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Abstract

POSIX is a standard for operating systems, with a substantial part devoted to specifying file-system

operations. File-system operations exhibit complex concurrent behaviour, comprising multiple actions

affecting different parts of the state: typically, multiple atomic reads followed by an atomic update.

However, the standard’s description of concurrent behaviour is unsatisfactory: it is fragmented; con-

tains ambiguities; and is generally under-specified. We provide a formal concurrent specification of

POSIX file systems and demonstrate scalable reasoning for clients. Our specification is based on

a concurrent specification language, which uses a modern concurrent separation logic for reasoning

about abstract atomic operations, and an associated refinement calculus. Our reasoning about clients

highlights an important difference between reasoning about modules built over a heap, where the

interference on the shared state is restricted to the operations of the module, and modules built over

a file system, where the interference cannot be restricted as the file system is a public namespace. We

introduce specifications conditional on context invariants used to restrict the interference, and apply

our reasoning to lock files and named pipes.

Program reasoning based on separation logic has been successful at verifying that programs do

not crash due to illegal use of resources, such invalid memory accesses. The underlying assumption of

separation logics, however, is that machines do not fail. In practice, machines can fail unpredictably for

various reasons, such as power loss, corrupting resources or resulting in permanent data loss. Critical

software, such as file systems and databases, employ recovery methods to mitigate these effects. We

introduce an extension of the Views framework to reason about programs in the presence of such

events and their associated recovery methods. We use concurrent separation logic as an instance of

the framework to illustrate our reasoning, and explore programs using write-ahead logging, such a

stylised ARIES recovery algorithm.
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1. Introduction

POSIX is a standard developed for maintaining compatibility between multi-process operating sys-

tems [7]. A substantial part of POSIX is devoted to specifying the interface for concurrent file systems.

The English standard is mature, and widely implemented in operating systems and software libraries.

However, its description of concurrent behaviour is unsatisfactory: it is fragmented; contains ambigu-

ities; and is generally under-specified.

Many formal specifications of POSIX file systems have been proposed [11, 52, 71, 44, 45, 83, 26].

Most of these works focus on implementation reasoning by refining the specification to a verified imple-

mentation. Only recently, specifications based on separation logic [81] have been proposed for scalable

reasoning about POSIX file-system clients [47, 72]. However, all the aforementioned specifications

simplify concurrency, either by restricting to sequential fragments or by taking a coarse-grained view

of concurrency that is equivalent to sequential behaviour.

The POSIX standard describes complex behaviour for the concurrent access of file systems. Al-

though poorly described in the standard, there is a consensus between major file-system implementa-

tions on the intentions of the standard with respect to concurrency. File-system operations (such as

unlinking files) typically traverse paths to identify the files or directories on which they will act. Path

traversal comprises a sequence of atomic reads1, each looking up a component of the path within a

directory. Other operations exhibit more complex behaviour if, for example, they need to resolve mul-

tiple paths. Since POSIX does not specify the order in which multiple paths are resolved, the atomic

reads of multiple path traversals can be arbitrarily interleaved. After the path resolution, other atomic

actions perform the intended update of the file-system operation. In summary, file-system operations

are not atomic, but sequential and parallel combinations of atomic actions.

If one simplifies the operations as being atomic, this suggests additional synchronisation on file-

system accesses. This may be true for some specific implementations, or if the client explicitly adds

synchronisation, but it does not hold in general. In fact, in most major file-system implementations

path resolution is not atomic. Therefore, such simplified specifications carry unverified assumptions

and are not reliable for client reasoning.

We provide a concurrent specification of POSIX file systems and demonstrate scalable reasoning for

clients. To tackle the complexity of the concurrent behaviour, we specify operations with specification

programs, inspired by refinement calculi [13]. We introduce a concurrent specification language and

an associated refinement calculus, combined with a separation logic for fine-grained concurrency and

abstract atomicity. The specification language provides a mechanism for specifying sequential and

parallel combinations of atomic actions and the refinement calculus allows reasoning about clients

and implementations of a specification. Our approach is inspired by the earlier work of Turon and

Wand [94], which introduced a combination of a refinement calculus and separation logic for reasoning

about atomicity. However, in their work, an operation is proven to be atomic with respect to all

1Atomic in the sense of linearisability [51], where operations appear to take effect at a single discrete point in time.
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possible contexts. We demonstrate that this type of reasoning does not work for file systems. Recent

developments in separation logics for fine-grained atomicity focus on abstract atomicity [32], where

operations can be proven to be atomic only for some contexts. We combine our specification lan-

guage and refinement calculus with TaDA [30, 28], a separation logic for abstract atomicity. Using

this combination we give the first formal specification of POSIX file-system operations that properly

captures their complex concurrent behaviour, and reason about client examples including a lock-file

and named-pipe client module.

Reasoning about POSIX clients is subtle. Modules built over a heap typically restrict the interference

on the shared resource they encapsulate, by only allowing access to the resource via the module

operations. This is not the case with modules built over a file system. A file system is a public

namespace of the operating system, allowing any process to access any path of its choosing regardless

of whether it is used by other processes for their own purposes. File access permissions can only enforce

restrictions to sets of processes. Therefore, a module that expects certain files to exist at certain paths

can only do so when all of the processes (the context or environment) co-operate in maintaining the

module’s file-system invariants. For example, consider a lock-file module, whose operations insert

(lock) and remove (unlock) a file in a directory identified by a path. The lock-file module is not able

to restrict the interference on the path or the file. Therefore we develop specifications conditional on

context invariants which restrict what interference is possible. In the case of the lock-file module, the

environment cannot change the path to the lock file and only the module operations can be used to

lock and unlock the lock. In this dissertation, we mainly study two examples: lock files and named

pipes. Lock files provide a simple example to introduce context invariants. Named pipes provide a

more complex example to demonstrate the scalability of our reasoning, building on our specification

of lock files.

The primary purpose of file systems is to persist data to some persistent storage medium such as

a hard disk. However, file-system updates that from the point of view of the client are atomic are

actually implemented in terms of multiple updates to the storage medium. Host failures such as a

power loss may occur at any point in time during the execution of an update to the state of the file

system, which means that the update may not be fully committed to persistent storage. This may

lead to the file system state becoming corrupt and to the loss of application data. For this reason, file

system implementations strive to recover from such unavoidable events and provide fault-tolerance

guarantees of some form. The same is true for database systems and practically for any application

that considers data integrity to be critical.

Program logics based on separation logic have been successful in reasoning about sequential frag-

ments of file systems [47, 72] and concurrent indexes [29] on which databases and file systems depend.

However, resource reasoning, as introduced by separation logic [81], is a method for verifying that

programs do not fail. A triple {P}C {Q} is given a fault-avoiding, partial correctness interpretation.

This means that, assuming the precondition P holds then, if program C terminates, it must be the case

that P does not fail and has all the resource necessary to yield a result which satisfies postcondition

Q. Such reasoning guarantees the correct behaviour of the program, ensuring that the software does

not crash itself due to bugs, e.g. invalid memory access. However, it assumes that there are no other

failures of any form. To reason about programs that can recover from host failures, we must change

the underlying assumptions of resource reasoning.
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We swap the traditional resource models with one that distinguishes between volatile and durable

resource: the volatile resource (e.g. in RAM) does not survive crashes; whereas the durable resource

(e.g. on the hard drive) does. Recovery operations use the durable state to repair any corruptions

caused by the host failure. We develop a general reasoning framework, by extending the Views

framework [35], for reasoning about programs in the presence of host failures and their associated

recovery operations. We introduce a new fault-tolerant Hoare triple judgement of the form:

S ` {PV | PD}C {QV | QD}

which has a partial-correctness, resource fault-avoiding and host-failing interpretation. From the

standard resource fault-avoiding interpretation: assuming the precondition PV | PD holds, where the

volatile state satisfies PV and the durable PD, then if C terminates and there is no host failure, the

volatile and durable resource will satisfy QV and QD respectively. From the host-failing interpretation:

when there is a host failure, the volatile state is lost, and after potential recovery operations, the

remaining durable state will satisfy the fault-condition S. We instantiate our framework with a fault-

tolerant extension of concurrent separation logic [76] and reason about a simplified ARIES recovery

algorithm [69], widely used in database systems.

1.1. Contributions and Dissertation Outline

This dissertation contains three main contributions. First, we provide a formal specification of the

concurrent behaviour of POSIX file systems, capturing the complex concurrent behaviour found in

real-world implementations and described poorly in the standard. We hope that our formalisation will

be useful for future revisions of the POSIX standard. We expect that our specification of sequential

and parallel combinations of atomic actions will be useful for other examples, such as iterators in

java.util.concurrent. Second, we highlight an important difference between reasoning about mod-

ules built over a heap, where the interference on the shared state is restricted to the operations of the

module, and modules built over a file system, where the interference cannot be restricted as the file

system is a public namespace. We develop specifications conditional on context invariants to restrict

the interference, and apply our reasoning to the examples of lock files and named pipes. Third, we

extend separation-logic style reasoning to reason about programs in the presence of host failures, and

verify fault-tolerance properties.

• In chapter 2, we give an overview of file systems and their standardisation by POSIX. We

analyse the concurrent behaviour of POSIX file systems as specified informally by the standard

and identify two fundamental challenges for their formal specification: file-system operations

perform complex sequences of atomic steps; and file systems are a public namespace.

• In chapter 3, we give an overview of various methods for reasoning about concurrent programs

and modules in the literature. We focus primarily on concurrent separation logics and atomicity

specifications, and explore the applicability of each approach to a formal specification of POSIX

file systems and their concurrent behaviour.

• Chapter 4 gives an overview of related work in the formal specification and verification of file

21



systems from the fields of model checking, specification and refinement to implementation, testing

and program logics.

