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Abstract
Anti-unification is the task of generalizing a set of expressions in the most specific way. It was
extended to the nominal framework by Baumgarter, Kutsia, Levy and Villaret, who defined an
algorithm solving the nominal anti-unification problem, which runs in polynomial time. Unfortunately,
when an infinite set of atoms are allowed in generalizations, a minimal complete set of solutions in
nominal anti-unification does not exist, in general. In this paper, we present a more general approach
to nominal anti-unification that uses atom-variables instead of explicit atoms, and two variants
of freshness constraints: NLA-constraints (with atom-variables), and Eqr-constraints based on
Equivalence relations on atom-variables. The idea of atom-variables is that different atom-variables
may be instantiated with identical or different atoms. Albeit simple, this freedom in the formulation
increases its application potential: we provide an algorithm that is finitary for the NLA-freshness
constraints, and for Eqr-freshness constraints it computes a unique least general generalization.
There is a price to pay in the general case: checking freshness constraints and other related logical
questions will require exponential time. The setting of Baumgartner et al. is improved by the
atom-only case, which runs in polynomial time and computes a unique least general generalization.
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1 Introduction

Anti-unification is the task of, given a set of expressions, to find a most specific (or least
general) generalization of all the expressions in this set. In the first-order version, anti-
unification simply looks for the largest common term structure and also takes care of equal
variables. In this case, the problem can be solved in polynomial time and produces a
unique solution [1]. A simple example, taken from Plotkin [21], is the expression P (g(x), x)
that generalizes the set {P (g(a), a), P (g(b), b)}. Notice that the expressions z, P (y, x) and
P (g(y), x) also generalize the expressions in the set, however, they are not least general:
there exist substitutions σi, such that P (y, x)σ1 = P (g(x), x), P (g(y), x)σ2 = P (g(x), x) and
zσ3 = P (g(x), x), but not vice versa.

In this paper we are interested in a more complex variation of this problem in the
context of a nominal language [11], which is a convenient alternative for expressing languages
with binders with the benefit that nominal unification is decidable in quadratic time and
unitary [25, 6, 18]. Thus, this work develops around the nominal anti-unification problem, i.e.,
the problem of finding a least general generalization of nominal expressions. Similarly to the
relation between nominal unification and higher-order pattern unification [17], nominal anti-
unification relates with higher-order pattern anti-unification, thus, developments in nominal
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7:2 Nominal Anti-Unification with Atom-Variables

anti-unification promote new insights into the tractability and applicability of higher-order
anti-unification problems, and consequently, it has a high potential for applications such as
recursion scheme and clone detection [2, 3], learning with counter examples [16], etc.

The nominal anti-unification problem considered by Baumgartner et al. in [4] does not
have a least general generalization (lgg), not even a minimal complete set of generalizers can
be computed (i.e. it is nullary). A simple example illustrates the infinite set of generalizations:
for f(a1) and g(a2), the generalization (∅, X) is appropriate, where the pair consists of an
empty set of freshness constraints and the generalization variable X. However, there is a
strictly decreasing chain (∅, X), ({a3#X}, X),({a3#X, a4#X}, X), . . . (where ai#X means
that atom ai is fresh in the instances of X). These are more and more strictly specific
generalizations, for an infinite set of atoms {a3, a4, . . .}. The names a3, a4, . . . are irrelevant
for the problem, but provide an argument that a least general generalization might not exist,
not even a minimal complete set of lggs. Restricting the set of available atoms to a finite set
as in [4] results in nice properties of the algorithm. Although it may suffice in practice, it is
not satisfactory.

Our approach is to employ atom-variables [24] in the grammar of nominal expressions,
which are intended to represent atoms, and formulate the anti-unification problem in this
extended nominal language. Atoms are only used in the semantics, whereas in the expression
language, only atom-variables are used. Therefore, basic nominal syntactic notions, such
as permutations, suspended variables and abstractions, are now generalized to contain
both atom-variables (A, B, C, . . .) and generalization variables (X, Y, . . .). For instance,
abstractions such as λC.f(C, X) and λ(A C) · B.f(C, X), suspended atom and generalization
variables, such as (A B) · C and (A B) · X, are allowed, and their meaning relies on the
instantiation of such atom-variables by concrete atoms: mapping atom-variables A, B, C to
concrete different atoms a, b, c, respectively, (A C) ·B reduces to (a c) ·b = b (the permutation
(a c) has no effect on b) and the abstraction λ(A C) ·B.f(C, X) becomes λb.f(c, X). Another
important feature is that alpha-equivalence (∼) is defined semantically: deciding whether
(A B) · C ∼ (A C) · B relies on the instantiation of the atoms A, B and C. In the case where
B and C are mapped to the same atom, the equivalence holds, but it fails if A, B, C are
mapped to different atoms.

Standard freshness constraints in our language, called NLA-constraints, include not only
constraints of the form A#X, but also of the forms A#B, B#λA.B etc. As expected, the
meaning of these constraints depends on the instantiation of the atom-variables occurring in
them. For instance, A#X means that instances of A cannot occur free in instances of X, and
A#B means that instances of A are different from the instances of B. The expressivity gain
is nicely observed with C#λA.λB.C, which means that the instantiation of C is the same as
that of A or of B. However, this is still not sufficient: For representing generalizations in a
more expressive way we introduce the Eqr-constraints, which permit, for every equivalence
class of instantiations, an extra set of constraints. For example, ((A = B) =⇒ A#X) ∧
((A ̸= B) =⇒ B#X) with the informal meaning: if A, B are equally instantiated, then
A#X must be satisfied, otherwise B#X. This increase permits to have a smaller number of
least general generalizations.

Moreover, the standard notion of a nominal expression being more general than another
(which is relevant for generalizations) when atom-variables are involved is defined by a more
complex requirement than just one being an instance of the other: one has to consider the
instances of the atom-variables involved in both terms. Thus, the syntax of the terms is
more powerful, which means that the syntax of the generalizations is more powerful, and this
has to be taken into account by the search for a most specific generalization. This means
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that these “extended” freshness constraints and permutations with atom-variables, which are
now part of the syntax of nominal terms, also may appear in generalizations, which increases
the representative power of this approach.

Contributions. We construct a sound and complete rule-based algorithm AtomAntiUnif
for computing generalizations (see Section 3), which performs in exponential time, and
relies on the subalgorithm Eqvm for equivariant matching with atom-variables. Our rules
are inspired by [4], modified with semantic checks for equalities and disequalities of atom-
variables, and extra rules dealing with suspended atom/generalization variables. Even though
our algorithm AtomAntiUnif computes a good generalization, it is not least general, as it
is shown in Example 3.4. Our approach significantly improves previous ones: there are no
infinite chains of generalizations (Corollary 3.12). Thus, the unification type of generalization
problems with atom-variables is finitary.

NLA- freshness constraints should be investigated with care: a more expressive form of
freshness constraints based on Equivalence relations over atom-variables has to be considered.
The Eqr-freshness constraints (Definition 4.2) are a more powerful version of freshness
constraints that explicitly represent all possible in-/equality patterns of instantiations of atom-
variables. To obtain a singleton solution set, a second algorithm AtomAntiUnifLgg refines
the constraint part of the generalization computed by AtomAntiUnif, and returns a least
general generalization (Definition 4.10). Finally, we conclude that the anti-unification problem
with atom-variables and Eqr-freshness constraints is decidable and unitary (Theorem 4.13).
With the restriction that different atom-variables can only be instantiated with different
atoms (called the atoms-only case), we obtain a specialization of our algorithm that computes
a singleton complete set of lggs in polynomial time for our variant of the nominal anti-
unification problem investigated in [4] (see Theorem 4.16). This corresponds to the problem
in [4] with infinitely many atoms, but using a more flexible semantics. The power of our
semantics is illustrated in Example 2.14.

Related Work. Early works on generalization date back to the 70s, a well-known note
is presented by Plotkin [21], who discussed the usefulness of generalization when looking
for methods of induction. More recent works such as [7] and [8] investigate higher-order
pattern anti-unification, the latter is an extension with equational theories. Applications
of anti-unification were exploited in several directions, such as finding parallel recursion
schemes [2], in program analysis [5], for analogy (or clone) detection [3, 14, 19], in description
logics [13], checking inductive properties of term rewriting systems [10], among others. A
library of anti-unification algorithms is available in [3].

Organization. Section 2 gives the necessary background on the nominal language NLA with
atom-variables and introduces the nominal anti-unification problem with atom-variables
following a semantic approach. Section 3 contains the rules for the AtomAntiUnif algorithm
as well as arguments for its soundness, completeness and run-time complexity. Section 4
introduces a more expressive version of freshness constraints with atom-variables, and the
AtomAntiUnifLgg algorithm that refines generalizations output by AtomAntiUnif, and
computes a unique lgg of two NLA terms-in-context. Proofs are available in the appendix.

FSCD 2022



7:4 Nominal Anti-Unification with Atom-Variables

2 Preliminaries

The nominal language NLaX of expressions1 is built by the grammar

S ::= a | f(S1, . . . , Sn) | λa.S | π·X π ::= ∅ | (a b)·π

where a, b are atoms in the infinite set Atoms, π is a nonterminal for permutations, (a b) is a
swapping, X is a nonterminal for generalization variables, f, g are function symbols and c, ci

are constant symbols in the function signature F , where we assume that there is at least
one (say c) of arity zero and one of arity 2. Compound expressions are function applications,
and lambda-expressions which bind atoms. We also permit the tuple notation in examples.
Applications in the lambda calculus can be represented using a binary function symbol.

