simplify every equation ti ≈? si.

To see how things may go wrong, notice that in our previous explanation, when the
unification problem P had just one equation, a call to solveAC might reduce the admissible
subterms by removing a given term (we called it u). However, now that P has more than one
equation, if u is also present in other equations of the original problem P , calling solveAC
only in the first equation no longer removes u from the set of admissible subterms.

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:15

4.4 Soundness and Completeness
As mentioned, to unify terms t and s we use Algorithm 1 with P = cons((t, s), nil), σ = nil
and V = V ars((t, s)). However, since the parameters of ACUnif may change in between
the recursive calls, we cannot prove soundness (Corollary 30) directly by induction. We must
prove the more general Theorem 29, with generic parameters for the unification problem P ,
the substitution σ and the set V of variables that are/were in use. To aid us in this proof we
notice that while the recursive calls of ACUnif may change P , σ and V , some nice relations
between them are preserved. These relations between the three components of the input are
captured by Definition 28.

▶ Definition 28 (Nice input). Given an input (P, σ, V), we say that this input is nice if:
σ is idempotent
V ars(P) ∩ dom(σ) = ∅

dom(σ) ⊆ V

V ars(P) ⊆ V

▶ Theorem 29 (Soundness for nice inputs). Let (P, σ, V) be a nice input, and δ ∈
ACUnif(P, σ, V). Then, δ unifies P .

▶ Corollary 30 (Soundness of ACUnif). If δ ∈ ACUnif(cons((t, s), nil), nil, V ars((t, s)))
then δ unifies t ≈? s.

Proving completeness of Algorithm 1 boils down to proving Corollary 32 and similarly to
the soundness case, this is proved immediately once we prove Theorem 31.

▶ Theorem 31 (Completeness for nice inputs). Let (P, σ, V) be a nice input, δ unifies P ,
σ ≤ δ, and δ ⊆ V . Then, there is a substitution γ ∈ ACUnif(P, σ, V) such that γ ≤V δ.

▶ Corollary 32 (Completeness of ACUnif). Let V be a set of variables such that δ ⊆ V and
V ars((t, s)) ⊆ V . If δ unifies t ≈? s, then ACUnif computes a substitution more general
than δ, i.e., there is a substitution γ ∈ ACUnif(cons((t, s), nil), nil, V) such that γ ≤V δ.

In the proof of completeness, the hypothesis δ ⊆ V is simply a technicality that was put
only in order to guarantee that the new variables introduced by the algorithm do not clash
with the variables in dom(δ) or in the terms in im(δ) and could be replaced by a different
mechanism that guarantees that the variables introduced by the AC-part of ACUnif are
indeed new. As an example, let’s go back to the substitutions (see Equation 3) computed
in the example of Section 2.2 and notice that the set of variables in the original problem
is V = {X, Y, Z}. If δ = {X 7→ f(Z2, a, b), Z → f(a, Y, Z2, a, Z2, a), Z4 → c} there is some
overlap between the variables in dom(δ) and in the terms in im(δ) and the ones introduced
by the algorithm, but the substitution σ4 = {X → f(Z6, b), Z → f(a, Y, Z6, Z6)} that we
computed is still more general than δ (restricted to the variables in V). Indeed, if we take
δ1 = {Z6 → f(Z2, a)} then δW = δ1σ4W for all variables W ∈ V .
▶ Remark 33 (High-level description of how to remove hypothesis δ ⊆ V). The key step to
prove a variant of Corollary 32 with V = V ars(t, s) and without the hypothesis δ ⊆ V is to
prove that the substitutions computed when we call ACUnif with input (P, σ, V) “differ
only by a renaming” from the substitutions computed when we call ACUnif with input
(P, σ, V ′), where δ ⊆ V ′. This cannot be proven by induction directly because if V and V ′

differ and ACUnif enters the AC-part, the new variables introduced for each input may
“differ only by a renaming”, i.e. the first component of the two inputs, will also “differ only
by a renaming”. Once ACUnif instantiates variables, it may happen that the substitutions