• In chapter 5 we introduce our formal model of the POSIX file-system structure and definitions

of associated types such as paths and error codes that subsequent chapters will be using.

• In chapter 6 we introduce our formal specification of POSIX file systems that accounts for the

complex concurrent behaviour informally specified in the POSIX standard. We use examples

of key file-system operations to introduce important features of our specification language, its

refinement calculus and demonstrate how we formalise the behaviour of POSIX file-system op-

erations. We then introduce how our approach is used for client reasoning by specifying and

verifying a lock-file module. In this example, we introduce specifications conditional on context

invariants that serve to restrict the interference from the environment on the file system resources

used by the module’s implementation, addressing the challenge of the file system being a public

namespace. Additionally, we demonstrate several examples of how our formal specifications can

be extended to larger fragments of POSIX file systems, thus demonstrating the flexibility of our

specification approach.

• Chapter 7 formalises our specification language, its semantics, the refinement calculus and sound-

ness proof. We define a core specification language in which the primitive statements specify

primitive atomic actions regardless of interference from the environment. We define general re-

finement laws for our specification language and specific refinement laws for primitive atomicity.

Within this core specification language and refinement calculus we define atomic specification

statements for abstract atomicity in the style of the TaDA program logic[30, 28] as a derived

construct, and give refinement laws for abstract atomicity.

• In chapter 8 we apply our reasoning to more file-system client examples. We study an example

of a concurrent email client and server interaction, demonstrating that formal specifications that

simplify the concurrent behaviour of file systems lead to unsafe client reasoning. As a case study

of our reasoning we use an implementation of named pipes within our core POSIX file-system

fragment and verify its correctness.

• In chapter 9 we extend resource reasoning, as introduced by separation logic, to account for host

failures and recovery operations. We develop a general framework for reasoning about concurrent

programs in the presence of host failures by extending the Views framework [35]. In this chapter

we introduce fault-tolerant concurrent separation logic as instance of this framework and reason

about the fault-tolerance of simple bank account transfer and fault-tolerance properties of a

stylised ARIES recovery algorithm.

• Chapter 10 summarises our contributions and presents interesting directions for future work.

Collaboration

Chapters 5, 6, 7 and 8 are based on joint work with da Rocha Pinto and Gardner. Chapter 9 is

heavily based on work done in collaboration with da Rocha Pinto and Gardner, previously published

in Fault-tolerant resource reasoning [73].
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2. File Systems and POSIX

We give an overview of file systems and their standardisation by POSIX. In section 2.1, we give an

overview of variations in the structure of file systems and their implementations. In section 2.2, we

discuss the POSIX standard and its informal file-system specification. Finally, in section 2.3, we

discuss how POSIX specifies the concurrent behaviour of file systems and identify the fundamental

challenges to its formal specification.

2.1. File Systems

Originally, the term “file system” referred to a method for organising storage and access to paper

documents using filing cabinets in offices. With the advent of computing, systems for organising

digital information stored and processed in computers were developed. These systems adopted the

filing cabinet metaphor. Related pieces of information, in the form of binary data, are organised in

distinct groups. Following the filing cabinet metaphor, each group of binary data is called a file.

Each file is given a name, commonly referred to as a filename, by which it can be easily identified.

Typically, files are further organised into a hierarchy of directories or, in filling cabinet terms, folders.

Each directory may contain other files or directories. In the field of computing, a file system is the

method for organising the storage of files and directories and access to their data [90].

File systems are ubiquitous. They are a critical component of an operating system. General purpose

operating systems for desktop and server systems, such as Mac OS X, Linux and Windows, and special

purpose operating systems for mobile and embedded device rely heavily on file systems. User and

application data, the executable code of applications and even the executable code of the operating

system are all stored in a file system. Most modern operating systems are multi-user and multi-

process, meaning that many applications and users can access the file system concurrently. Since one

of the primary roles of a file systems is to persist data in a storage medium, many file systems strive

to preserve the integrity of their structure and the data stored in files in the event of hardware and

software failures.

In effect, a file system is an abstraction over how data is organised, stored and accessed in a

storage medium. Typically this abstraction is achieved with a layered approach. The term “file

system” is often used to refer to two related but different layers of this abstraction. The first layer

defines the hierarchical structure of files and directories that is visible by the users of the file system.

Furthermore, this layer defines the application programming interface (API) through which users

access this structure and the data stored within. The second layer is the actual implementation of this

structure, including the data structures, algorithms and means to access the physical storage medium.

Henceforth, to avoid ambiguity we use the terms file-system structure and file-system interface to refer

to the hierarchical structure and programming interface of the first layer, and the term file-system

implementation to refer to the second layer.
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There are many different file-system structure, interfaces and implementations. File systems in

early operating systems for microcomputers and personal computers had a flat file-system structure,

where all files are contained within a single directory. Today, practically all major operating systems

for personal computers use hierarchical file-system structures which allow nested directories. Even

so, hierarchical file-system structures come in different flavours: plain trees, directed acyclic graphs,

or general directed graphs. File-system interfaces differ in the behaviour of operations accessing the

file-system structure, especially with respect to concurrent accesses and security policies. Even so, file-

system interfaces derived from the UNIX family of operating systems are to a large extend compatible,

which led to their standardisation by POSIX [7]. File-system implementations vary greatly in the data

structures and algorithms, with choices typically governed by considerations on performance and fault

tolerance. Some file-system implementations are designed for specific storage media. For example, the

ISO 9660 file-system implementation was developed specifically targeting optical discs [12].

In this dissertation we focus on the file-system structure and interface. In particular, we study the

file-system structure and interface specified by prose in POSIX.

2.1.1. Structure and Implementation

We now discuss file-system structures and related implementations in more detail. We base our

descriptions on the file-system structures traditionally found in the UNIX family of operating systems,

such in Linux, Mac OS X and FreeBSD, as well as in the POSIX standard. The details may differ

to file-system structures found in other operating systems, such as Windows, however most of them

paint a similar picture.

Intuitively, when as human users we explore the file-system structure by using a file manager appli-

cation, such as the Windows Explorer or the Mac OS X Finder, we perceive the hierarchical structure

of the file system as a tree. Each file and directory has a name, a directory contains other directories

or files, and files are the leaf nodes of the hierarchy. However, this is only a high level view presented

to users by applications hiding several additional details of the file-system structure.

In the hierarchical file-system structure every node is a file. Each file contains data and is associated

with metadata. File data are stored as sequences of bytes. File metadata are additional attributes

and properties of the file and data it stores. A typical example of file metadata are the size of a file,

timestamps recording its creation and last modification, and file access permissions that control if and

how users can access a file. However, the most important pieces of metadata are the unique identifier

and file type of a file.

In file systems developed for operating systems derived from UNIX, and consequently POSIX im-

plementations, metadata attributes are managed via the inode structure [87, 90]. From the point of

view of the file-system implementation, an inode represents any node in the file-system structure. In

addition to metadata, it manages information about how the data is stored in the storage medium,

such as a hard disk. Typically, the storage medium organises data into blocks of a fixed size. The

inode structure for a file maintains information about how file data are mapped to blocks in the

storage medium. Each inode structure has an address, a unique identifier typically referred to as an

inode number, which remains unchanged during the lifetime of the file the inode structure represents.

Essentially, an inode number uniquely identifies both a file and its associated inode structure. In

POSIX, the inode number is referred to as file serial number ([7],XBD,3.176). In this dissertation we
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Figure 2.1.: Example of a file-system tree structure.

use the term inode to refer to the inode number, and the term inode structure to refer to the structure

identified by an inode number.

File systems support various file types. The most common file types are that of a directory file and

regular file. A regular file is the type of file we intuitively perceive as a “file”, such as text document.

The interpretation of the data stored in a regular file is up to the client applications that use them. On

the other hand, directories are special types of file. The data stored in a directory file are managed and

interpreted by the file-system implementation itself. A directory file stores a list of directory entries,

or links. A link is a pair of a filename and an inode number of a file in the file system. Effectively,

a link is a pointer to a file that has a name. Within each directory, the name of each link must be

distinct. The implication of this organisation is that the name of file, is not part of the file itself. The

name of a file is defined by the link that points to it.

Figure 2.1 shows an example of a file-system structure. Each node in this structure is a file. Directory

files are depicted as circles, whereas regular files are depicted as rounded rectangles. Each file has

unique identifier, the inode, which in the figure is represented by an integer. The contents of regular

files are byte sequences, where each byte is represented by an integer and the empty byte sequence

is written as ε. Directory files store links to other files, which are depicted as outgoing edges from

directory nodes. The label on each edge depicts the name of the link. We elide the inode structure

associated with each file and focus on the hierarchical structure induced by the directory contents.

In figure 2.1 the hierarchical structure is that of a tree, as each file is linked only once. This aligns

with the general intuition we obtain from exploring the file-system structure as users: each directory

contains other directories or regular files. However, several file systems allow files to be linked more

than once. An example of such a file-system structure is given in figure 2.2, where the file with inode

7 has two incoming links. In this case the file actually has two names. If we were to explore the

file-system structure in figure 2.2 in a file browsing application, or even a command line shell, we

would observe two different entries: one named git within the /usr/bin directory with inode 2, and

the other named vc within the /bin directory with inode 4. However, the two entries would be exactly

the same file. Even though the names differ, and the location in which we observe them differ, they

are the names of links pointing to the same file. Usually additional links to a file are called hard links,

albeit there is no semantic difference between hard links and links. Typically, the term is used to

indicate the presence of multiple links to a file.
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Figure 2.3.: Example of a file-system cyclic graph structure.