The ground language NLa is a sublanguage of NLaX where variables X and permutations
π are omitted. We consider only α-equivalence ∼, which in fact is only defined on NLa.

An NLaX -freshness constraint is an expression of the form a#S, expressing that a is not
free in (fresh for) S. We permit also ⊥ as freshness constraint, which represents False.
An NLaX-freshness context (∇, ∆, . . .) is a set of NLaX -freshness constraints. We assume
that permutation applications are homomorphically shifted inside expressions, where π·a is
immediately computed. Every NLaX -freshness context can be transformed into a simpler one
consisting only of constraints of the form a#X or ⊥ by exhaustively using the rules:

a#f(S1, . . . , Sn)
a#S1, . . . , a#Sn

a#b a#a

⊥
a#λb.S

a#S

a#λa.S a#π·X
π·a#X

An NLaX -freshness context ∇ is in flattened form, denoted by ⟨∇⟩ff , when ∇ is decomposed
using the rules above, and permutations are eliminated such that only a#X and ⊥ remain.
A NLaX -freshness context is consistent if its flattened form does not contain ⊥.

▶ Definition 2.1 (Explanation of ⊨). Let ∇ be a consistent NLaX-freshness context, and a#S

be a constraint. Then ∇ ⊨ a#S holds iff ⟨{a#S}⟩ff ⊆ ⟨∇⟩ff .

An NLaX -substitution ρ is a finite mapping from generalization variables to NLaX -
expressions, extended to expressions. We will denote the domain of substitutions by dom(.).
A substitution is ground if it maps variables to NLa-expressions. For a ground substitution ρ:
∇ρ is called valid iff ⟨∇ρ⟩ff is consistent.

▶ Lemma 2.2. Let ∇ be an NLaX-freshness context, and a#S be an NLaX-freshness constraint.
Then, ∇ ⊨ a#S iff for all ground substitutions ρ: if ∇ρ is valid, then also ({a#S})ρ is valid.

2.1 Nominal language NLA with Atom-Variables
Let AtomVars be a set of atom-variables ranging over A, B, A1, B1, . . .. The NLA-expression
language is related to the nominal languages NLa and NLaX , but includes atom-variables
instead of atoms (see [24]). The grammar for the expression language NLA of expressions s

and permutations π with atom-variables is as follows:

s ::= W | π·X | f(s1, . . . , sn) | λW.s W ::= π·A π ::= ∅ | (W1 W2)◦π

Note that NLA-expressions do not contain atoms. There are two kinds of suspensions: of
atom-variables, as in π·A, and of generalization variables, as in π·X. Composition of (atom-
variable) permutations π1 and π2 is denoted π1 ◦ π2 and can be flattened by concatenating

1 The nominal language is equivalent to other nominal languages with different binding constructs.
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the atom-variable swappings in π1, π2. For a permutation π = π1 ◦ . . . ◦ πn, we write π−1

for the inverse of π, i.e., for the permutation π−1
n ◦ . . . ◦ π−1

1 . Note that π−1 = π holds for
swappings π.

Substitutions are extended by a mapping of atom-variables.
The following notation will be used: Head(s) is defined as f , if s = f(. . .); and λ,

if s = λa.s′; if s is a suspension π·X, then X; and if s is π·A then A. We use the usual
conventions for dealing with permutations and suspensions, for example, to move permutations
homomorphically inside terms and viewing ∅·s as the same term as s. Suspensions of atom
variables have to be treated carefully, for instance, (A B) · A = B, for all instantiations of
A and B to atoms, but (A C) · B is not necessarily B, since B, C could be mapped to the
same atom, resulting in A. We also will use the abbreviations AV for atom-variables and
GV for generalization-variables.

▶ Example 2.3. Consider the NLA-expression s = λ(A B)·C.f(C, X): it is an abstraction of
the suspended atom-variable (A B)·C on the expression f(C, X). Let σ = {C 7→ A, X 7→ B}
be an NLA substitution. Then, sσ = λ(A B)·A.f(A, B) = λB.f(A, B). For the ground
substitution (i.e., mapping to NLa), ρ = {A 7→ a1, B 7→ a2, C 7→ a3, X 7→ a3}, we have:
sρ = λa3.f(a3, a3).

Notice that the substitution σ is applied to s in a “capturing” way, as usual in nominal
terms and nominal unification.

▶ Definition 2.4. NLA-freshness constraints are pairs of the form A#s where A is an
atom-variable and s is an NLA-expression. NLA-freshness contexts (∇, ∆, . . .) are finite sets
(conjunctions) of freshness constraints.

In the following we permit π·A#s, but with the convention to replace π·A#s immediately
by A#π−1·s, and also to move the permutation π−1 inside the expression s. This move is
done homomorphically, and stops at suspensions as follows: π·(π′·V ) 7→ (π ◦ π′)·V .

▶ Example 2.5. It is possible to represent equality and inequality of atom-variables using
NLA-freshness constraints: the constraint A#B means that instantiations of A, B must be
different. The constraint A#λB.A enforces that the instantiations of A, B must be equal. It
is also possible to represent (a restricted form) of propositional formulas over equations on
atom-variables, e.g., (C = A) ∨ (C = B) can be represented as C#λA.λB.C.

NLA-freshness constraints and contexts can be further standardized/decomposed in the
right hand side until they are of one of the following forms: A#λW1. · · · .λWn.W , or
A#λW1. · · · .λWn.π·X. Notice that A#A is inconsistent, but more complex constraints
cannot be decomposed or evaluated without information about the concrete (i.e., ground)
instances of the atom-variables. In the following we sometimes write freshness constraints/-
contexts to mean NLA-freshness constraints/context.

▶ Definition 2.6. A NLA-freshness constraint A#s is valid for a ground substitution ρ, iff
Aρ#sρ is valid in NLa. A freshness context ∇ is valid for a ground substitution ρ, iff for
every constraint A#s ∈ ∇, (A#s)ρ is valid. A freshness context ∇ is consistent, iff there is
a ground substitution ρ, such that ∇ρ is valid.

▶ Definition 2.7. Let ∇ be an NLA-freshness context and A#s be a freshness constraint, and
π1, π2 be permutations. Then

∇ ⊨ A#s holds, iff for all ground substitutions ρ and consistent ∇ρ, ∇ρ ⊨ (Aρ#sρ) holds.
∇ ⊨ π1 = π2 holds, iff for all ground substitutions ρ such that ∇ρ is consistent, ∇ρ ⊨
π1ρ = π2ρ holds (as functions).

FSCD 2022



7:6 Nominal Anti-Unification with Atom-Variables

We will define a more operational approach for deciding implication of NLA-freshness
contexts and constraints, where the basic idea is to make a case analysis of all equal/inequal
possibilities of atom-variables. We denote the set of atom-variables occurring in ∇ as
AtVar(∇) and write AtVar(∇, A#s) for AtVar(∇ ∪ {A#s}). Also, GenVar(o) denotes the
set of generalization variables of the object o.

▶ Definition 2.8. Let ∇ be a freshness context, and R be an equivalence relation on AtVar(∇).
An R-realization function ρR is a function ρR : AtVar(∇) → Atoms, mapping every atom-
variable A in ∇ to a concrete atom, such that A1 ∼R A2 iff ρR(A1) = ρR(A2).

We assume that ρR can be applied to substitutions by homomorphically applying it to
the components. In an application ρR(s), permutations are applied such that the result is an
atom or a suspension π·X of a (generalization) variable X where π only contains atoms.

▶ Definition 2.9. Let ∇ be a freshness context and A#s be a freshness constraint. Then,
∇ ⊢ER A#s holds iff for all equivalence relations R on AtVar(∇, A#s): ρR(∇) ⊨ ρR(A#s).

▶ Lemma 2.10. Let ∇ be a freshness context, and A#s be a freshness constraint. Then
∇ ⊨ A#s iff ∇ ⊢ER A#s.

▶ Proposition 2.11. Let ∇, ∆ be freshness contexts. Then the complexity of the problem
∇ ⊨ ∆ is in coNP.

Proof. We analyze the algorithm ⊢ER in Definition 2.9. We have to check for all equivalence-
relations of atom-variables whether the relation holds. Since these equivalence-relations can
be represented in polynomial size, and the test ⊢ is polynomial once the equivalence relation
is chosen, we see that the problem is in coNP (see for example [15]). ◀

Alpha-equivalence on NLA can be established semantically only: deciding whether all
instances of, for example, λA.A and λB.(B C)·C are alpha-equivalent, intuitively takes us
(using the usual nominal techniques) to checking whether A ∼ (B C)·C and A#C, but the
answer relies on all possible instantiations of A, B and C.

▶ Definition 2.12. An NLA-term-in-context is a pair (∇, s) of an NLA-freshness context ∇
and an NLA-expression s. The semantics of (∇, s) is the set of (equivalence classes of) ground
instances of s that satisfy ∇, i.e., J(∇, s)K := {[r]∼ | r is ground and ∃σ : sσ ∼ r∧∇σ holds},

where [r]∼ denotes the equivalence class of r modulo ∼.
A term-in-context (∇, t) is more general than another term-in-context (∇′, t′), if

J(∇′, t′)K ⊆ J(∇, t)K. Two terms-in-context (∇1, t1) and (∇2, t2) are equivalent iff J(∇1, t1)K =
J(∇2, t2)K. We will also write the equivalence of (∇, t1) and (∇, t2) as ∇ ⊨ t1 = t2.