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/apply_ac_step.pvs#L125
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification_alg.pvs#L107
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification_alg.pvs#L113
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification_alg.pvs#L128
https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/unification_alg.pvs#L137

8:16 A Certified Algorithm for AC-Unification

computed so far, i.e. the second component of the two inputs, will also “differ only by a
renaming”. The solution is to prove by induction the more general statement that if the
inputs (P, σ, V) and (P ′, σ′, V ′) “differ only by a renaming” then the substitutions computed
when we call ACUnif with (P, σ, V) “differ only by a renaming” from the substitutions
computed when we call ACUnif with (P ′, σ′, V ′).

4.5 More Information About the PVS Formalisation
The functions coded in PVS and the statement of the theorems can be found in files
.pvs, while the proofs of the theorems can be found in the .prf files. The PVS the-
ory unification_alg contains function ACUnif and the theorems of soundness and
completeness; termination_alg has the definitions and lemmas needed to prove termin-
ation; apply_ac_step contains function applyACStep and lemmas about its proper-
ties; aux_unification contains auxiliary functions such as solveAC and instantia-
teStep and lemmas about their properties. The PVS theories diophantine, unification,
substitution, equality and terms contain, respectively, definitions and properties about
solving linear Diophantine equations, unification, substitutions, equality modulo AC and
terms. Finally list is a set of parametric theories that define generic functions that operate
on lists, not strictly connected to unification.

When specifying functions and theorems, PVS may generate proof obligations to be
discharged by the user. These proof obligations are called Type Correctness Conditions
(TCCs) and the PVS system includes several pre-defined proof strategies that automatically
discharge most of the TCCs. In our code, most TCCs were related to the termination of
functions and PVS was able to prove almost all of them automatically. The number of
theorems and TCCs proved for each theory, along with the approximate size of each theory
and their percentage of the total size is shown in Table 3.

Table 3 Main Information on the Theories of Our Formalisation.

Theory Theorems TCCs Size (.pvs) Size (.prf) Size (%)
unification_alg 9 18 5KB 1.4MB 4%
termination_alg 80 35 21KB 11.0MB 30%
apply_ac_step 23 12 13KB 9.0MB 25%

aux_unification 179 54 52KB 7.2MB 20%
Diophantine 73 44 23KB 1.1MB 3%
unification 75 14 19KB 0.8MB 2%
substitution 108 16 19KB 1.7MB 5%

equality 67 18 12KB 1.1MB 2%
terms 129 47 27KB 0.9MB 2%
list 251 109 52KB 2.5MB 6%

Total 994 367 243KB 36.7MB 100%

5 Conclusions and Future Work

We have specified Stickel’s algorithm [21, 22] for AC-unification in the proof assistant PVS
and proved it terminating, sound and complete. Our proof of termination was based on the
work of Fages [12, 13]. Since mutual recursion is not straightforward in PVS, we adapted
the algorithm to solve an AC-unification problem P , instead of only two terms t and s.

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:17

This introduces some complications in the proof of termination, which we addressed in
Section 4.3.2. We have discussed the most interesting points of our formalisation, such as
the motivation for the lexicographic measure needed to prove termination.

We envision three possible paths of future work. First, we could extend this first-order
algorithm to the nominal setting. A nominal AC-unification algorithm could be used in
a logic programming language that employs the nominal setting such as α-Prolog [9] or
in nominal rewriting [14] and narrowing [4] modulo AC. A second possible path is to use
this formalisation as a basis to formalise more efficient algorithms, as discussed in the
introduction and in Section 3.2.1. Finally, although PVS does not support code extraction
to a programming language such as Haskell or Ocaml, it has the PVSIO feature, which
lets us execute a verified algorithm inside the PVS environment and provides input and
output operators. Therefore, another possible path is using PVSIO to test existing (or to be
developed) implementations of AC-unification.