When the file system allows files to be linked more than once, the file-system hierarchical structure

is that of a directed graph. In figure 2.2 this directed graph is acyclic, since only regular files are

linked more than once. However, hard links to directories may introduce cycles in the graph as in

the example shown in figure 2.3. Such loops are highly problematic, especially for applications that

recursively traverse the file-system structure. It is not possible to differentiate hard links pointing

to the same file, thus in the presence of loops such applications will never terminate their traversal.

For this reason, most modern operating systems severely restrict the use of hard links to directories,

or forbid them altogether, even if a file-system implementation supports it [87]. For example, Linux

systems prohibit users from creating hard links to directories [4].On the other hand, directory hard

links are useful for certain applications, if used with extra care. For example, starting from version

10.5 Leopard, Mac OS X utilises hard links to directories in the Time Machine backup software [2].

Another important file type supported by many file systems is that of a symbolic link. Symbolic

links are another method for creating additional names to files. The contents of a symbolic link file

are a path: a /-separated sequence of filenames. The purpose of this path is to act as a “pointer” to

another file. An example of a file-system structure containing a symbolic link file is given in figure 2.4.

The symbolic link file with inode 9 is depicted as a square rectangle containing the path /usr/bin.

When an application attempts to access the symbolic link file by following the link named app, the file
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system redirects the access to the file addressed by the path /usr/bin. In contrast to normal links,

symbolic links are allowed to dangle: the path stored in a symbolic link is not required to be valid.
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Figure 2.4.: Example of a file-system acyclic graph structure with a symbolic link.

It is the responsibility of a filesystem implementation to manage the filesystem structure in the terms

of directory entries and inodes that we have just described. It is also responsible for physically storing

a file in a storage medium. Different implementations employ different techniques and algorithms to

maintain the filesystem structure as well as different physical stores. For example, ReiserFS internally

uses a B+ tree structure [80], while FAT relies on an Allocation Table [5, 6, 1], tmpfs utilises the

computer RAM as a storage medium [86], while ext2,3,4 typically use a hard disk [67].

2.2. The POSIX Standard

POSIX (Portable Operating System Interface) is a standard for maintaining compatibility between

different operating systems [7]. The standard specifies the environment of the operating system, in-

cluding its programming interface, the command line shell and utility applications. The aim of POSIX

is to maximise the source code portability of client applications across different POSIX implementa-

tions. Features found in the UNIX family of operating systems form the basis of the standard, as it

was developed out of the need to standardise the common set of features from the variety of operating

systems derived from UNIX [87]. However, POSIX is not limited to UNIX-like systems. Other oper-

ating systems, such as Microsoft Windows (some versions) and Plan 9, provide optional compatibility

sub-systems and libraries [3, 92].

Originally published in 1988, as IEEE Std 1003.1-1988, the standard has been through several

revisions. The latest version of the standard, the 2016 edition of IEEE Std 1003.1-20081, is freely

available online. It is maintained and developed for future revisions by the Austin Group, a joint

working group between the IEEE, The Open Group and the ISO/IEC JTC 1 organisations [8]. The

intended audience of POSIX is both application developers and implementers of operating systems.

The POSIX standard documents are divided into four volumes:

• XBD: definitions of general terms, concepts and features common to all volumes.

• XSH: specifications of the behaviour of the operations comprising the POSIX API.

1Originally published in 2008, revised in 2013 and 2016.
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• XCU: specifications for a command line interface (shell) and common utility applications.

• XRAT: rationale behind some of the design decisions in the development of the other volumes.

Not surprisingly, since they are a critical part of operating systems, POSIX devotes a significant

portion of its volumes to file systems. The most relevant volumes for file systems are the XBD, for

the specification of the file-system structure, and XSH, for the file-system interface. The XCU volume

specifies the behaviour of several utility applications operating on the file-system structure, however

these are client applications implemented using the file-system interface specified in the XSH.

Specifications are given in English prose and small examples of how the POSIX API may be used.

The ramification of this is that the standard’s descriptions of file-system behaviour contain ambiguities,

errors and imprecision. As we will demonstrate in chapter 2.3, this is especially evident in how POSIX

specifies the concurrent behaviour of the file-system interface.

Henceforth, we will frequently reference specific informal specifications in the POSIX standard to

justify our claims. We do this in the following format: ([7],volume name,section), where volume name

identifies the volume of the standard, such as XSH, and section identifies the section within the volume

that we reference.

2.2.1. POSIX File-System Structure and Interface Overview

In this dissertation we focus on formalising the POSIX file-system structure and reasoning about

applications using the file-system interface in a concurrent environment. To aid the understanding

of subsequent chapters, we give an overview of the POSIX file-system structure and interface. We

do not discuss every detail of the POSIX standard relating to file systems here. We give additional

details when discussing the challenges of formalising the concurrent behaviour of POSIX file system

in section 2.3 and when we present our formal specifications and reasoning in chapter 6.

POSIX file systems follow the structure outlined in section 2.1.1. Here, we discuss some additional

POSIX-specific requirements.

Hard links to regular file are always allowed. On the other hand, implementations are allowed to

restrict or forbid the creation of hard links to directories ([7],XSH,3.link). Furthermore, the specifica-

tion of an empty directory has implications on the structure of the file-system hierarchy, according to

the following definitions:

Dot ([7],XBD,3.136,4.13): A special link within a directory, named “.”, linking the same directory.

Dot-dot ([7],XBD,3.137,4.13): A special link in a directory, named “..”, linking its parent directory.

Empty Directory ([7],XBD,3.144): A directory that contains at most, one dot link and one dot-dot

link, and has only one link to it, other than “.” (if “.”exists).

Additionally, new directories are created as empty directories ([7],XSH,3.mkdir).

This means that POSIX file-systems are structured as directed graphs and due to “..” links they

contain cycles. An example of this is shown in figure 2.5. Note that the directories /tmp, /bin and /lib

are, according to the POSIX definition, empty. Even though this structure is cyclic, loops introduced

by “.” and “..” are harmless to applications because they can be easily distinguished from all other

links by name. Note that the file-system interface does not allow applications to modify the “.” and

“..” links ([7],XSH,3.link,3.unlink), they are managed solely by the implementation.
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When manipulating the file-system structure, the file-system interface operations identify files by

using paths.

Path ([7],XBD,3.271): A /-separated sequence of filenames. A filename is a string. Filenames include

the strings “.” and “..”. A string is a sequence of bytes. Each filename in the path is also referred to

as a path component ([7],XBD,3.272).

Absolute path ([7],XBD,3.2): A path that begins with a /.

Relative path ([7],XBD,3.324): A path that does not begin with a /.

Path prefix ([7],XBD,3.273): The path up to, but not including the last path component. If the

path is just /, then its path prefix is also just /.

The process of following the path from some initial directory until the last filename in the path is

referred to as path resolution.

Path resolution ([7],XBD,4.13): Each filename in the pathname is located in the current lookup

directory. This means that a link named as the filename must exist in the current lookup directory.

For example, in usr/lib, the link named lib is located in the directory linked by usr. The initial

lookup directory from which path resolution starts depends on whether the path is absolute or rela-

tive. For absolute paths the initial lookup directory is the root directory of the file-system structure,

whereas for relative paths it is the directory designated as the current working directory of the current

process ([7],XBD,3.447). If a symbolic link is encountered during the resolution, then the remaining

unresolved path is prefixed to the path contained in the symbolic link file and the process continues

with the combined path. If a filename is not found in the current lookup directory, resolution fails by

triggering and error.

The POSIX file-system interface is specified in the XSH volume of the standard. Each operation of

the interface is defined as a C function declaration, followed by an English description of its behaviour

and return values. File-system operations always return. If an operation is unable to perform its task

an error code is returned. The specification of each operation includes a list of the error codes for each

operations, and descriptions under which circumstances an error is triggered. Additionally, for some

operations the standard includes small examples of how they can be used, as well as rationale behind

some of the specification requirements. As a rule, file-system operations do not modify the file system

in case of an error.
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We can distinguish file-system operations into two broad categories: operations that manipulate

and query the file-system structure, and operations that perform input and output (I/O) to files. A

brief overview of the most basic file-system operations follows.

• mkdir(path) ([7],XSH,3.mkdir): Creates a new directory at path path. The operation first

resolves the path prefix of path and if the path prefix resolves to a directory, creates a new empty

directory with named by the last path component. If a link named after the last component in

path already exists, then mkdir returns an error. If the path prefix of path does not resolve to a

directory, then mkdir returns an error. If mkdir succeeds, it returns the value 0.

• rmdir(path) ([7],XSH,3.rmdir): Removes the empty directory resolved by the path path. If path

does not resolve to a directory, or if the directory is not empty, then rmdir returns an error.

• link(source, target) ([7],XSH,3.link): Creates a new link at the path target to the file at the

path source. The operation resolves source to the file for which we want to create the new link.

Additionally, it resolves the path prefix of target , and if the path prefix resolves to a directory,

link creates a new link named by the last component of target to the file resolved by source.

If the path prefix of target does not resolve to a directory file, or if the path source does not

resolve, then link returns an error. POSIX allows implementations of link to return an error if

source resolves to a directory and the implementation does not support hard links to directories.

• unlink(path) ([7],XSH,3.unlink): Removes the link to the file at path path. The operation

resolves the path prefix of path, and if it resolves to a directory, removes the link named after

the last component of path from that directory. If path does not resolve to a file, then an error

is returned. If the identified link is to a directory file, unlink is allowed to return an error, if

the implementation does not support hard links to directories.

• rename(source, target) ([7],XSH,3.rename): Moves the link to the file at path source, so that it

becomes a link to the same file at path target . The operation behaves differently depending on

whether source resolve to a regular file, or a directory file.

– source resolves to a regular file: If target resolves to a file, that file must also be a regular file.