We recall an example from [4] which are two NLaX terms-in-context ({a#X}, f(X)) and
({a#X}, f(a)), where it is shown that ({a#X}, f(X)) is not more general than ({a#X}, f(a)).
This behaviour is improved in our approach: after transferring their example into NLA, we have
that ({A#X}, f(X)) is more general than ({A#X}, f(A)). In ({A#X}, f(X)), the ground
instance of A can be chosen arbitrarily, thus ({A#X}, f(X)) is equivalent to (∅, f(X)).

▶ Definition 2.13. A term-in-context (∇, r) is called a generalization of two terms-in-context
(∇1, s) and (∇2, t), if J(∇1, s)K ⊆ J(∇, r)K and J(∇2, t)K ⊆ J(∇, r)K. It is a least general
generalization (lgg) of (∇1, s) and (∇2, t) if it is a smallest one, i.e., for all least general
generalizations (∇′, r′) of (∇1, s) and (∇2, t), it holds J(∇, r)K ⊆ J(∇′, r′)K. A set G of
generalizations is complete iff for all generalizations (∇′, r′) of (∇1, s) and (∇2, t), there is



M. Schmidt-Schaußand D. Nantes-Sobrinho 7:7

some g ∈ G, such that JgK ⊆ J(∇′, r′)K. The set G is minimal, if it is non-redundant, i.e. for
all different g1, g2 ∈ G, Jg1K ̸⊆ Jg2K.

We call the generalization problem (of a language) unitary if there always exists a single lgg.
We call it finitary or infinitary resp., if there always exists a minimal (finite, or unrestricted,
resp.) complete set of generalizations for any input problem. If there are input problems such
that a minimal complete set does not exist, the problem is called nullary. The latter case
means that for the particular input problem, all complete sets are redundant.

▶ Example 2.14. We reconsider the example of [4] of an infinite chain of generalizations, and
show that the corresponding example for atom-variables becomes finite due to our semantics.
Consider the sequence of terms-in-context ({A#X}, f(X, A)); ({A#X, B1#X, B1#A},
f(X, A)); ({A#X, B1#X, B1#A, B2#X, B2#A, B2#B1}, f(X, A)) etc. In contrast to
the framework in [4], the translated chain is not a counterexample to our claim, since the
semantics remains constant within the chain: We will argue that J{A#X}, f(X, A)K coincides
with the set J{A#X, B1#X, B1#A}, f(X, A)K. Obviously J{A#X, B1#X, B1#A}, f(X, A)K
⊆ J{A#X}, f(X, A)K. Hence it is sufficient to show the converse inclusion. Let ρ be such
that Aρ#Xρ. We simply have to show that the constraint {A#X, B1#X, B1#A} can be
satisfied by defining ρ appropriately on B1. Since there are infinitely many atoms, there is
always an atom not in Xρ, and also different from Aρ, say b. We define B1ρ := b, and then
the constraint is satisfied, and f(X, A)ρ is an element of J{A#X, B1#X, B1#A}, f(X, A)K.
Thus, the semantics of both terms-in-contexts is the same. The method can be used for all
other terms-in-context of the translated chain and show that the chain is in fact constant,
since there are infinitely many atoms available.

2.2 Nominal Anti-Unification Problem with Atom-Variables
The goal is to find a least general generalization of sets of NLA terms-in-context.
Problem: Given two NLA terms-in-context (∇1, t1) and (∇2, t2).
Find: A NLA-term-in-context (∇3, t3) such that J(∇1, t1)K ⊆ J(∇3, t3)K and J(∇2, t2)K ⊆
J(∇3, t3)K, and J(∇3, t3)K is as small as possible, i.e., (∇3, t3) is a lgg of (∇1, t1) and (∇2, t2).

(∇1, t1) (∇2, t2)

(∇3, t3)

(∇′, X)

less generalmore general

least general generalization

As example, let ({A1#A2}, f(A1, λA2.A2)) and (∅, f(c, λA3.A3)) be NLA terms-in-context,
where c is a unary symbol in the signature. Their least generalization is (∅, f(X, λA2.A2)),
since the constraint does not restrict the instances. Another example for terms-in-context is
(∅, f(A)) and (∅, g(B)). It is easy to check that (∅, X) is a generalization.

3 The Algorithm AtomAntiUnif

We first define the (non-deterministic) nominal generalization algorithm AtomAntiUnif
that computes a generalization of the input terms-in-context. It relies on the subalgorithm
Eqvm for equivariant matching (with atom-variables) that computes a permutation. We

FSCD 2022



7:8 Nominal Anti-Unification with Atom-Variables

prove that the algorithm is sound and complete, computes a generalization, and which can
be performed in exponential time. Later in Section 4, we will define a method to compute a
least general generalization from the computed generalization by adding a freshness context.

3.1 The Nominal Generalization Algorithm
The state of the algorithm AtomAntiUnif is a tuple (Γ, M, ∇, θ) where

Γ is a set of generalization triples of the form X : s ≜ t, where X is a fresh (generalization-)
variable, and s, t are NLA-expressions.
M is a set of solved generalization triples.
∇ is a set of freshness constraints.
θ is a substitution represented as a list of bindings; the empty list is denoted as [].

The rules of the AtomAntiUnif, given in Figure 1, operate on such states. Given
two NLA expressions s and t, and a freshness context ∇ (possibly empty), to compute
generalizations for (∇, s) and (∇, t), we start with ({X : s ≜ t}, ∅, ∇, []), the initial state
(sometimes we abbreviate it to (∇, {X : s ≜ t})), where X is a fresh generalization variable,
and we apply the rules as long as possible, until no more rule applications are possible,
where no alternative rule applications have to be explored. The final state will be reached,
which has the form (∅, M, ∆, θ). We will denote the computation from the initial state
to the final state as (Γ, ∅, ∇, []) =⇒∗ (∅, M, ∆, θ). When convenient we will denote by
(Γ, M, ∇, θ) =⇒(R) (Γ′, M ′, ∇′, θ′), the one-step computation using a rule (R) from Figure 1.
The output is a term-in-context obtained from the generated substitution θ and the final
freshness constraint ∆, i.e. the output is (∆, X ◦ θ), also called the result computed by the
AtomAntiUnif algorithm.

We now describe the rules in Figure 1:
The decomposition rule (Dec) is standard.
Rule (Abs) is applicable for the generalization (on variable X) of two generalized abstrac-
tions: apply a swapping with a fresh atom-variable B. Its freshness is guaranteed by
adding freshness constraints to ∇′, which guarantee that the renaming by the permuta-
tion keeps α-equivalence, without losing solutions. The substitution is extended with a
mapping {X 7→ λB.Y }, where Y is a fresh generalization variable.
Rules (SusA) and (SusYY) are applicable for the generalization (on variable X) of sus-
pensions of atom-variables or generalization variables, respectively. In both cases, the
semantics of ∇ will identify the two suspensions, and the substitution will be extended
with a mapping from X to one of the variables in the suspension. Note that only these
two rules introduce the variables from the initial s, t into the solution substitution θ.
Similarly to [4], the merging rule (Mer) relies on a generalization (to NLA) of the
equivariance algorithm Eqvm, for computing a generalized permutation π, such that
∇ ⊨ π·(s1, t1) = (s2, t2), if it exists.
Rules (Solve), (SolveYY) and (SolveAB) can be applied when a condition is satisfied. The
first rule applies when s and t do not have the same head, and are not suspensions of atom
variables. Rule (SolveYY) treats the case of two suspensions on the same generalization
variable Y , say π1·Y and π2·Y , but the semantics of ∇ permits that both suspensions
may be mapped to different atoms. Rule (SolveAB) treats the case of suspensions of
atom-variables, in the case where the semantics of ∇ implies that both suspensions will
be instantiated to two different terms. The algorithm then ignores the constraints acting
on the variables in the equations that are moved to M .
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(Dec): Decomposition
{X:f(s1, . . . , sn) ≜ f(t1, . . . , tn)} ·∪Γ, M, ∇, θ

Γ ·∪{X1:s1 ≜ t1, . . . , Xn:sn ≜ tn}, M, ∇, θ ∪ {X 7→ f(X1, . . . , Xn)}
where Xi are fresh
variables

(Abs): Abstraction
{X:λW1.s ≜ λW2.t} ·∪Γ, M, ∇, θ

Γ ·∪{Y :(W1 B)·s ≜ (W2 B)·t}, M, ∇ ∪ {B#λW1.s, B#λW2.t}, θ ∪ {X 7→ λB.Y }
where Y is a fresh variable, and B is a fresh atom-variable

(SusA): SuspensionA
{X:W1 ≜ W2} ·∪Γ, M, ∇, θ ∇ ⊨ W1 = W2

Γ, M, ∇, θ ∪ {X 7→ W1}

(SusYY): SuspensionYY
{X:π1·Y ≜ π2·Y } ·∪Γ, M, ∇, θ ∇ ⊨ π1 = π2

Γ, M, ∇, θ ∪ {X 7→ π1·Y }
(Mer): Merging
Γ, {Z1:s1 ≜ t1, Z2:s2 ≜ t2} ·∪M, ∇, θ Eqvm({(s1, t1) ⪯ (s2, t2)}, ∇) = π

Γ, M ∪ {Z1:s1 ≜ t1}, ∇, θ ∪ {Z2 7→ π·Z1}
where (Z1, Z2) is
(X, Y ) or (A, B)

(Solve)
{X:s ≜ t} ·∪Γ, M, ∇, θ

Γ, M ∪ {X:s ≜ t}, ∇, θ

If Head(s) ̸= Head(t) and if s and t are not both
suspensions of atom-variables.