References

1 Mohamed Adi and Claude Kirchner. AC-Unification Race: The System Solving Approach,
Implementation and Benchmarks. J. of Sym. Computation, 14(1):51–70, 1992. doi:10.1016/
0747-7171(92)90025-Y.

2 Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Daniele Nantes-
Sobrinho, and Ana Cristina Rocha Oliveira. A Formalisation of Nominal α-Equivalence with
A, C, and AC Function Symbols. Theor. Comput. Sci., 781:3–23, 2019. doi:10.1016/j.tcs.
2019.02.020.

3 Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Fer-
reira Silva, and Daniele Nantes-Sobrinho. Formalising Nominal C-Unification General-
ised with Protected Variables. Math. Struct. Comput. Sci., 31(3):286–311, 2021. doi:
10.1017/S0960129521000050.

4 Mauricio Ayala-Rincón, Maribel Fernández, and Daniele Nantes-Sobrinho. Nominal Narrowing.
In 1st International Conference on Formal Structures for Computation and Deduction, FSCD
2016, page 11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
FSCD.2016.11.

5 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CBO9781139172752.

6 Dan Benanav, Deepak Kapur, and Paliath Narendran. Complexity of Matching Problems. J.
of Sym. Computation, 3(1/2):203–216, 1987. doi:10.1007/3-540-15976-2_22.

7 Alexandre Boudet. Competing for the AC-Unification Race. J. of Autom. Reasoning, 11(2):185–
212, 1993. doi:10.1007/BF00881905.

8 Alexandre Boudet, Evelyne Contejean, and Hervé Devie. A New AC Unification Algorithm
with an Algorithm for Solving Systems of Diophantine Equations. In Proceedings of the Fifth
Annual Symposium on Logic in Computer Science (LICS ’90), pages 289–299. IEEE Computer
Society, 1990. doi:10.1109/LICS.1990.113755.

9 James Cheney and Christian Urban. alpha-Prolog: A Logic Programming Language with
Names, Binding and α-Equivalence. In Logic Programming, 20th International Confer-
ence, ICLP 2004, volume 3132 of LNCS, pages 269–283. Springer, 2004. doi:10.1007/
978-3-540-27775-0_19.

10 Michael Clausen and Albrecht Fortenbacher. Efficient Solution of Linear Diophantine Equations.
J. of Sym. Computation, 8(1-2):201–216, 1989. doi:10.1016/S0747-7171(89)80025-2.

11 Evelyne Contejean. A Certified AC Matching Algorithm. In Rewriting Techniques and Applic-
ations, 15th International Conference, RTA 2004, Aachen, Germany, June 3-5, 2004, Proceed-
ings, volume 3091 of LNCS, pages 70–84. Springer, 2004. doi:10.1007/978-3-540-25979-4_5.

FSCD 2022

https://doi.org/10.1016/0747-7171(92)90025-Y
https://doi.org/10.1016/0747-7171(92)90025-Y
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1016/j.tcs.2019.02.020
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.1017/S0960129521000050
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/3-540-15976-2_22
https://doi.org/10.1007/BF00881905
https://doi.org/10.1109/LICS.1990.113755
https://doi.org/10.1007/978-3-540-27775-0_19
https://doi.org/10.1007/978-3-540-27775-0_19
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1007/978-3-540-25979-4_5

8:18 A Certified Algorithm for AC-Unification

12 François Fages. Associative-Commutative Unification. In 7th International Conference on
Automated Deduction, Napa, volume 170 of LNCS, pages 194–208. Springer, 1984. doi:
10.1007/978-0-387-34768-4_12.

13 François Fages. Associative-Commutative Unification. J. of Sym. Computation, 3(3):257–275,
1987. doi:10.1016/S0747-7171(87)80004-4.

14 M. Fernández and M. J. Gabbay. Nominal Rewriting. Information and Computation, 205(6):917–
965, 2007. doi:10.1016/j.ic.2006.12.002.