In that case, the link to the regular file resolved by source, is moved to the directory resolved

by the path prefix of target, replacing the existing link. Otherwise, an error is returned.

If target does not resolve to a file, then the link is moved to the directory resolved by the

path prefix of target , and its name is changed to that of the last component of target .

– source resolves to a directory file: If target resolve to a file, that file must be an empty

directory file. In that case, the link to the regular file resolved by source, is moved to the

directory resolved by the path prefix of target, replacing the existing link. Otherwise, an

error is returned. If target does not resolve to a file, then the link is moved to the directory

resolved by the path prefix of target , and its name is changed to that of the last component

of target .

If source and target resolve to the same file, nothing happens. If source does not resolve to a

file, or if the path prefix of target does not resolve to a directory, rename returns an error. Note

that rename does not physically move a file, only the link to the file.
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• stat(path) ([7],XSH,3.stat): Returns metadata about the file resolve by path. The metadata

returned includes the file type, inode number and file access permissions. If path does not resolve

to a file, stat returns an error. This operation is frequently used to test the existence of a file.

• open(path,flags) ([7],XSH,3.open): Open the file resolved by path for I/O. The argument flags

controls the behaviour of open and subsequent I/O operations. Depending on flags, if path does

not resolve to a file, open can create a new empty regular file in the directory resolved by the path

prefix of path. The operation returns a file descriptor to the file being opened. A file descriptor

acts as a reference to the opened file ([7],XBD,3.166,3.258), and is associated with additional

information controlling the behaviour of I/O operations on the file, the most important of which

is the file offset ([7],XBD,3.172). The file offset records the byte position in a regular file from

which any subsequent I/O operation begins.

• read(fd , ptr , sz ) ([7],XSH,3.read): Reads at most sz number of bytes from the file opened with file

descriptor fd . The read begins at the position of the file offset associated with the file descriptor.

The bytes read from the file are written to the heap buffer with address ptr overwriting any

previous contents. The heap buffer ptr must be of at least sz size. The operation will read less

than sz number of bytes from the file, if less than sz bytes are stored in the file from the position

of the file offset. When read completes, it returns the number of bytes read.

• write(fd , ptr , sz ) ([7],XSH,3.write): Writes sz number of writes from the heap buffer ptr to the

file opened with file descriptor fd . The bytes are written to the file starting at the position of the

file offset associated with the file descriptor. The operation returns the number of bytes written.

• lseek(fd , off ,whence) ([7],XSH,3.lseek): Modifies the file offset associated with the file descrip-

tor fd according to off and whence as follows:

– If whence is the flag SEEK SET, then the file offset is set to off .

– If whence is the flag SEEK CUR, then the file offset is set to the current file offset plus off .

– If whence is the flag SEEK END, then the file offset is set to the size of the file plus off .

The operation returns the new file offset associated with the file descriptor. lseek does not

cause any I/O to take place on the file, it only sets the file offset. Note that the file offset may

be moved to a position greater that the file’s size. In that case, a subsequent write will extend

the file. This is commonly referred to as creating a hole in the file [87], since this creates a

byte range within the file that has not been written to. Bytes within this range are read as 0.

Implementations are not required to physically store holes in a file.

• close(fd) ([7],XSH,3.close): Closes the file descriptor fd .

• opendir(path) ([7],XSH,3.fdopendir): Opens the directory at path for reading its contents. If

path does not resolve to a directory, opendir returns an error. Otherwise, the operation returns

a directory stream. A directory stream is an opaque structure that represents the links stored in

a directory ([7],XBD,3.131). Effectively, a directory stream acts like an iterator over the contents

of a directory.
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• readdir(dir) ([7],XSH,3.readdir): Reads the next link from the directory stream dir . If there

are no more links in the directory stream to read, readdir returns null.

• closedir(dir) ([7],XSH,3.closedir): Closes the directory stream dir .

2.3. Concurrency in POSIX File Systems

Understanding the concurrent behaviour of file systems as intended by the POSIX standard text

is, in itself, a challenge. Information relevant to concurrency is fragmented throughout the text, in

some cases contains ambiguities, while in other cases it is inadequate. Therefore, apart from the

POSIX standard text, we also examine how the standard is interpreted in practice. The concurrent

behaviour of POSIX file systems is complex. Path resolution poses a challenge with respect to atomicity

guarantees. Operations that resolve paths are not atomic, but comprise several atomic actions. This

has wider implications on both specification and reasoning. Furthermore, the nature of the file system

as a public namespace poses a significant challenge for reasoning about client applications.

2.3.1. Thread Safety and Atomicity

The file system is a public service provided by the operating system, available for use to all processes.

It is a public namespace. Therefore, all operations that access the file system are specified as thread

safe ([7],XBD,3.407). Thread-safety guarantees that concurrent use of file-system operations always

preserves the validity of the file system. File-system operations never fault; they either succeed or

return an error code indicating the reason for failing.

The only exception to thread-safety of file-system operations, are few operations that move data

between the file system and the process heap that may, for historical reasons, use statically allocated

structures in memory, such as readdir ([7],XSH,3.readdir). However, even in these cases the file-

system access is still safe, in that the validity of the file system is preserved. The unsafe behaviour

is limited to the process heap. Furthermore, for each thread-unsafe operation, POSIX defines a

thread-safe variant ([7],XRAT,A.4.18). For example, in the case of readdir, the thread-safe variant

is readdir r. For these reasons, we will not consider thread-unsafe behaviours and when discussing
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Figure 2.6.: Example of unlink(/usr/bin/git) when file-system is not modified in parallel.
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close lseek pread pwrite symlink unlinkat

creat lstat read rename symlinkat write

link open readlink renameat truncate

linkat openat readlinkat stat unlink

Table 2.1.: List of operations specified to behave atomically on regular files and symbolic links.

any operation which may be unsafe, we limit the discussion to only the thread-safe variant of said

operation.

The atomicity guarantees for POSIX file-system operations are not that simple. Meanwhile, the

POSIX standard is not particularly helpful in understanding what they are. To appreciate this

point, recall the English description of the unlink operation from section 2.2.1. If we ignore con-

currency, for the moment, its behaviour is simple. In summary, according to its English specifica-

tion ([7],XSH,3.unlink), unlink(path) removes the link identified by the path argument. For example,

in the file-system structure of figure 2.6, unlink(/usr/bin/git) will first resolve the path /usr/bin,

starting from the root directory, following the links usr and bin to their respective directories, and

then it will remove the link named git from the directory with inode 2. If unlink is unable to resolve

the path, because, for example, one of the names in the path does not exist in the appropriate di-

rectory, it returns an error. The English description for unlink, does not specify how the operation

behaves concurrently.

In another section of the standard, POSIX defines a list of operations that must behave atomically,

when operating on regular files and symbolic links ([7],XSH,2.9.7). We list some of those operations

in table 2.1, from which we have excluded operations not considered in this dissertation. Note that

unlink is included in this list. This may lead us to think that the whole process of resolving the path

and removing the link to the identified file is logically indivisible, i.e. atomic. However, in other places

the standard has wording to suggest otherwise.

POSIX defines a variant of unlink, called unlinkat. In summary, unlinkat(fd , path) is specified

to behave in the same way as unlink(path), except when the path is a relative path, in which case

the path resolution does not begin from the current working directory of the invoking process, but

from the directory associated with the file descriptor fd . In the rationale section for unlink and

unlinkat ([7],XSH,3.unlink.RATIONALE), we find the following:

The purpose of the unlinkat() function is to remove directory entries in directories other

than the current working directory without exposure to race conditions. Any part of the

path of a file could be changed in parallel to a call to unlink(), resulting in unspecified

behavior. By opening a file descriptor for the target directory and using the unlinkat()

function it can be guaranteed that the removed directory entry is located relative to the

desired directory.

Every -at variant of a POSIX file-system operation has an analogous paragraph in its rationale sec-

tion. The wording admits race conditions between path resolution and any operation that modifies the

structure along the path being resolved, leading to unspecified behaviour. In this context, “unspeci-

fied” does not mean unsafe since, as previously stated, file-system operations are always thread-safe.

Thread-safety guarantees that in the presence of such race conditions, unlink will either succeed or

fail by returning one of the specified error codes. It is not possible to determine the exact outcome
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of unlink in the presence of such race conditions, even if the file-system state right before the in-

vocation of unlink is known. We can only know the set of possible outcomes. In conclusion, the

rationale behind unlinkat suggests that unlink is not actually atomic, contrary to what is stated

in ([7],XSH,2.9.7).

POSIX exhibits this ambiguity only for the operations in table 2.1 that resolve paths. It is important

to understand what the intentions of the standard are with respect to their behaviour. We suspect

that POSIX does intend for these operations to have an atomic effect, but with consideration to

implementation performance. A truly atomic implementation, where both the path resolution and the

effect at the end of the path takes place in a single observable step, would require synchronisation over

the entire file-system graph. For most implementations, the performance impact of this coarse-grained

behaviour would be unacceptable. Therefore, the wording of the standard allows path resolution to be

implemented non-atomically, as a sequence of atomic steps, where each looks up where the next name

in the path leads to. The specification of path resolution ([7],XBD,4.13), is silent on this matter.

Our interpretation of the standard’s intentions is verified in the Austin Group mailing list [9]. 2

Path resolution itself consists of a sequence of atomic lookups that traverse the file-system graph by

following the path. In the case of unlink, the effect of removing the resolved link from the file-system

graph is atomic. In fact, this is part of a common tenet followed by virtually all major file-system

implementations: removing (unlink), adding (open, creat, link), moving (rename) and looking up

individual links in a directory are implemented atomically. In other words, when accounting for

concurrency, POSIX operations that resolve paths are sequences of atomic operations.