(SolveYY)
{X:π1·Y ≜ π2·Y } ·∪Γ, M, ∇, θ ∇ ̸⊨ π1 = π2

Γ, M ∪ {X:π1·Y ≜ π2·Y }, ∇, θ

(SolveAB)
{X:W1 ≜ W2} ·∪Γ, M, ∇, θ ∇ ̸⊨ W1 = W2

Γ, M ∪ {A:W1 ≜ W2}, ∇, θ ∪ {X 7→ A}
A is a fresh atom-variable.

Figure 1 Rules of the algorithm AtomAntiUnif.

The generalization variables are always chosen fresh, thus these do not occur in freshness
contexts, hence application of θ to ∇ is not necessary. Note that the effect of the rules
on ∇ is only the addition of constraints by (Abs) (without a semantical change).
By construction, in a computation ({X : s ≜ t}, ∅, ∇, []) =⇒∗ (Γ, M, ∇, θ) from the initial
state to an intermediate state, the generalization variables in the range of the computed
substitution θ satisfy GenVar(θ) ⊆ GenVar(Γ ∪ M).

▶ Remark 3.1 (About completeness). Several rules do not inherit the optimal set of freshness
constraints. It is unclear how and presumably complex to compute these. We leave this
computation to the extra algorithm AtomAntiUnifLgg that computes a lgg from the result
of AtomAntiUnif by adding and checking generalized freshness constraints (see Section 4)

▶ Remark 3.2. An algorithm for ∇ ⊨ . . . is to check all equivalence classes of atom-variables,
where equivalence of A, B semantically means equal images under a ground instantiation (see
also Definition 2.8, Lemma 2.10, and Section 4). This can be performed in exponential time
since it is sufficient to check all possibilities of equality and disequality of atom-variables.

The next example shows the use of the semantics of ∇ and the treatment of bindings.

▶ Example 3.3. Let the NLA-expressions to be generalized be λA1.A2 and λA2.A1 under
∇. The lgg is (∅, λA.A) or (∅, λA.B) for A ̸= B, depending on whether ∇ ⊨ A = B or
∇ ⊭ A = B. In the first case (Abs) is applied and in the latter case also (SusA).

The algorithm AtomAntiUnif is naive: it finds a generalization for two NLA-terms-in-
context (∇, s) and (∇, t) but not necessarily the least general one:

FSCD 2022
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Ψ ·∪{e ⪯ e}, Π, ∇
Ψ, Π, ∇

Ψ ·∪{W1 ⪯ W2}, Π, ∇
Ψ, {W1 7→ W2} ∪ Π, ∇

Ψ ·∪{(f s1 . . . sn) ⪯ (f s′
1 . . . s′

n)}, Π, ∇
Ψ ∪ {s1 ⪯ s′

1, . . . , sn ⪯ s′
n}, Π, ∇

Ψ ·∪{π1·X ⪯ π2·X}, Π, ∇ ∇ ⊨ π1·X = π2·X
Ψ, Π, ∇

Ψ ·∪{λW1.s ⪯ λW2.t}, Π, ∇ ∇ ⊨ W2#λW1.s

Ψ ∪ {(W1 W2)·s ⪯ t}, Π, ∇

Ψ ·∪{λW1.s ⪯ λW2.t}, Π, ∇ ∇ ⊨ W1#λW2.t

Ψ ∪ {s ⪯ (W1 W2)·t}, Π, ∇
∅, Π, ∇ EqvBiEx(Π, ∇) = π

Return π

Figure 2 Rules of the permutation matching algorithm Eqvm.

∇ ⊨ W1 = W ′
1 ∧ W2 = W ′

2

(Π ·∪{W1 7→ W2, W ′
1 7→ W ′

2}, ∇)
(Π ·∪{W1 7→ W2}, ∇)

∇ ⊨ W1 = W ′
1, ∇ ̸⊨ W2 = W ′

2

(Π ·∪{W1 7→ W2, W ′
1 7→ W ′

2}, ∇)
⊥

∇ ⊨ W2 = W ′
2, ∇ ̸⊨ W1 = W ′

1

(Π ·∪{W1 7→ W2, W ′
1 7→ W ′

2}, ∇)
⊥

Π, ∇ no other rule is applicable
Return a permutation computed from Π

Figure 3 Rules of the bijection extraction algorithm EqvBiEx.

▶ Example 3.4. Consider the NLA-terms-in-context (∅, f(c1, A)) and (∅, f(c2, A)) that have
to be generalized, where c1 and c2 are different constant symbols. The generalization
computed by the AtomAntiUnif algorithm is (∅, f(X ′, A)), obtained via the derivation:
({X : f(c1, A) ≜ f(c2, A)}, ∅, ∅, []) =⇒∗ (∅, {X ′ : c1 ≜ c2}, ∅, {X 7→ f(X ′, A)}) However, this
is not the smallest generalization, since ({A#X ′}, f(X ′, A)) has a smaller set of instances,
and is less general. The reason that this construction works is that A is a part of the solution,
but it does not occur in the solved equation associated to X ′.

Notice, however, that f(A, A) and f(c, A) have a generalization (∅, f(X ′, A)), via the
derivation: ({X : f(A, A) ≜ f(c2, A)}, ∅, ∅, []) =⇒∗ (∅, {X ′ : A ≜ c2}, ∅, {X 7→ f(X ′, A)}).
But {A#X ′} cannot be added as freshness context: although A is part of the solution,
A occurs in the solved equation associated to X ′. In fact, ({A#X ′}, f(X ′, A)) is not a
generalization of f(A, A) and f(c, A), and (∅, f(X ′, A)) is the lgg.

3.2 Equivariance Algorithm
The merge-rule as in [4] relies on solving an equivariance problem [9]. It will be treated
similarly here, however, generalized to atom-variables and nested permutations. We will use
a matching-like rule-based algorithm that finally is able to produce a permutation for the
merge rule, if there is one at all, and otherwise fails. Instead of fixing a derivation algorithm
∇ ⊢ . . ., we will use the semantic variant ∇ ⊨ . . . and mean it to be as general as possible,
which will leave some open space for optimizations.

▶ Algorithm 3.5. The rules of the non-deterministic algorithm Eqvm are in Figures 2 and 3.
They operate on triples of the form (Ψ, Π, ∆) where

Ψ is a set of matching problems of the form e ⪯ e′;
Π are the potential (mapping) components of the permutation computed so far;
∆ is set of freshness constraints.

The initial triple is (Ψ, ∅, ∇), where Ψ and ∇ are delivered in the call to this algorithm. The
rules are to be applied as long as possible. If a state of the form (∅, Π, ∆) is reached, and
∆ implies that the mappings in Π do not collide and can be completed into a permutation
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(a bijection), then the algorithm is successful. The permutation will be computed using the
algorithm EqvBiEx in Figure 3. In the success case a permutation π from Π is returned
after an exhaustive run without a fail, where for the permutation perhaps some mappings
have to be added. For example, the result {A 7→ C, B 7→ D, C 7→ E} is made a bijection by
adding {D 7→ A, E 7→ B}, which can then be represented as a permutation.

▶ Proposition 3.6. The algorithm Eqvm is sound, correct and terminates in a linear number
of steps with a computed permutation if there is any.

Proof. Every step is easily justified and makes the set Ψ strictly smaller. The major parts of
the complexity are the calls to ∇ ⊨. For the complexity of ∇ ⊨ . . . see Proposition 2.11. ◀

3.3 Properties of AtomAntiUnif
From an AtomAntiUnif derivation ({X : s ≜ t}, ∅, ∇, []) =⇒∗ (∅, M, ∆, θ) we can obtain
substitutions ρ1 and ρ2 mapping generalization variables GenVar(θ) to NLA-expressions,
making a connection between X ◦ θ, s and t (similar as in [4]). From the set of solved
equations M = {X1 : s1 ≜ t1, . . . , Xn : sn ≜ tn}, we define ρ1 = {X1 7→ s1, . . . , Xn 7→ sn}
and ρ2 = {X1 7→ t1, . . . , Xn 7→ tn}, such that J(∇, s)K ⊆ J(∆, (X ◦ θ)ρ1)K and J(∇, t)K ⊆
J(∆, (X ◦ θ)ρ2)K. In general, J(∇, s)K ∪ J(∇, t)K ⊆ J(∆, (X ◦ θ)ρ1)K ∪ J(∆, (X ◦ θ)ρ2)K where
this is also specialized to the intermediate states of AtomAntiUnif.

This connection motivates an extension of the semantics for NLA-terms-in-context (∇, s)
to AtomAntiUnif states, which will allow us to show that the semantics increase in each
step of rule application.