15 Jean-Pierre Jouannaud and Claude Kirchner. Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification. In Computational Logic - Essays in Honor of Alan Robinson,
pages 257–321. The MIT Press, 1991.

16 Deepak Kapur and Paliath Narendran. Double-exponential Complexity of Computing a
Complete Set of AC-Unifiers. In Proceedings of the Seventh Annual Symposium on Logic in
Computer Science (LICS ’92), pages 11–21. IEEE Computer Society, 1992. doi:10.1109/
LICS.1992.185515.

17 Florian Meßner, Julian Parsert, Jonas Schöpf, and Christian Sternagel. A Formally Verified
Solver for Homogeneous Linear Diophantine Equations. In Interactive Theorem Proving - 9th
International Conference, ITP 2018, volume 10895 of LNCS, pages 441–458. Springer, 2018.
doi:10.1007/978-3-319-94821-8_26.

18 Sam Owre, John Rushby, and Natarajan Shankar. PVS: A Prototype Verification System. In
Automated Deduction - CADE-11, 11th International Conference on Automated Deduction,
volume 607 of LNCS, pages 748–752. Springer, 1992. doi:10.1007/3-540-55602-8_217.

19 Sam Owre, Natarajan Shankar, John Rushby, and David Stringer-Calvert. PVS Language
Reference. Technical report, Computer Science Laboratory, SRI International, Menlo Park,
CA, 2000. URL: https://pvs.csl.sri.com/doc/pvs-language-reference.pdf.

20 Andrew M Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

21 Mark E. Stickel. A Complete Unification Algorithm for Associative-Commutative Functions.
In Advance Papers of the Fourth International Joint Conference on Artificial Intelligence,
pages 71–76, 1975. URL: http://ijcai.org/Proceedings/75/Papers/011.pdf.

22 Mark E. Stickel. A Unification Algorithm for Associative-Commutative Functions. J. of the
ACM, 28(3):423–434, 1981. doi:10.1145/322261.322262.

A Pseudocode for instantiateStep and applyACStep

A.1 Pseudocode for instantiateStep
Algorithm 2 is the pseudocode for instantiateStep. It receives as input a unification
problem P1 (the part of our unification problem which we have not yet inspected), a unification
problem P2 (the part of our unification problem we have already inspected) and σ, the
substitution computed so far. Therefore, the first call to this function in order to instantiate
the unification problem P is with P1 = P , P2 = nil and σ = nil. The algorithm returns a
triple, where the first component is the remaining unification problem; the second component
is the substitution computed by this step; and the third component is a Boolean to indicate
if we found an equation t ≈? s which is not unifiable (in this case the Boolean is True) or
not (in this case the Boolean is False). The only kind of equations that instantiateStep
identifies as not unifiable are those where one of the terms is a variable, and the other term
is a non-variable term that contains this variable. The algorithm works by progressively
inspecting every equation s ≈? t ∈ P1 and deciding whether:

One of the terms is a variable and we can instantiate (lines 5-10).
Both terms are the same variable and we can eliminate this equation from the problem
(lines 11-12).

https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1109/LICS.1992.185515
https://doi.org/10.1109/LICS.1992.185515
https://doi.org/10.1007/978-3-319-94821-8_26
https://doi.org/10.1007/3-540-55602-8_217
https://pvs.csl.sri.com/doc/pvs-language-reference.pdf
http://ijcai.org/Proceedings/75/Papers/011.pdf
https://doi.org/10.1145/322261.322262

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:19

Algorithm 2 Algorithm that instantiates when possible.