FS 1 FS 1 FS 2 FS 2 FS 3 FS 4

FS 3

FS 2

FS 1

unlink(/usr/bin/git)

lookup usr lookup bin remove git

error

error

error

Single atomic step by thread.

Multiple atomic steps by environment.

Steps in grey are due to a detected error.

Figure 2.7.: Evolution of the file-system state during unlink(/usr/bin/git).

In the example of figure 2.6, where there are no concurrent updates, unlink(/usr/bin/git) will

perform 3 atomic steps: one for looking up the link usr within the root directory, one for looking

up the link bin within the directory with inode 1, and finally one for removing the link git from the

directory with inode 2. In figure 2.7, we can see how the file-system state can evolve during the

execution of unlink(/usr/bin/git), in a concurrent environment. The points FS 1, . . . ,FS 4 denote the

discrete file-system states observed by unlink. In between each of the atomic steps, the environment

2Thread: “Atomicity of path resolution”, Date: 21 Apr 2015. At the time of writing, this thread is not accessible via
the mailing list archive. However, it is accessible via the Usenet gateway gmane.com.
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Figure 2.8.: Example of concurrent unlink(/usr/bin/git).

can modify the file-system state in any possible way. If unlink cannot find any of the names along

the path, or if they link files of the wrong type, for example, if usr or bin are not directory files, then

it does not modify the file system and the appropriate error code is returned to the application.

In figure 2.8, we show one possible evolution of the file system during unlink(/usr/bin/git), where

the environment is concurrently modifying it. Note that in the beginning the path /usr/bin/git does

not exist. In the first step, unlink looks-up the link usr within the root directory, and follows it to the

directory with inode 1. Meanwhile, the environment removes the link .X0− lock from the directory

with inode 3. In the second step, unlink looks-up the link bin within the directory with inode 1 and

follows it to the directory with inode 2. Meanwhile, the environment creates the link git within it.

In the final step, unlink atomically checks that the link git exists in the directory with inode 2 and

removes it. If the environment did not create the git link, unlink would not succeed.

In the example of figure 2.8, even though the path /usr/bin/git does not exist in the beginning,

unlink can still succeed because the environment was able to create the missing link before unlink’s

final atomic step. Similarly, even if the path existed in the beginning, the environment can cause

the operation to error by modifying the links along the path. More importantly, the environment
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can cause the operation to succeed even if the path does not exist at any single point in time during

the operation’s execution. We give an example of this behaviour in figure 2.9. Note that the path

/usr/bin/git never actually exists at any single point in time. The environment renames existing links

and creates new ones in between the steps of unlink, such that no error is triggered.

2.3.2. Path Resolution and Client Applications

The fact that POSIX intends path resolution to be a sequence of atomic steps is clearly important

for file system implementations, as it allows conforming performant implementations. A reasonable

question is if applications need to be aware of this behavioural complexity, or if they can simply assume

a more coarse-grained semantics, such as those in the operational specification of Ridge et al. [83],

where file-system operations behave atomically.

In the example of figure 2.9, we saw that a file-system operation that resolves a path may succeed

even if the path being resolved never exists in a single point in time. Therefore, the success of an

operation does not imply that the path used existed, merely that the operation was able to resolve

it. On the other hand, client applications typically assign some functional meaning to the existence

or non-existence of paths, and it is not uncommon for applications to use file-system operations to

test for their existence, for example using stat. However, such operations also resolve paths. This

means that applications test the existence of a path, using operations that, in general, do not provide

any guarantee about the existence of the path tested! This is a problem for the correctness of client

applications. In order for these tests to be meaningful, applications either have to place restrictions on

the environment in which they are being used, or they have to introduce additional synchronisation.

If we assume the simpler, coarse-grained semantics for applications, then this problem is hidden by

the assumption that file-system operations have additional internal synchronisation. In this setting,

a successful path resolution does imply the existence of the path, at the point in time in which the

resolution took place. Assuming a coarse-grained semantics ignores potential behaviours which can

easily lead to applications which appear correct under the simpler semantics, but are in truth wrong.

Let us consider an example of an interaction between an email client and an email server that

demonstrates this point. The email server is responsible for maintaining a directory structure in

which emails arrive, are processed and are delivered. The email client reads emails by scanning this

directory structure. Each newly arrived email message is assigned a numerical id, and is initially stored

under the path /mail/tmp. For example, the newly arrived message with id 42 is stored initially under

the path /mail/tmp/42.msg. To deliver the message, in order for the email client to be able to read

it, the server must eventually move it to the path /mail/42/msg.eml. Before delivering the message,

the email server has to do some processing, for example, using an anti-virus package to make sure

it does not contain a virus. To scan the message, the server moves it to a quarantine directory. A

message should be delivered only if it is virus free, and the client should not be able to read an

unscanned message. As the delivery of an email message involves several file-system operations, the

implementation of the server must take the necessary precautions that they do not accidentally allow

the email client to access undelivered, and thus potentially virus infected, messages.

In figure 2.10, we show a possible implementation of the delivery process for the email message with

numerical id 42, on the right, in parallel with an email client trying to test if this message is delivered

with stat, on the left. The stat operation of the email client could be part of loop, continuously
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Figure 2.9.: Example where unlink(/usr/bin/git) succeeds, even when the path never actually exists.
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stat(/mail/42/msg.eml);

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi

Figure 2.10.: Unsafe email client-server interaction.

scanning and testing for delivered messages. Note that the path /mail/42/msg.eml only exists if

the last rename operation is executed, which in turn is only possible when the message is virus-free.

Assume a coarse-grained semantics, where the operations involved are atomic. Then, the internal

steps of the stat operation of the client will never be interleaved with the operations of the server.

Thus, if stat succeeds, we are guaranteed for the email message to have been delivered virus-free.

Now consider what happens when the operations involved are not atomic, but sequences of atomic

steps, as described in the previous section. In this case, each atomic step comprising stat is inter-

leaved with the operations performed by the server on the right. It is then possible for the following

interleaving to take place. First, the scheduler decides to execute the first two operations of the

server, thus rendering the path /mail/42 resolvable. Next, the scheduler decides to execute the first

two atomic steps of stat, that resolve the path-prefix /mail/42. However, before taking the final step,

the scheduler decides to execute the server again, and the server executes the second and third rename

operations. At this point, a link named msg.eml exists within the directory that has been previously

reached by stat. Finally, the scheduler decides to go back to the client and execute the remaining step

of stat, at which point stat will succeed. Therefore, the client succeeds in testing that the message

exists, before the server has determined that it is virus free!

The example in figure 2.10 can be made safe by introducing synchronisation between the client and

the server, or adding synchronisation between each individual file-system operation involved. This

additional synchronisation will essentially guarantee the coarse-grained behaviour that was previously

assumed to exist. In conclusion, it is unsafe for applications to assume that file-system operations

exhibit more synchronisation that what POSIX actually intends. Instead, applications must explicitly

introduce the additional synchronisation when necessary.

2.3.3. Atomicity of directory operations

The operations in table 2.1 are specified to have an atomic effect only on regular files and symbolic

links. The operations mkdir and rmdir are not included. Directories contain the special links “.” and

“..”, linking the directory to itself and to its parent respectively. When a new directory is created,

the “.” and “..” links must be created as well. When a directory is being moved, its “..” link must

be updated to link to the new parent directory. Many modern file-system implementations operate

on the directory and its “.” and “..” links in a single atomic step. Other implementations operate on

“.” and “..” in separate atomic steps, potentially exposing intermediate states in which a directory
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may contain only of “.” and “..” or none at all [9]3. POSIX does not require directory operations to

have an atomic “effect” in order to allow for such implementations. However, as an atomic step is

still required to create (mkdir), remove (rmdir) or move (rename) the link to the affected directory,

applications can still rely on that step happening atomically. Note that POSIX specifies an empty

directory as one that contains at most “.” and “..” ([7],XBD,3.144), thus intermediate states in which

an empty directory is even emptier are allowed.

2.3.4. Non-determinism

Many POSIX file-system operations are highly non-deterministic. Non-determinism is due to concur-

rency, optional behaviours allowed by POSIX and specification looseness.

As discussed in section 2.3.1, for file-system operations that resolve paths, even if we know the

file-system state right at the invocation point, in general, we do not know whether the operation is

going to succeed or return an error. The result depends on the context in which the operation is used

and scheduling decisions. Therefore, such operations are non-deterministic on their result. This is an

instance of demonic non-determinism: success or failure is not controlled by the implementation, but

by the scheduler. The schedule acts as a demon, non-deterministically selecting one of the possible

interleavings between the file-system operation and the concurrent context to execute.

For some file-system operations, POSIX allows implementations to make different choices. For ex-

ample, the unlink operation is optionally allowed to remove links to directory files ([7],XSH,3.unlink).

Analogously, the link operation is optionally allowed to create links to directory files ([7],XSH,3.link).

Several implementations, such as those found in Linux systems, do not allow the creation and removal

of directory links via link and unlink respectively, while others, such as Mac OS, do. This is an

instance of angelic non-determinism. The implementation acts as an angel, choosing which of the

specified behaviours is executed.

Several file-system operations accept more than one path as arguments. POSIX does not specify the

order in which an operation must resolve multiple paths. They can be resolved in any order, or even

their resolutions can be interleaved in all possible ways. From the point of view of an implementation,

this is an extreme form of angelic non-determinism.

2.3.5. File Systems are a Public Namespace

A public namespace is any type of memory in which the entire address space is known to be accessible

by everyone. In a public namespace no part of the memory can be privately known to a single thread.