▶ Definition 3.7. Let ({X : s ≜ t}, ∅, ∇, []) be an initial state of AtomAntiUnif. The
semantics of terms-in-context w.r.t. states S := (Γ, M, ∇, θ) of AtomAntiUnif as follows:

J({X : s ≜ t}, ∅, ∇, [])K := J(∇, s)K ∪ J(∇, t)K
J(∅, ∅, ∇, θ)K := J(∇, X ◦ θ)K, where X is the input generalization variable.
Otherwise, for Γ ∪ M = {Yi : si ≜ ti | i = 1, . . . , n} ≠ ∅:

J(Γ, M, ∇, θ)K := {[(X ◦ θ)ρs]∼ | ρs is ground, ∇ρs holds, and ∀i.[Yiρs]∼ ∈ J(∇, si)K}
∪{[(X ◦ θ)ρt]∼ | ρt is ground, ∇ρt holds, and ∀i.[Yiρt]∼ ∈ J(∇, ti)K}

where X is the input generalization variable.

▶ Proposition 3.8. The algorithm AtomAntiUnif never gets stuck and will yield a gener-
alization. The number of rule applications is linear.

As illustrated in previous examples, our algorithm outputs a generalization but not always
the least general one (cf. Example 3.4). Therefore, we can establish the following weaker
completeness theorem that establishes a characterization of lggs up to a freshness context.

▶ Theorem 3.9 (Completeness up to Freshness Contexts). Given NLA expressions s and t,
and a freshness context ∇. If (∇′, r) is a generalization of (∇, s) and (∇, t), then there exists
a ∇′′ and a derivation ({X : s ≜ t}, ∅, ∇, []) =⇒∗ (∅, M, ∆, θ) such that J(∆ ∪ ∇′′, X ◦ θ)K is
a generalization of (∇, s) and (∇, t), and J(∅, M, ∆ ∪ ∇′′, θ)K ⊆ J(∇′, r)K.

Proof. The proof follows by induction on the number of rule applications from Figure 1.
The complete proof can be found in the appendix. ◀

Soundness of AtomAntiUnif is obtained by an easy inspection of the rules in Figure 1
and the proof is omitted.
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▶ Theorem 3.10 (Complexity of the Algorithm). The algorithm AtomAntiUnif requires
simple exponential time to compute a solution. The number of rule applications is polynomial,
and the solution requires polynomial space.

Proof. The number of rule applications of the main algorithm is polynomial, since the size
of Γ ∪ M is strictly reduced in each step, where the size is meant as follows: the term size
ignoring the permutations, and a generalization variable has size 2, whereas an atom-variable
has size 1. The total size, including permutations, remains polynomial, since there is only a
constant-size increase per rule application in Γ, M, ∇. The size of θ also remains polynomial,
since solution components are not applied. The call to subalgorithms may be (simply)
exponential depending on the size of the problem. Since there is only a polynomial number
of such calls, and the size remains polynomial, the algorithm requires simple exponential
time in the worst case. ◀

The following shows that the NLA-freshness contexts have a finiteness property, where an
upper bound is given. We consider two freshness constraints ∇1, ∇2 as equivalent w.r.t. s iff
J(∇1, s)K = J(∇2, s)K.

▶ Theorem 3.11. Let s be a generalization term. Then the number of equivalence classes of
NLA-freshness constraints ∇ w.r.t. s is finite. Their number is in O(nn) = O(en∗(log(n)+1)).

Proof. Let M = AtVar(s), and let ∇1 and ∇2 be freshness contexts, where we assume that
freshness constraints are of the two forms A#λW1. . . . λWn.W and A#λW1. . . . λWn.π·X.
(Equivalence test) The test for equivalence of two freshness contexts ∇1 and ∇2 is as
follows: For all equivalence relations R on M and for all freshness contexts ∆0 ⊆ {A#X |
A ∈ AtVar(s), X ∈ GenVar(s)}:

Check the equivalence of ∇1 and ∇2 (under R and ∆0) of the following two tests:
(1) There is an equivalence relation R′ on AtVar(∇1, s) that soundly extends R, i.e.

A ∼R A′ iff A ∼R′ A′ for all atom-variables A, A′ in M . Such that:
(i) All AV-constraints A#λW1. . . . λWn.W in ∇1 evaluate to true under R′.
(ii) The set of GV-constraints ∇G in ∇1 is equivalent to ∆0 using R′ for simplification.

(2) There is an equivalence relation R′′ on AtVar(∇2, s) that soundly extends R, i.e.
A ∼R A′ iff A ∼R′′ A′ for all atom-variables A, A′ in AtVar(∇2, s). Such that:

(i) All AV-constraints A#λW1. . . . λWn.W in ∇2 evaluate to true under R′′.
(ii) The set of GV-constraints ∇G in ∇2 is equivalent to ∆0 using R′ for simplification.
If for all R, and all selected freshness contexts ∆0, the combined tests leads to true, then
the freshness contexts ∇1 and ∇2 are equivalent w.r.t. s.

(Finiteness) of the set of equivalence classes of freshness constraints follows, since the set M

depends only on s, and hence there is a finite set of equivalence relations over M . Also, there
is only a finite set of possibilities for ∆0. An upper bound for the number of equivalence
classes R is O(nn) = O(e(n∗log(n)), where n is the number of atom-variables in s. (The
number of equivalence relations for n atom-variables is also called the Bell-number2 of n.)

The number of different sets of freshness constraints is at most exponential, i.e. O(2n)
where n is the number of atom-variables, since these are all subsets of a set of atom-variables.
Since both are combined, the number of possibilities is their product, and thus the growth is
in O(e(n∗(log(n)+1)). ◀

2 see https://mathworld.wolfram.com/BellNumber.html.

https://mathworld.wolfram.com/BellNumber.html
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▶ Corollary 3.12. Let (∇, Γ) be an input for the AtomAntiUnif algorithm and (∇′, s) be
the computed result. Then, there are no infinitely properly descending chains (∇′, s), (∇′

1, s),
(∇′

2, s), . . . of generalizations. A consequence is that the solution type of generalization
problems with atom-variables is finitary or even unitary.

4 Computing Least General Generalizations

In this section we describe the final step of computing lggs, which builds upon the result of
the algorithm AtomAntiUnif. First, we define a more general form of freshness constraints.
Then, we provide a specialized algorithm, called AtomAntiUnifLgg, that computes an lgg
by strengthening the (general) freshness constraints.

Notice that the addition of constraints of the form A#X is not sufficient to reach an lgg:

▶ Example 4.1. Let the input be (∅, {X : (f(A), A, B) ≜ (c, A, B)}), where c, f are function
constants. AtomAntiUnif computes the generalization (∅, (Y, A, B)), however, it is not an
lgg. Adding A#Y or B#Y violates the generalization property. However, B#λA.Y can be
added as constraint, and then ({B#λA.Y }, (Y, A, B)) allows the instance (f(a), a, a), since
a#λa.f(a) holds. We see that ({B#λA.Y }, (Y, A, B)) is the lgg.

4.1 A Generalized Representation for lgg
In order to represent and compute lggs, we switch to a more general representation of freshness
constraints and contexts, called Eqr-freshness constraints, that are obtained by analyzing
the possible Equivalence relations over a set of atom-variables A. We will show that a least
general generalization using Eqr-freshness contexts can be obtained and how to compute it.
The extended form allows for a finite generation of extra freshness constraints and also a
computable test of whether the extended solution still is a generalization. Note that this is
the same as making a complete case-distinction over all possible equality/disequalities of
ground instantiations of atom-variables.

▶ Definition 4.2. Let A = {A1, . . . An} be a set of atom-variables and {Y1, . . . , Ym} be a set
of (generalization) variables.

An Eqr-freshness constraint is of the form (Q =⇒ Q′) where Q is a conjunction of
constraints of the forms A ̸= A′ or A = A′. The part Q′ is True, or False, or a (positive)
propositional formula formed using ∧,∨, and freshness constraints of the form Ai#Yj.
An Eqr-(freshness) context is a conjunction of Eqr-constraints, i.e., it has the form
(Q1 =⇒ Q′

1) ∧ . . . ∧ (Qm =⇒ Q′
m) where the Qi are exactly all equivalence relations

within A. Notice that if A = B holds in Qi, then the representation is not unique and
could be extended or restricted, e.g., by replacing A#X by B#X or by similar operations.

▶ Example 4.3. Let A = {A, B}, and X be a variable. An example for an Eqr- freshness
context is: ({A = B} =⇒ (A#X ∧ B#X)) ∧ ({A ̸= B} =⇒ (B#X)).
A second example is the constraint A#λB.A that has an equivalent Eqr-freshness context:
({A = B} =⇒ True) ∧ ({A ̸= B} =⇒ False).
A third example is the freshness constraint A#λB.(B A)·Y with A = {A, B}. The equivalent
Eqr-freshness context is (A = B =⇒ True) ∧ (A ̸= B =⇒ B#Y ).

▶ Definition 4.4. For an equivalence relation R on A, we define a related evaluation of
freshness constraints, denoted as γ(R, A#s), which exploits the equalities and inequalities of
a single R to maximally simplify the constraint(s), and thereby eliminating all permutations
by perhaps applying the inverse if necessary, such that the result is only True, False, or a
freshness constraint of the form A#B, or A#Y .
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The next result establishes an action of γ(R) over freshness constraints, connecting them
to Eqr-freshness constraints.

▶ Proposition 4.5. Every freshness context can also be expressed as an Eqr-freshness context.
The size of the generated output may be exponential.