1: procedure instantiateStep(P1, P2, σ)
2: if nil?(P1) then return (P2, σ, False)
3: else
4: let (t, s) = car(P1), P ′

1 = cdr(P1) in
5: if (s matches X) and (X not in t) then
6: σ1 = {X → t}
7: return instantiateStep(σ1P ′

1, σ1P2, append(σ1, σ))
8: else if (t matches X) and (X not in s) then
9: σ1 = {X → s}

10: return instantiateStep(σ1P ′
1, σ1P2, append(σ1, σ))

11: else if (t matches X) and (X matches s) then
12: return instantiateStep(P ′

1, P2, σ)
13: else if ((t matches X) and (X in s)) or ((s matches X) and (X in t)) then
14: return (nil, σ, T rue) ▷ the terms t and s are impossible to unify
15: else
16: return instantiateStep(P ′

1, cons((t, s), P2), σ) ▷ we skip the equation

The terms are impossible to unify (lines 13-14).
Neither term is a variable, and so we do not act on this equation (lines 15-16).

A.2 Pseudocode for applyACStep
▶ Remark 34. In function applyACStep, we eliminate equations u ≈? v from our unification
problem if u ≈ v (line 4). This was done because if we called function solveAC in line 10 of
Algorithm 3 passing as parameter two equal terms (modulo AC), the value returned would be
PLst = nil. applyACStep would interpret that as meaning that the unification pair had
no solution (when actually every substitution σ is a solution to {u ≈? v}) and also return
nil. To prevent this corner case, we eliminate those trivial equations from our unification
problem before calling solveAC. In our code, the function equal? tests equality (modulo
AC) between terms t and s, returning True if the terms are equal and False otherwise.

The first thing applyACStep does is check if P1 is the null list. If it is (line 2), we have
finished applying functions solveAC and instantiateStep and we return a list with only
one element: (P2, σ, V).

If P1 is not the null list, we get the AC-unification pair in the head of the list (let us call
it (t, s)) and examine if t ≈ s. If that is the case (line 4), we simply remove this equation,
calling applyACStep with (cdr(P1), P2, σ, V).

If t is not equal (modulo AC) to s, we call function solveAC. This function will return a
list of unification problems PLst (line 7). Next we apply the function instantiateStep
to every problem P in PLst, obtaining a list ACInstLst (lines 8-9), where each entry is
a pair (P ′, δ). P ′ is the unification problem after we instantiate the variables and δ is the
substitution computed by this function. It may happen that instantiateStep “discovers”
that a unification problem is actually unsolvable (this is communicated to applyACStep
via the Boolean value that is part of the output of instantiateStep) and in this case this
problem is not included in ACInstLst.

We check if ACInstLst is null (in this case there are no solutions to the first AC-
unification pair, and therefore there are no solutions to the problem) and return nil if
it is. If ACInstLst is not null (lines 12-16), there will be branches to explore. Given

FSCD 2022

https://github.com/gabriel951/ac_unification_FSCD2022/blob/4c94979672a49f93c3dc720ab8b6217ddac83ae3/equality.pvs#L23

8:20 A Certified Algorithm for AC-Unification

Algorithm 3 Algorithm for applyACStep.

1: procedure applyACStep(P1, P2, σ, V)
2: if nil?(P1) then return cons((P2, σ, V), nil)
3: else let (t, s) = car(P1) in
4: if t ≈ s then return applyACStep (cdr(P1), P2, σ, V)
5: else
6: ▷ assuming t and s are headed by the same function symbol f

7: PLst = solveAC(t, s, f, V)
8: ▷ Call instantiateStep in every P in PLst obtaining a list ACInstLst,
9: ▷ where each entry in this list is a pair (P ′, δ).

10: if nil?(ACInstLst) then return nil
11: else
12: ▷ make an input list InputLst of all the branches we need to explore.
13: ▷ For each (P ′, δ) in ACInstLst, the quadruple in InputLst will be
14: ▷ (δcdr(P1), append(P ′, δP2), append(δ, σ), V ′) to applyACStep
15: ▷ recursively explore all the branches
16: return Flatten(map(applyACStep, InputLst))

an entry (P ′, δ) of ACInstLst, the part of the unification problem to which we must call
functions solveAC and instantiateStep is now δcdr(P1) and the part of the unification
problem we have already explored is append(P ′, δP2). The substitution computed so far is
append(δ, σ). We take care to update the set of variables that are/were in the problem to
include the new variables introduced by solveAC (in Algorithm 3 we change V to V ′). In
short, we make an input list InputLst of all the branches we need to explore and each entry
(P ′, δ) of ACInstLst gives rise to an entry (δcdr(P1), append(P ′, δP2), append(δ, σ), V ′) in
InputLst.