The POSIX file system is a public namespace. In POSIX file systems any process can, at any time,

access and modify any part of the file-system graph it chooses. The moment a file is created, it is

accessible to everyone. As we explain shortly, file-access permissions have a limited effect and cannot

in general prevent this. In contrast, the heap is not a public namespace. Heap allocated objects are by

default only known to the thread that allocates them. A program dereferencing random heap addresses

has undefined behaviour. The only way for a heap object to be accessible by multiple threads is if the

thread that allocated the object chooses to somehow share the object’s address with other threads.

The fact that the file system is a public namespace has important ramifications on the functional

correctness of client applications, especially those that rely on the existence of certain paths, or work

3Thread: “Rationale behind no atomicity guarantees for directory operations.”, Date: 02 Sep 2016.
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with elaborate directory hierarchies, such as databases, email servers and mail delivery agents. All

client applications, both sequential and concurrent, are executed within a context where many other

applications access the file system concurrently. Applications that expect certain paths to exist will

not work correctly in all possible contexts, as some of those contexts may interfere with the paths

they intend to work with. Such applications are developed with the assumption that the context

will not interfere with those parts of the file-system they consider their own. However, POSIX offers

no mechanism to enforce such assumptions across the entire operating system. Therefore, client

applications behave correctly only within restricted contexts, that respect their assumptions.

POSIX does specify file-access permissions, which can restrict access to files to only processes

running with the appropriate privileges. We discuss file-access permissions in more detail in chapter 6,

section 6.3.2. However, POSIX file-access permissions cannot reliably restrict access to a file to just one

process. It is possible for many processes to run with the same file-access permissions, and thus, this

does not stop them from interfering with each other in unwanted ways. Furthermore, processes, such

as administrator scripts, may run with super-user privileges, effectively ignoring file-access permission

restrictions altogether. This means that even with file-access permissions, applications still behave

correctly only in certain contexts: those that have the appropriate file-access permissions set on the

file-system graph and with non-interfering concurrent processes. Instead of file-access permissions,

applications can use other techniques, such as isolation and compartmentalisation, chroot and object

capabilities, such techniques, however, are not specified in POSIX and are beyond the scope of this

dissertation.

In conclusion, when reasoning about the correctness of file-system applications, we must be explicit

in the assumptions an application has about the context.

2.4. Conclusions

File systems are an integral part of operating systems. We have given an overview of their structure,

implementation and programming interfaces found in the UNIX family of operating systems. In

particular we focus on the file-system structure and behaviour of programming interfaces that is

informally specified by the POSIX standard using English language descriptions.

POSIX file systems are inherently concurrent. The concurrent behaviour of file systems is the most

difficult aspect of understanding how their operations behave overall. The POSIX standard text is

not particularly helpful in gaining a thorough understanding of concurrency in file systems. The

relevant information is scattered throughout different sections and is often incomplete, as is the case

for example in understanding the concurrent behaviour of path resolution, or even ambiguous. This

means that we have to often turn to other sources of information, in particular the Austin Group

mailing list, for clarifications and interpretations of the standard’s text. This very fact is suggestive of

the need for better specifications than English descriptions, a need that precise formal specifications

can meet.

We have given an overview of the most challenging aspects of the concurrent behaviour of POSIX

file systems that is specified in the standard’s text with the additional interpretations from the Austin

Group mailing list. File system operations are thread safe, in that they always succeed or return an

error in any given context. However, they are not generally atomic. Operations that resolve paths

perform multiple atomic actions: sequences of atomic directory lookups to resolve a path followed by
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at least one atomic update to the file-system structure. This fact is not only important for file-system

implementations, but as we informally discussed, using an example of a concurrent email client-server

interaction, it is also something that client applications must not ignore. We revisit this example

formally in chapter 8 demonstrating that specifications that simplify away this behavioural complexity

lead to unsafe client reasoning. File system operations exhibit high levels of non-determinism, both

in terms of their results due to concurrency and due to different implementation behaviours allowed

by the standard. Finally, POSIX file systems are a public namespace, meaning that the entire file-

system structure is accessible by any process at all times, which complicates client reasoning since it

is generally not possible for an individual process to enforce exclusive access to the parts of the file

system it requires. Any system for formally specifying and reasoning about POSIX file systems must

tackle these challenges.

We demonstrate the approach developed in this dissertation in chapter 6 with examples of formal

specifications for the core file-system operations and examples of reasoning about client applications.

The formal development of our approach is presented in chapter 7.
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3. Reasoning about Concurrent Modules

The POSIX file-system interface is a concurrent module. In this chapter we give an overview of various

methods for reasoning about concurrent programs in general, and concurrent modules in particular,

primarily focusing on concurrent separation logics. With an eye towards a formal POSIX specification,

we explore the viability of each approach.

We begin with separation logic in section 3.1, as it forms a fundamental basis for the contributions

of this dissertation as well as a large portion of related work. In section 3.2 we discuss the extension

of separation logic to coarse-grained concurrency in the form of concurrent separation logic. We then

discuss how separation-logic style reasoning about the heap was generalised to arbitrary resource

models in section 3.3. In section 3.4 we discuss the development of program logics for fine-grained

concurrency and in section 3.5 we expand our discussion on fine-grained concurrency to cover reasoning

about atomicity. Finally, we present our conclusions in section 3.6.

3.1. Separation Logic

Hoare Logic [53, 54] by, C.A.R. Hoare, provided an axiomatic foundation for reasoning rigorously

about imperative programs. In Hoare Logic, the semantics of programs are given in the form of Hoare

triples, {P}C {Q}, where C is a program, and P , Q are first-order logic assertions, referred to as the

precondition and postcondition respectively. When the program’s state satisfies the precondition P ,

executing the program C yields a state that satisfies the postcondition Q. Hoare triples are typically

given a fault avoiding partial correctness interpretation. By this interpretation, the triple {P}C {Q}
specifies that if before executing C the program’s state satisfies the precondition P , then the execution

of C will not fault, and if C terminates, then the program’s state will satisfy the postcondition Q.

Hoare Logic consists of axioms for the basic commands of an imperative language, such as assignment,

and inference rules for imperative constructs, such as while loops and conditional statements, that are

used to derive Hoare triples for programs.

Several attempts were made to extend this foundation to reason about programs that manipulate

heap-based data structures with pointer aliasing [16, 82]. However, these approaches proved prob-

lematic, suffering from reasoning complexity, lack of compositionality, and did not scale effectively to

larger programs.

The reason behind this lies in the fact that traditional Hoare Logic assertions describe the entire

state of a program. From the programmer’s perspective, this is counter-intuitive. In fact, programmers

typically reason informally about their code in a more local manner, restricting to only the fragment

of the state that their code manipulates. O’Hearn, Reynolds and Yang, with their work on separation

logic [74, 81], extended Hoare Logic with exactly this intuition of locality for reasoning about programs

that manipulate heap cells:
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“To understand how a program works, it should be possible for reasoning and specification

to be confined to the cells that the program actually accesses. The value of any other cell

will automatically remain unchanged.”

Separation logic consists of classical first-order connectives but, more importantly, introduces ad-

ditional connectives for describing the shape of the heap. The most important is the separating

conjunction, ∗. An assertion P ∗ Q, is satisfied when P and Q are satisfied by disjoint fragments of

the heap.

A simple example of a separation logic specification is the following:

{x 7→ 5} [x] := 1 {x 7→ 1}

where [x] := 1 is the assignment statement, assigning the value 1 to the contents of the heap cell with

address given by variable x. The heap cell assertion x 7→ 5 is treated as a resource. The assignment

statement in the example acts only on the resource identified by the address x. The assertion x 7→ 5

in the precondition of the specification above, confers ownership of the heap cell resource at address

x. Separation logic specifications, such as the one above, are local, in the sense that they only require

ownership of the resources that the program is accessing.

When reasoning about a program accessing several resources, such local resource specifications can

be extended to work with more resources via the frame rule, introduced in separation logic:

{P}C {Q}

{P ∗R}C {Q ∗R}
mod(C) ∩ free(R) = ∅

The specification of the premiss requires ownership of the resource in assertion P , which the program

C updates to Q. In the conclusion, the specification requires ownership of the resource in assertion

P and the resource in assertion R, and only P is update to Q; the resource in R is unmodified. The

separating conjunction P ∗ R, requires that the resource in P is disjoint from the resource in R. In

the case of heap resource, this means that P and R are satisfied by disjoints fragments of the heap.

The side condition is required so that any program variables mutated by the C are not referenced in

R, since this would entail an update on R as well. As demonstrated by Bornat et al. [18], this side

condition can be elided, if variables themselves are also treated as resource.

With the specification example given earlier, we can use the frame rule to extend the assignment to

a larger heap, such as the following:

{x 7→ 5 ∗ y 7→ 42} [x] := 1 {x 7→ 1 ∗ y 7→ 42}

where we extend the resource required by the specification with the heap cell resource y 7→ 42. We see

that the additional resource remains unaffected. Moreover, the two heap cells are disjoint, i.e. x 6= y.

The frame rule and separating conjunction of separation logic enables compositional verification.

The verification of a large program can be decomposed to the verification of smaller fragments, such

as individual procedures. Each fragment can be verified independently, only in terms of local resource,

i.e. the heap cells it accesses, and the frame rule allows the fragment’s specification to be extended

to the resource used by the larger program. The compositional nature of this approach has led to the

43



development of an array of automated reasoning and verification tools based on separation logic. The

first separation-logic based tool, Smallfoot [14], was able to prove properties of programs manipulating

heap-based data structures such as lists and binary trees. Later tools such as SpaceInvader [99] and

jStar [38, 19] were able to automatically verify memory safety properties of large bodies of code,

including close to 60% of the Linux kernel [37]. A further development in the same line of tools,

Infer [22, 23], is being used in production at Facebook, to verify memory safety properties in Facebook’s

codebase. Infer utilises the compositional nature of separation logic to automatically verify memory

safety properties of each individual new commit to the codebase, using the verification results of

previous commits as a specification repostitory. Finally, Verifast [59], a separation-logic based proof

assistant, has been used to verify functional properties of complex programs, including device drivers.