There exist Eqr-freshness contexts that cannot be encoded as NLA-freshness context:

▶ Lemma 4.6. Let A = {A, B} be a set of atom-variables, X and Y be generalization
variables. The Eqr- freshness context ((A ̸= B) =⇒ A#X) ∧ ((A = B) =⇒ A#Y ∧ B#Y )
cannot be encoded as an NLA-freshness context, i.e, a conjunction of NLA-freshness constraints.

▶ Corollary 4.7. Eqr-contexts are strictly more expressive than NLA-freshness contexts.

The next example illustrates (i) the evaluation of a freshness constraint under an equival-
ence relation R in a term-in-context (ii) the omission of a redundant atom-variable, and is
an example where a single least general generalization does not exist.

▶ Example 4.8. Let A = {A, B, C} and ∇ = {C#λA.λB.C, C#X} be a freshness con-
text. A first generalization of (∇, X ′ : f(A, B, C) ≜ f(A, B, X)) is the term-in-context
(∇, f(A, B, X)). An Eqr-freshness context ∇0 representing this (obtained using Defini-
tion 4.2) is as follows:

1) ({A = B, B = C, A = C} =⇒ (C#X))} (or A#X)
2) ∧ ({A = B, B ̸= C, A ̸= C} =⇒ False)
3) ∧ ({A ̸= B, B ̸= C, A ̸= C} =⇒ False)
4) ∧ ({A ̸= B, B = C, A ̸= C} =⇒ (C#X)) (or B#X)
5) ∧ ({A ̸= B, A = C, B ̸= C} =⇒ (C#X)) (or A#X)

Some computations (see also Proposition 4.9 for the general case) show that ({A = B} =⇒
A#X) ∧ ({A ̸= B} =⇒ (B#X ∨ A#X)) is an equivalent Eqr-freshness context for the set
{A, B}, which cannot be represented as an NLA-freshness context using only {A, B} due to
the disjunction. This is the (unique) lgg w.r.t. Eqr-freshness contexts.

Notice that a complete set consists of two lggs w.r.t. NLA-freshness contexts:
({A#X}, f(A, B, X)) and ({B#X}, f(A, B, X)), if only atom-variables from f(A, B, X)
are permitted. However, using additional atom-variables (here C), we obtain a unique lgg
(∇, f(A, B, X)). This example provides an argument for permitting a larger set of atom-
variables as the ones contained in the term of the term-in-context for obtaining lggs w.r.t.
NLA-freshness contexts.

▶ Proposition 4.9 (Restricting). Let A′ ⊂ A be a set of atoms, X1, . . . , Xn be variables, t be
an expression with AtVar(t) ⊆ A′, and ∇ be a freshness context over A. Then there is an
equivalent Eqr-freshness context ∇′ over A′, such that J(∇, t)K = J(∇′, t)K.

4.2 The AtomAntiUnifLgg algorithm
This algorithm strengthens the freshness constraints of the computed generalization given as
output by the AtomAntiUnif algorithm. It takes as input (∇in, Y :r1 ≜ r2) and (∇AAU, t),
where (∇in, Y :r1 ≜ r2) is the input of AtomAntiUnif with result (∇AAU, t), and ∇min is
the result of restricting ∇AAU to the atom-variables in t (cf. Proposition 4.9). Then all atom
variables occurring in ∇min also occur in (∇in, Y : r1 ≜ r2). The output will be the freshness
context ∇min joined with a generalized freshness context Q.

▶ Definition 4.10. The algorithm AtomAntiUnifLgg for computing a least general gener-
alization is defined in Figure 4.
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1: Input: (Y : r1 ≜ r2, ∇in), (∇AAU, t)
2: Let A = AtVar(t).
3: Let ∇min be the result of restricting ∇AAU to A as in (the algorithm from) Proposition 4.9.
4: X = GenVar(t); Q := True
5: for every equivalence relation R on A do ▷ Computation of Q
6: let Q1 = γ(R)
7: let Q2 be the maximal possible positive formula of GV-constraints A#X with A ∈ A
8: and X ∈ X such that the following holds:

a) J(∇in, r1)K ⊆ J((Q1 =⇒ Q2) ∪ ∇min), t)K.
b) J(∇in, r2)K ⊆ J((Q1 =⇒ Q2) ∪ ∇min), t)K.

9: Let Q′
2 and Q′ be such that Q = (Q′ ∧ (Q1 =⇒ Q′

2))
10: Q := (Q′ ∧ (Q1 =⇒ (Q′

2 ∧ Q2)))
11: end for
12: Output: (∇min ∪ Q, t)

Figure 4 The AtomAntiUnifLgg Algorithm.

▶ Proposition 4.11 (Unique Maximal Constraint). Let (∇, t) be a term-in-context with
Eqr-freshness context ∇, where AtVar(∇) ⊆ AtVar(t) and GenVar(∇) ⊆ GenVar(t), and
let (∇1, r1), (∇1, r2) be terms-in-context with AtVar(r1, r2) ⊆ AtVar(t), GenVar(r1, r2) ⊆
GenVar(t), and J(∇1, r1)K ⊆ J(∇, t)K, J(∇1, r2)K ⊆ J(∇, t)K. Then there is an Eqr-freshness
context ∇′, such that J(∇′, t)K ⊆ J(∇, t)K, and J(∇1, r1)K ⊆ J(∇′, t)K, J(∇1, r2)K ⊆ J(∇′, t)K,
and J(∇′, t)K is the minimum that is unique w.r.t. the properties above.

Proof. Two Eqr-freshness constraints over the same set A of atom-variables can be joined
as follows: If (Q1 =⇒ P1,i) ∧ . . . ∧ (Qn =⇒ Pn,i) for i = 1, 2 are two Eqr-freshness
constraints over A. Then the join can be represented as the Eqr-freshness constraint
(Q1 =⇒ (P1,1 ∧ P1,2)) ∧ . . . ∧ (Qn =⇒ (Pn,1 ∧ Pn,2)), and the result follows. ◀

▶ Theorem 4.12. Let (∇AAU, r) be a generalization output by the nominal
AtomAntiUnif algorithm when given (∇, X : r1 ≜ r2) as input. Then AtomAntiUnifLgg
applied to (∇AAU, r) outputs a least general generalization for (∆, X : r1 ≜ r2). In addition,
this strengthening has a maximal result and it is unique up to equivalences.

Since the algorithm AtomAntiUnif and the other algorithms also work in the same way
if AtomAntiUnif is started with more general terms-in-context where the constraint is an
Eqr-constraint, we obtain that the nominal anti-unification problem with atom-variables
and Eqr-freshness constraints is decidable and a minimal complete set of lggs exists and has
exactly one generalization.

▶ Theorem 4.13. The nominal anti-unification problem of NLA-expressions with atom-
variables and Eqr-freshness contexts is decidable and unitary.

Application of Theorem 3.11 implies that the anti-unification problem for NLA-expressions
and contexts is at most finitary.

▶ Theorem 4.14. Let A0 be a finite set of atom-variables. Then the nominal anti-unification
problem of NLA-expressions and NLA-freshness contexts and where only atom-variables from
A0 may appear in the constraint part of the computed generalizations, is decidable and unitary
or finitary.
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▶ Theorem 4.15. If the atom-variables in the constraint parts of the terms-in-context are not
restricted, then the nominal anti-unification problem of NLA -expressions and NLA-freshness
contexts is unitary or finitary.

Investigating decidability of computing a complete set of lggs in Theorem 4.15 with NLA-
freshness contexts and also determining the exact solution type is future research. Applying
Theorem 3.11 does not solve the computation problem in the general case of NLA-freshness
contexts, since we do not know an upper bound on the number of atom-variables that may
occur in the constraint part of the lggs.

4.3 The Atoms-Only Case
We reconsider the nominal unification problem treated by Baumgartner et al. [4]. We model
this case by adding the global condition that all atom-variables must be instantiated with
different atoms and call it the atoms-only case. Then simplifications on the expressions of
the abstract language are valid, such that only suspensions of generalization variables are
needed, and freshness contexts are conjunctions of constraints of the form A#X. Specializing
our algorithm is straightforward. The (Abs)-rule only needs the condition that a fresh atom
variable is used for renaming. The four rules (SusA), (SusYY), (SolveYY), (SolveAB) now
only rely on an easy equality test of permutations. The same for Eqvm and EqvBiEx,
which now run in polynomial time. If also sharing of the substitution components is obeyed,
then AtomAntiUnif runs in polynomial time, and since alternatives do not have to be
investigated, one run is sufficient. For computing an lgg, from the result, we extend the
algorithm by simply checking for all possible constraints of the form A#X, whether these can
be added to the solution and keeping the generalization property. This check is polynomial.
The result constraint will be the union of all these constraints that pass the test.

▶ Theorem 4.16. For the atoms-only case, the adapted and extended algorithm
AtomAntiUnif runs in polynomial time, and always computes a unique lgg of the input
(∇, s) and (∇, r). This implies that the solution-type is unitary.