Finally, applyACStep calls itself recursively taking as argument every input in InputLst.
This is done by calling map(applyACStep, InputLst) and the output is flattened using
function flatten.

B PVS Dependency File Diagram

Figure 1 Dependency Diagram for PVS Theories.

M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. N. Sobrinho 8:21

Figure 1 shows the dependency diagram for the PVS theories that compose our formal-
isation. An arrow going from theoryA to theoryB means that theoryA imports definitions
and lemmas from theoryB.
▶ Remark 35. The theory terms has its definitions and lemmas in the file terms.pvs and
the proofs of the lemmas in the file terms.prf. The same happens for all the theories
mentioned in this diagram, except list. In our diagram, list represents a set of parametric
theories that define generic functions (not strictly connected to unification) that operate on
lists. The theories in list are list_nat_theory, list_theory, list_theory2, map_theory
and more_list_theory_props. However, since the specifics of each theory in list is not
significant to our formalisation, we grouped them together in our diagram.
▶ Remark 36 (Adapting the Formalisation to More Efficient Algorithms). The dependency
diagram of Figure 1 hints on why adapting our formalisation to prove correctness of al-
gorithms that represents terms as DAGs should give us more work than solving the linear
Diophantine equations more efficiently. Changing the representation of terms would impact
mostly terms.pvs but would also require modification in lemmas from other files that
are proved by induction on terms. In practice, this means changes in files that depend on
terms.pvs, specially the ones that more closely depend on terms.pvs, such as equality.pvs,
substitution.pvs and unification.pvs. In contrast, solving the linear Diophantine equa-
tions more efficiently should effectively only require changes in Diophantine.pvs. Both
adaptations should be faster than starting from scratch.

To further illustrate the additional work of changing the term representation in com-
parison to solving the linear Diophantine equations more efficiently, let’s consider the
proof of termination of ACUnif, described in Section 4.2, which is effectively done in file
termination_alg.pvs (one of the hardest parts of our formalisation, see Table 3). Recalling
that the lexicographic measure used is:

lex = (|VNAC(P)|, |V>1(P)|, |AS(P)|, size(P))

we see that the procedure used to solve the linear diophantine equations plays no role in
this proof. In contrast to that, VNAC(P), V>1(P), AS(P), size(P) depend respectively on
VNAC(t), Subterms(t) and size(t) which were all defined inductively on the structure of
terms and would need to be adjusted in case we changed the way we represent terms.

FSCD 2022

	1 Introduction
	2 Background and Example
	2.1 What Makes AC-unification Hard
	2.2 An Example

	3 Algorithm
	3.1 The Functions choose and decompose
	3.2 The AC-part of the Algorithm
	3.2.1 Function solveAC
	3.2.2 Common Structure of Unification Problems Returned by solveAC
	3.2.3 Function instantiateStep
	3.2.4 Function applyACStep

	4 Interesting Points on the Formalisation
	4.1 Avoiding Mutual Recursion
	4.2 The Lexicographic Measure
	4.3 Proof Sketch for Termination
	4.3.1 Non AC Cases
	4.3.2 The AC-case

	4.4 Soundness and Completeness
	4.5 More Information About the PVS Formalisation

	5 Conclusions and Future Work
	A Pseudocode for instantiateStep and applyACStep
	A.1 Pseudocode for instantiateStep
	A.2 Pseudocode for applyACStep

	B PVS Dependency File Diagram