3.2. Concurrent Separation Logic

Concurrent programs comprise multiple threads of control manipulating the program state. In this

setting, the actions of one thread may interfere with the actions of another. Data races occur when

multiple threads update the same resource concurrently, which may lead to state corruption. On

the other hand, when the threads comprising the concurrent program work with disjoint resources

data races never occur; such programs are data-race free. In separation logic resource disjointness

is expressed with the separating conjunction. Therefore, separation logic is suitable for reasoning

about data-race free concurrent programs. This is expressed through the parallel rule of concurrent

separation logic [76], given below:

{P1}C1 {Q1} {P2}C2 {Q2}

{P1 ∗ P2}C1 ‖ C2 {Q1 ∗Q2}

The rule states that when two threads C1 and C2 update disjoint resources P1 to Q1 and P2 to Q2

respectively, the results of their individual updates are combined to produce the overall effect of their

running in parallel: the resource P1 ∗ P2 is updated to Q1 ∗Q2. This type of concurrency is known as

disjoint concurrency.

In the setting of disjoint concurrency threads never share resources. Not all programs are data

race free through, and certainly POSIX does not impose such restrictions; the file system is a shared

resource. Bornat et al. introduced permission systems to allow a form of resource sharing [17]. A

commonly used permission system is Boyland’s fractional permissions [20], in which a resource is

associated with a permission: a rational number in the interval (0, 1]. Permission 1 is commonly

referred as the full permission, whereas a permission in the interval (0, 1) is referred to a fractional

permission. Using the system of fractional permissions, a resource with some initial permission π can

be split into two parts, each with permission π
2 . For example, when we associate fractional permissions

with heap cells, we get the following axiom:

x
π1+π27−−−−→ v ⇐⇒ x

π17−→ v ∗ x π27−→ v if π1 + π2 ≤ 1

This means that a full permission 1 confers total ownership of the resource, whereas a fractional

permission confers shared ownership of the resource with other threads. Typically, in this permission
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system a thread can update the resource only if it has full ownership, otherwise it can only read it.

Therefore, threads can share the resource as long as no thread updates it.

Concurrent separation logic (CSL) allows threads to update a shared resource, but only if access

to the resource is protected by mutual exclusion. In CSL mutual exclusion is directly implemented in

the programming language in the form of conditional critical regions [76]. For the current discussion

we simplify conditional critical regions to atomic blocks 〈C〉, a form of unconditional critical region.

Effectively, an atomic block enforces sequential access to the shared resource. This is captured in the

following atomic rule for reasoning about atomic blocks:

{P ∗ Inv}C {Q ∗ Inv}

Inv ` {P} 〈C〉 {Q}

Initially, ownership of the shared resource accessed by the atomic block is placed into the shared

invariant Inv . Once the atomic block is entered, ownership of the shared resource is transferred to

the thread executing the code C, within the block. Then, C proceeds to update the shared state, with

the proviso that in the end it satisfies the invariant. When exiting the atomic block, ownership of the

shared state is transferred back to the shared invariant. The pattern of transferring ownership of a

shared resource, exhibited in CSL, is commonly referred to as ownership transfer.

3.3. Abstract Separation Logic and Views

The initial development of separation logic used the heap memory as a resource model. A general

framework for separation-logic based program reasoning, in the form of abstract separation logic, was

later introduced by Calcagno et al. [25]. In abstract separation logic a resource model is an instance

of a separation algebra: a partial, associative, commutative and cancellative monoid (H, ∗, u), where

H is a set of resources, ∗ : H ⇀ H is the binary resource composition operator and u is the unit

of composition. In the resource model of heaps, H is the set of finite partial functions from heap

addresses to values, ∗ is the union of functions with disjoint domains, and u is a function with an

empty domain. Constructions that combine different types of resource are possible, for example by

taking the cross product of different separation algebras.

In abstract separation logic the resource model is also the model of states that programs manipulate.

This restricts program reasoning to states that are easily separable and composable, which is not always

desirable.

The Views Framework by Dinsdale-Young et al. [35] is a descendant of abstract separation logic. In

contrast to abstract separation logic, the Views Framework makes a distinction between the machine

states M , manipulated by programs, and views: resources that denote composable abstract representa-

tions of machine states used in program reasoning. A view is an instance of a commutative semi-group

(View, ∗), where p1 ∗ p2 is the composition operator on views p1, p2 ∈ View. When the view semi-

group also has a unit element u, then it becomes a view monoid (View, ∗, u). View monoids can be

constructed from view separation algebras, a generalised form of separation algebras. A view separation

algebra is a partial commutative monoid (V, •, I), with multiple units I ⊆ V . In contrast to separation

algebras, view separation algebras do not require cancellativity. Each view separation algebra (V, •, I)

induces a separation view monoid (P(V ), ∗, I), where p1 ∗ p2 , {m1 •m2 | m1 ∈ p1,m2 ∈ p2}.
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View resources often include instrumentation over machine states that solely serves to enable

separation-logic style program reasoning. Examples include: fractional permissions [17]; contextual

information about tree fragments [97], such that tree fragments can be composed to a complete tree;

shared resource invariants [76]; and even information about interference from other threads [60, 36].

Views are related to machine states through reification: a function TpU : View → P(M), mapping

views to sets of machine states. Note that the term “view” is on the point; each view represents a

particular way to look at the current machine state, which in the reasoning is treated as a resource.

3.4. Fine-grained Concurrency

In CSL a thread can update only the resources it owns. At the same time, as we saw in the parallel rule,

resource disjointness enforces that one thread does not interfere with the resources of another thread

and vice-versa. In this sense, resource ownership can be seen as a form of interference abstraction.

However, this type of interference abstraction is too strong and limits reasoning about concurrent

programs to coarse-grained concurrency.

A general method for interference abstraction was first introduced with rely-guarantee by Jones [60].

Rely-guarantee specifications explicitly constrain the interference between a program and its concur-

rent environment. A rely-guarantee specification, R,G ` {P}C {Q}, associates the standard Hoare-

triple with two relations: the rely relation R, and the guarantee relation G. The rely relation abstracts

the interference on the shared state by the concurrent environment, whereas the guarantee relation

abstracts how the program updates the shared state. The precondition and postcondition assertions

must be stable with respect to the rely relation, i.e. they must be robust with respect to environmental

interference. When reasoning about concurrent threads, the guarantee of one thread must be included

in the rely of the others. This is captured by the parallel composition rule of rely-guarantee:

R ∪G2, G1 ` {P1}C1 {Q1} R ∪G1, G2 ` {P2}C2 {Q2}

R,G1 ∪G2 ` {P1 ∧ P2}C1 ‖ C2 {Q1 ∧Q2}

Rely-guarantee does not restrict program reasoning to coarse-grained concurrency. Using this

method we can specify the operations of a module and explicitly define the amount of interference

from the environment the operations tolerate. However, in several cases this leads to specifications

that are weaker than intended. In their survey paper da Rocha Pinto et al. [32] demonstrate this

by examples of a ticket lock and a concurrent counter. More importantly, using rely-guarantee to

specify the POSIX file-system interface leads to extremely weak specifications. File-system operations

do not restrict the interference from the concurrent environment in any way. Therefore, the rely rela-

tion for each operation would have to be maximal, containing all possible updates to the file-system

structure. The ramification of this is that the precondition and postcondition of each operation would

simply have to state the existence of an arbitrary file-system structure in order to remain stable. Such

specifications would only state the thread-safety; all other functional correctness properties are lost.

With the advent of concurrent separation logic, subsequent separation logics such as RGSep [96, 95],

local rely-guarantee [41] and deny-guarantee [39] added support for fine-grained concurrency by com-

bining resource ownership with interference abstraction, albeit with different forms. The amalgamation

of these methods together with abstract predicates [77] led to the development of concurrent abstract
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predicates (CAP) by Dinsdale-Young et al. [36], which introduced abstractions over shared resources.

CAP has been used to reason about implementations and clients of concurrent data structures

such as sets and indexes [29]. For example, the specification of a concurrent set module involves the

abstract predicates in(x, v) and out(x, v), which assert the existence and non-existence of value v in

the set x respectively. The implementation of these predicates can be in terms of a linked list or a

B-tree containing all the elements contained in the set. However, the granularity of the abstraction is

at the level of individual elements. A specification for an operation that inserts elements to the set

can be given with the following Hoare triples:

{out(x, v)} insert(x, v) {in(x, v)} {in(x, v)} insert(x, v) {in(x, v)}

Treating the abstract predicates in and out as resource we can use the specification to reason about

concurrent clients. The granularity of the abstraction allows multiple threads to update the set

concurrently, as long as they work with disjoint elements, i.e. in the setting of disjoint concurrency.

In order for multiple threads to work on the same element, we would have to employ ownership

transfer introducing synchronisation. To remedy this da Rocha Pinto et al. [29] proposed abstract

predicates of a similar abstraction granularity for concurrent index incorporating permission systems

as a means to grant threads the capability to concurrently update the same resources. However,

these capabilities are predetermined, built into the specification and are only able to express certain

concurrent interactions with the shared resource. Apart from the lack of atomicity specification, the

same shortcoming of CAP-style specifications applies to file systems as well. Even though it is possible

to give a file-system specification in this style, it restricts client reasoning to only those types of clients

the choice of permission system allows.