5 Conclusion and Future Work

A sound and complete rule-based algorithm (AtomAntiUnif) for nominal anti-unification
with atom-variables is provided. Our algorithm relies on an equivariance algorithm (Eqvm)
that is generalized to atom-variables and nested permutations. It computes, in exponential
time, a unique (but not necessarily least) generalization of two terms-in-context. We refine the
output generalization with the AtomAntiUnifLgg algorithm, which adds Eqr-freshness
constraints to the solutions, and a unique lgg is obtained. Our approach improves previous
results [4], since the nominal anti-unification problem with atom-variables and Eqr-freshness
constraints is decidable and unitary. The variant with NLA-freshness constraints is unitary or
finitary, but its decidability and the determination of the exact solution type is future work.
We also describe an improved algorithm of the problem setting of Baumgartner et al.(the
atoms-only-case), which is unitary and still requires polynomial time. Future work is to
optimize the algorithms, investigate specializations like a restriction to linear generalizations,
and to determine the exact complexity of the problem. Applications of nominal techniques
in code duplication and recursion scheme detection are also to be investigated. Also an
anti-unification algorithm for a core-language of Haskell [20, 12] that takes recursive lets into
account (see [22, 23]) would extend applicability.
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A Proofs of Section 3 and Section 4

It is convenient to note that given a state (Γ, M, ∇, θ) obtained from a starting configuration
({X : s ≜ t}, ∅, ∇, []), the instance of the input variable (X ◦ θ) is a context C[X1, . . . , Xn]
such that GenVar(M ∪ Γ) = {X1, . . . , Xn}. The AtomAntiUnif rules do not alter the
semantics of states in a derivation.

▶ Lemma A.1. Let ({X : s ≜ t}, ∅, ∇0, []) an input for the AtomAntiUnif algorithm
and (Γ, M, ∇, θ) a state in the derivation. If (Γ, M, ∇, θ) =⇒(R) (Γ′, M ′, ∇′, θ′) then
J(Γ′, M ′, ∇′, θ′)K = J(Γ, M, ∇, θ)K.

Proof. The proof is by induction on the rule (R) from Figure 1 applied in (Γ, M, ∇, θ) =⇒(R)
(Γ′, M ′, ∇′, θ′). The interesting case is for rule (Abs):

In this case, Γ = {X0 : λW1.s ≜ λW2.t} ∪ Γ0, Γ′ = {X1 : (W1 B) · s ≜ (W2 B) · t} ∪ Γ0,
M = M ′, θ′ = θ ∪ {X0 7→ λB.X1} and the reduction is: (we assume Γ0 = M = ∅ w.l.o.g.
because they will not be used in this step and to simplify the notation)

({X0 : λW1.s ≜ λW2.t}, ∅, ∇, θ) =⇒ ({X1 : (W1 B) · s ≜ (W2 B) · t}, ∅, ∇ ∪ ∇′, θ′)

where ∇′ = {B#λW1.s, B#λW2.t}.
(⊇) J({X1:(W1 B) · s ≜ (W2 B) · t}, ∅, ∇ ∪ ∇′, θ′)K ⊆ (J{X0:λW1.s ≜ λW2.t}, ∅, ∇, θ)K.
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By Definition 3.7 and with X the input variable,

J({X1:(W1 B) · s ≜ (W2 B) · t}, ∅, ∇ ∪ ∇′, θ′)K
= {[(X ◦ θ′)ρs] | ρs is ground,(∇ ∪ ∇′)ρs holds, [X1ρs]∼ ∈ J(∇ ∪ ∇′, (W1 B) · s)K}
∪ {[(X ◦ θ′)ρt] | ρt is ground,(∇ ∪ ∇′)ρt holds, [X1ρt]∼ ∈ J(∇ ∪ ∇′, (W2 B) · t)K}

By Definition 2.12

J(∇ ∪ ∇′, (W1 B) · s)K = {[((W1 B) · s)σ]∼ | ∃σ ground : (∇ ∪ ∇′)σ holds}.

Let σ be a ground substitution s.t. (∇ ∪ ∇′)σ holds, i.e, ∇σ and ∇′σ =
{B#λW1.s, B#λW2.t}σ hold. Then, Bσ#λW1σ.sσ and Bσ#λW2σ.tσ. We will analyze
some cases:

Bσ = W1σ.
Then, r ∼ ((W1 B) · s)σ = sσ. Thus, [r]∼ ∈ J(∇ ∪ ∇′, s)K and [X1ρs]∼ ∈ J(∇ ∪ ∇′, s)K.
Notice that

(Xθ′)ρs = (X(θ ∪ {X0 7→ λB.X1}))ρs

= C[X1]ρs, for an NLA-context C

= C ′[λB.X1]ρs, for C[] = C ′[λB.[]]
= C ′[λBρs.X1ρs] = C ′[X0ρ′

s] = (X ◦ θ)ρ′
s

where [X0ρ′
s]∼ ∈ J(∇ ∪ ∇′, λW1.s)K. Since ∇ρs holds and

J({X0 : λW1.s ≜ λW2.t}, ∅, ∇, θ)K = {[(Xθ)ρs] | ρs is ground,∇ρs holds, [X0ρs]∼ ∈ J(∇, λW1.s)K}
∪ {[(Xθ)ρt] | ρt is ground,∇ρt holds, [X0ρt]∼ ∈ J(∇, λW2.t)K},

one has [(Xθ′)ρs]∼ ∈ J({X0 : λW1.s ≜ λW2.t}, ∅, ∇, θ)K, and the result follows.

Bσ ̸= W1σ.
From Bσ#λW1σ.sσ, it follows that Bσ#sσ.

If W1 does not occur in s then r ∼ ((W1 B) · s)σ = sσ and the case is similar to the
previous.
Otherwise, W1 occurs in s and r ∼ ((W1σ Bσ) · sσ), i.e., we replace all the occurrences
of W1σ in sσ for Bσ.
Thus, [X1ρs]∼ = [r]∼ ∈ J(∇ ∪ ∇′, (W1 B) · s)K, for some such σ, and (λB.X1)ρs ∼
λBσ.(W1σ Bσ) · sσ. Then,

(X ◦ θ′)ρs = C ′[λB.X1]ρs, for C[] = C ′[λB.[]]
= C ′[X0ρ′

s], where [X0ρ′
s]∼ ∈ J(∇ ∪ ∇′, λW1.s)K

= (Xθ)ρ′
s, for some ground ρ′

s.

Then, [(Xθ′)ρs]∼ ∈ J({X0 : λW1.s ≜ λW2.t}, ∅, ∇, θ)K, and the result follows.

The proof that [(X ◦ θ′)ρt]∼ ∈ J({X0 : λW1.s ≜ λW2.t}, ∅, ∇, θ)K is analogous. ◀

▶ Theorem A.1 (cf.Theorem 3.9). Given NLA expressions s and t, and a freshness context ∇.
If (∇′, r) is a generalization of (∇, s) and (∇, t), then there exists a ∇′′ and a derivation ({X :
s ≜ t}, ∅, ∇, []) =⇒∗ (∅, M, ∆, θ) computed by AtomAntiUnif, such that J(∆ ∪ ∇′′, X ◦ θ)K
is a generalization of (∇, s) and (∇, t), and J(∅, M, ∆ ∪ ∇′′, θ)K ⊆ J(∇′, r)K.
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Proof. The proof is by induction on r by investigating the rules from AtomAntiUnif al-
gorithm (Figure 1) used. We show some cases below.

1. r = π · Y ′ (a suspension of a generalization variable) There are three possible cases:

a. s = π1 · Y , t = π2 · Y and the rule (SusYY) was applied.
Then,

({X : π1 · Y ≜ π2 · Y }, ∅, ∇, []) ∇ ⊨ π1 = π2 (SusYY)
(∅, ∅, ∇, {X 7→ π1 · Y })

Since, by hypothesis, (∇′, π · Y ) is a generalization of (∇, π1 · Y ) and (∇, π2 · Y ), we
have that J(∇, π1 · Y )K = J(∇, π2 · Y )K ⊆ J(∇′, π · Y ′)K.
By Definition 3.7, J(∅, ∅, ∇, {X 7→ π1 · Y })K = J(∇, π1 · Y )K and the result follows
trivially for ∆ = ∇ and ∇′′ = ∅.

b. s : π1 · Y , t = π2 · Y and the rule (SolveYY) was applied.
Then ∇ ⊭ π1 = π2 and this case follows a similar reasoning used for (SolveAB).

c. s and t are such that the rule (Solve) was applied.
Then, ({X : s ≜ t}, ∅, ∇, []) ⇒(Solve) (∅, {X : s ≜ t}, ∇, []) where Head(s) ̸= Head(t)
and s, t are not both atom-variables. By hypothesis, (∇′, π · Y ′) is a generalization
for (∇, s) and (∇, t), i.e., J(∇, s)K ⊆ J(∇′, π · Y ′)K and J(∇, t)K ⊆ J(∇′, π · Y ′)K. By
soundness (∇, X) is a generalization of (∇, s) and (∇, t). In addition, J(∅, {X : s ≜
t}, ∇, [])K = J(∇, s)K ∪ J(∇, t)K ⊆ J(∇′, π · Y ′)K. The result follows trivially for ∆ = ∇
and ∇′′ = ∅.

2. r = λW.r′

Then, s = λW1.s′ and t = λW2.t′, and the following holds:

J(∇, λW1.s′)K ⊆ J(∇′, λW.r′)K and J(∇, λW2.t′)K ⊆ J(∇′, λW.r′)K.

In addition, (∇′, r′) is a generalization of (∇, s′) and (∇, t′). By induction hypothesis,
there exist ∇′′ and a derivation ({X ′ : s′ ≜ t′}, ∅, ∇, []) =⇒∗ (∅, M, ∆, θ) such that
(∆∪∇′′

, X ′◦θ) is a generalization of (∇, s′) and (∇, t′), and J(∅, M, ∆∪∇′′
, θ)K ⊆ J(∇′, r′)K.

Notice that with such s and t we can apply the AtomAntiUnif algorithm as follows

({X:λW1.s′ ≜ λW2.t′}, ∅, ∇, []) =⇒ ({Y :(W1 B) · s′ ≜ (W2 B) · t′}, ∅, ∇ ∪ ∇B , {X 7→ λB.Y })

where Y is a fresh variable, B is a fresh atom-variable and ∇B = {B#λW1.s′, B#λW2.t′}.
Notice that s′ and (W1 B) · s′ are structurally the same term, with W1 renamed to a
fresh atom-variable B. The same with t′ and (W2 B) · t′. Then,

({Y : (W1 B) · s′ ≜ (W2 B) · t′}, ∅, ∇ ∪ ∇B , []) =⇒∗ (∅, M ′, ∆′ ∪ ∇B , θ′)

where M ′, θ′, ∆′ are versions of M, θ and ∆ with W1 and W2 renamed to B.

({X:λW1.s′ ≜ λW2.t′}, ∅, ∇, []) =⇒ ({Y :(W1 B) · s′ ≜ (W2 B) · t′}, ∅, ∇ ∪ ∇B , {X 7→ λB.Y })
=⇒∗ (∅, M ′, ∆′ ∪ ∇B , {X 7→ λB.Y } ∪ θ′)

Then (∆′ ∪ ∇B , X ◦ θ
′′) is a generalization of (∇, λW1.s′) and (∇, λW2.t′).

▷ Claim. J(∅, M ′, ∆′ ∪ ∇B ∪ ∇′′
, θ

′′)K ⊆ J(∇′, λW.r′)K.
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In fact, if [(Xθ
′′)ρ]∼ ∈ J(∅, M ′, ∆′ ∪ ∇B ∪ ∇′′

, θ
′′)K then ρ is ground, (∆′ ∪ ∇B ∪

∇′′)ρ holds, and ρ acts on the variables in the range of θ′ accordingly to M ′. Notice
that (Xθ

′′) = (λB.Y )θ′ = λ(Bθ′).Y θ′. Then, [(Xθ
′′)ρ]∼ = [λ(Bθ′)ρ.(Y θ′)ρ]∼, where

[(Y θ′)ρ]∼ ∈ J(∅, M ′, ∆′ ∪ ∇′′
, θ

′)K ⊆ J(∇′, r′)K, by the IH. Therefore, (X ◦ θ
′′)ρ ∼ λb.r∗

where r∗ ∼ r′σ, for some σ ground such that ∇′σ holds, [(Xθ′)ρ]∼ ∈ J(∇′, λW.r′)K, and
the result follows.

3. r = f(r1, . . . , rn).
Then s = f(s1, . . . , sn) and t = f(t1, . . . , tn) and the following hold: J(∇, f(s1, . . . , sn))K ⊆
J(∇′, r)K and J(∇, f(t1, . . . , tn))K ⊆ J(∇′, r)K. In addition, (∇′, ri) is a generalization of
(∇, si) and (∇, ti) for each i = 1, . . . , n. By the IH, there exist ∇′′

i and derivations
({Xi : si ≜ ti}, ∅, ∇, []) =⇒∗ (∅, Mi, ∆i, θi) s.t., for each i = 1, . . . , n, the following hold:
a. (∆i ∪ ∇′′

i , Xiθi) is a generalization of (∇, si) and (∇, ti), i.e., J(∇, si)K ⊆ J(∆i ∪
∇′′

i , Xiθi)K and J(∇, ti)K ⊆ J(∆i ∪ ∇′′

i , Xiθi)K.
b. and J(∅, Mi, ∆i ∪ ∇′′

i , θi)K ⊆ J(∇′, ri)K.
Now we need to combine these semantics to obtain the final result. We want to prove
that there exists ∇′′ and an AtomAntiUnif computation

({X : f(s1, . . . , sn) ≜ f(t1, . . . , tn)}, ∅, ∇, []) =⇒ (Dec)(Γ1, ∅, ∇, {X 7→ f(X1, . . . , Xn)})
=⇒∗ (∅, M, ∆, θ)

where Γ1 = {X : f(s1, . . . , sn) ≜ f(t1, . . . , tn)} and θ = {X 7→ f(X1, . . . , Xn)} ∪ θ′ s.t.
(∆∪∇′′

, X ◦θ) is a generalization of (∇, s) and (∇, t), and J(∅, M, ∆∪∇′′
, θ)K ⊆ J(∇′, r)K.

▷ Claim. (∇ ∪
⋃

i(∆i ∪ ∇′′

i ), f(X1θ1, . . . , Xnθn)) is a generalization of (∇, s) and (∇, t).

There are no critical clash among our rules (in applications in the same constraint). Thus,
from state ({X1 : s1 ≜ t1, . . . , Xn : sn ≜ tn}, ∅, ∇, {X 7→ f(X1, . . . , Xn)}) we can choose
to simplify first X1, then X2, then . . . until we reach Xn.

({X1 : s1 ≜ t1, . . . , Xn : sn ≜ tn}, ∅, ∇, {X 7→ f(X1, . . . , Xn)})
...

({X2 : s2 ≜ t2, . . . , Xn : sn ≜ tn}, M1, ∇ ∪ ∆1, {X 7→ f(X1θ1, . . . , Xnθ1)})
...

({X3 : s3 ≜ t3, . . . , Xn : sn ≜ tn}, M1 ∪ M2, ∇ ∪ ∆1 ∪ ∆2, {X 7→ f(X1θ1, X2θ2 . . . , Xnθn)})
...

(∅,
⋃

i
Mi, ∇ ∪

⋃
i
∆i, {X 7→ f(X1θ1, . . . , Xnθn)})

From soundness (∇ ∪
⋃

i ∆i, f(X1θ1, . . . , Xnθn)) is a generalization of (∇, s) and (∇, t).
In addition, J(∇∪

⋃
i(∆i ∪∇′′

i ), f(X1θ1, . . . , Xnθn))K ⊆ J(∇∪
⋃

i ∆i, f(X1θ1, . . . , Xnθn))K.
It is straightforward to check that J(∇ ∪

⋃
i(∆i ∪ ∇′′

i ), f(X1θ1, . . . , Xnθn))K is also a
generalization of (∇, s) and (∇, t). We take θ := {X 7→ f(X1, . . . , Xn)} ∪ θ1 ∪ . . . ∪ θn,
M =

⋃
i Mi, ∆ =

⋃
i ∆i ∪ ∇ and ∇′′ =

⋃
i ∇′′

i .

▷ Claim. J(∅, M, ∆ ∪ ∇′′
, θ)K ⊆ J(∇′, r)K.

Let [(Xθ)ρ]∼ ∈ J(∅, M, ∆ ∪ ∇′′
, θ)K. Then ρ is ground, (∆ ∪ ∇′′)ρ holds, and

[(Xθ)ρ]∼ = [(f((X1θ1)ρ, . . . , (Xnθn)ρ)]∼ where, for each i, [(Xiθi)ρ]∼ ∈ J(∅, Mi, ∆i ∪
∇′′

i , θi)K ⊆ J(∇′, ri)K, from item (b) of the IH. Then, [(f((X1θ1)ρ, . . . , (Xnθn)ρ)]∼ ∈
J(∇′, f(r1, . . . , rn))K = J(∇′, r)K, and the result follows. ◀
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7:22 Nominal Anti-Unification with Atom-Variables

▶ Proposition A.2 (cf. Proposition 3.8 ). The algorithm AtomAntiUnif never get stuck
and will yield a generalization. The number of rule applications is linear.

Proof. The claim can be shown by a measure that is the sum of 2∗(size of Γ)+ size of M ,
where the permutations are ignored in the size. The steps (Dec) and (Abs) strictly decrease
the size, and are always applicable to the generalization triples of type (f, f), and λ, λ).
(Solve) also strictly decreases the size. (SolveAB) and (SusA) are complementary and remove
W1 ≜ W2 triples. (SolveYY) and (SusYY) are also complementary and remove π1·Y ≜ π2·Y
triples. The other rule is (Merge) which removes a triple in M . ◀

▶ Lemma A.3 (cf. Lemma 4.6). Let A = {A, B} be a set of atom-variables, X and Y be
generalization variables. The Eqr- freshness context ((A ̸= B) =⇒ A#X) ∧ ((A = B) =⇒
A#Y ∧ B#Y ) cannot be encoded as an NLA-freshness context, i.e, a conjunction of freshness
constraints.

Proof. Suppose, by contradiction, that {A#s1, . . . , A#sn, B#t1, . . . , B#tm} is the freshness
context that is the encoding of the Eqr-freshness context. Then the evaluation mechanism
must construct the Eqr-freshness context above (up to some modifications for A = B).

If A = B, then for every freshness constraint of the form A#λπ · W.s′, the result will be
A#λA. . . ., since all binders will become equal to A, hence the constraint evaluates to
True. We also derive that the terms si, ti in the constraints that evaluate to the desired
freshness constraints A#X, B#Y do not contain abstractions.
Let C#π·Y (for C ∈ {A, B}) be the constraint that evaluates under (A = B) to B#Y .
If A ̸= B then evaluating C#π·Y will result in either A#Y or B#Y , which are both not
part of the results for (A ̸= B) in the generalized freshness context above.

Hence there is no such encoding. ◀
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