In their survey paper, da Rocha Pinto et al. [32] made the following observation on such combinations

of resource ownership and interference abstraction:

“While it is an effective tool, and can be used to give elegant specifications, something

more is required to provide the strong specifications we are seeking.”

The same authors identify the missing ingredient to be the specification of atomicity.

3.5. Atomicity

In concurrency, atomicity is the property exhibited by an operation, in which it takes effect in a

single, discrete point in time. Truly atomic operations in this sense are rare. In modern multi-

processor architectures only few hardware instructions are atomic, such as compare-and-swap (CAS).

Nevertheless, by means of these few instructions it is possible to build operations that appear to be

atomic, even though they achieve this illusion by executing several atomic and non-atomic hardware

instructions. If we can prove that such operations do appear to behave atomically, then it is safe

to use them as if they were truly atomic. Concurrent modules of apparently atomic operations are

common; examples include lock modules or the concurrent data structures in java.util.concur.

Linearisability [51] is a well established correctness condition used to prove that operations of

module appear to behave atomically. In this approach, each operation of the module is given a

sequential specification of its effect. Then, we must prove that each operation behaves atomically
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with respect to the other operations of the module. This holds if for each operation we can find a

point during its execution at which it appears to take effect. This point is commonly referred to as

the linearisation point. Effectively, this amounts to showing that the concurrent behaviour of the

operations is equivalent to a sequential interleaving of their effects.

As identified in chapter 2.3, several operations in POSIX file systems are not atomic, but are

sequences of atomic steps. This effectively means that the POSIX file-system module is not linearisable.

Linearisability could be used for the individual atomic steps comprising the non-atomic operations,

however this would require a language for specifying sequences of linearisation points. Furthermore,

linearisability requires that each operation of a concurrent module tolerates the interference from

all other operations. No other interference, and specifically interference on the internal state of the

module’s implementation is not permitted. In other words, the module’s interface is the boundary

of the allowed interference. This is problematic for client modules built on top of the file system.

The file system is a public namespace, and therefore any process can access the file system, possibly

interfering with the internal state of a module using the file system. Therefore, the module’s interface

cannot be the boundary for interface abstraction. Reasoning about file-system based modules using

the file system requires further restrictions on the concurrent context.

Filipovic et al. [43] demonstrated that linearisability is related to contextual refinement. Assuming

that the programming language properly encapsulates the internals of a concurrent module, i.e. a

client cannot access memory locations in which internal structures are held, linearisability implies

contextual refinement. Contextual refinement means that in any concurrent context, we can replace a

complex implementation of a concurrent data structure with a more abstract and simpler specification,

possibly given as code, without loosing any observable behaviour.

3.5.1. Contextual Refinement and Separation Logic

Turon and Wand in their paper [94], developed a method for proving atomicity of operations with

contextual refinement by combining a refinement calculus [13, 70] with separation logic. In this work,

an atomic operation is specified as an atomic action 〈∀x. P, Q〉, where P and Q are precondition and

postcondition assertions in separation logic respectively. Intuitively, an atomic action represents any

program satisfying the separation logic Hoare triple {P} − {Q}. This is akin to the linearisability

approach where each atomic operation is given a sequential specification.

Atomic actions form the building block of a specification programming language, given below,

which includes sequential composition (;), parallel composition (‖), angelic non-deterministic choice

(t), existential quantification, as well as first-order functions and recursion (not given below).

φ, ψ, θ ::= φ;ψ | φ ‖ ψ | φ t ψ | ∃x. φ | 〈∀x. P, Q〉 | . . .

Both programs and specifications are written in this language, with programs being the most concrete

of specifications. Reasoning about specification programs in this language is performed by contextual

refinement; when φ v ψ, we say that φ contextually refines ψ. The authors develop a refinement

calculus with refinement laws designed to prove contextual refinements of atomic actions. This is

demonstrated with two examples: an increment operation of a non-blocking counter; and a version of

Treiber’s non-blocking stack [91].

48



The concurrent increment operation incr(x ) is proven to be atomic by deriving the contextual

refinement: incr(x ) v 〈∀n. x 7→ n, x 7→ n+ 1〉. This is a simple example in that the operation is

shown to be atomic regardless of the interference on the heap cell x . For more complex concurrent data

structures, such a concurrent stack, the interference must be restricted. Specifically, the environment

should not interfere with the internals of the implementation, for example the representation of an

abstract stack as a Treiber stack in memory, except by invoking the module operations that manipulate

the abstract structure. To facilitate this style of reasoning, the authors introduce fenced refinement :

I, θ ` φ v ψ. Here, I is a representation invariant that interprets the abstract data structure used by

clients into its in-memory representation used in the implementation, and θ is a specification program

abstracting the interference from the environment, akin to the rely relation in rely-guarantee. Fenced

refinement states that φ v ψ with the proviso that all memory is either part of the shared resource

described by I, or it is private, and interference on the shared resources is bounded by θ. In order to

use the operations of a concurrent module as atomic, we must first show by fenced refinement that

these operations are atomic with respect to each other, using all the module’s operations as the “rely”

θ. As in linearisability, the interference abstraction is the module boundary.

With the specification language of Turon and Wand, we can specify operations as sequences of

atomic steps, as required by POSIX file-system operations. However, fenced refinement is prohibitive

for reasoning about file-system clients. Fenced refinement carries the assumption that the module’s

state can only ever be changed by the module’s operations. For modules that are implemented using

the file system we cannot assume that the environment does not interfere with those parts of the

file system used by the module. The file system is a public namespace and offers no mechanism for

controlling file-system parts that are private to some thread or process.

CaReSL [93] is a concurrent separation logic for fine-grained concurrency used to prove contextual

refinement between programs. The principle of CaReSL is that a highly optimised fine-grained imple-

mentation of a concurrent data structure is proven to contextually refine a much simpler coarse-grained

reference implementation. Then, the reference implementation can be used to prove properties about

clients. In this dissertation we are not interested in file-system implementations but the specification

of the POSIX file-system interface. With CaReSL this specification would need to be given as a ref-

erence implementation. Even if we give a simple reference implementation, where each atomic step is

given a coarse-grained implementation, it would still be significantly more complex than a sequence

of atomic specifications in the style of Turon and Wand’s atomic actions.

Liang et al. developed a separation logic for proving termination preserving refinements of concur-

rent programs [65]. Even though termination is obviously a desired property for file-system imple-

mentations, the POSIX standard does not mandate file-system operations to terminate. In order to

require operations to terminate in all possible concurrent contexts, POSIX would also have to man-

date scheduling behaviour properties, such as fairness. POSIX purposefully does not specify such

properties to allow more flexibility in implementations.

3.5.2. Atomic Hoare Triples

The program logic TaDA by da Rocha Pinto et al. [30, 28] is a concurrent separation logic for fine-

grained concurrency that introduced atomic Hoare triples, which are triples that specify the atomicity
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of an operation. In TaDA an atomic Hoare triple is of the following simplified form:

A

x ∈ X. 〈P (x)〉C 〈Q(x)〉

Intuitively, the atomic Hoare triple specifies that the program C atomically updates a state satisfied

by the precondition P (x) to a state satisfied by the postcondition Q(x) for some x ∈ X. However, the

semantics are bit more subtle. From the point of view of a client, the precondition P (x) and post-

condition Q(x) specify the point at which the atomic update appears to take effect: the linearisation

point. The binder

A

x ∈ X, also referred to as the universal pseudo-quantifier, servers to restrict the

interference by the environment. During the execution of C and until the atomic update takes effect,

the environment may change the value of x, as long it remains with X, and as long as P (x) still

holds. After the atomic update takes effect, the environment is no longer restricted; it may use Q(x)

in any way. From the point of view of the implementation, P (x) initially holds for some x ∈ X. The

implementation must tolerate the interference from the environment: P (x) may change to P (x′) for

any x, x′ ∈ X. The implementation must update P (x) to Q(x) (for some x ∈ X) at some point, after

which the implementation can no longer access Q(x) since the environment may be using it.

The atomicity captured by TaDA’s atomic Hoare triples can be viewed as a generalisation of the

atomicity specified by linearisability and Turon and Wand’s atomic actions. Notice that an atomic

action itself tolerates all possible interference on the shared resource: in 〈∀x. P, Q〉 the value of x is

fixed during its execution. Semantically an atomic action is sequentially interleaved with the atomic

actions of its concurrent context. The same observation is made for linearisability. On the other hand,

atomic Hoare triples can restrict the interference tolerated by the atomic specification.

Interference restriction allows atomic Hoare triples to specify blocking atomic operations. This is

demonstrated in TaDA through the example of locking a lock. The state of a lock can be represented

by the abstract predicate Lock(x, v), where x is the address of the lock and v ∈ {0, 1} is an abstract

representation of the state of the lock: 0 when the lock is unlocked; and 1 when the lock is locked.

Intuitively, a lock can become locked, only if it was previously unlocked. While the lock is unlocked,

the lock(x) operation can immediately lock the lock. On the other hand, while the lock is locked, the

operation has to wait until the lock becomes unlocked. This intuition is formally specified with the

following atomic Hoare triple:

A

v ∈ {0, 1} . 〈Lock(x, v)〉 lock(x) 〈Lock(x, 1) ∗ v = 0〉

From the pseudo quantifier and the precondition we see that the environment is allowed to freely

change the state of the lock until the operation locks the lock for the current thread. By the v = 0 in

the postcondition we see that the only way for the lock to become locked for the current thread is if

it was previously in the unlocked state: either it was unlocked in the first place; or some other thread

has unlocked the lock during the execution of lock. Note that the atomic actions of Turon and Wand

are unable to specify such blocking behaviour.

Locks are an interesting example for reasoning about file-system clients. A popular implementation

of locks in file systems is through the use of lock files. A lock file is a file with a known path, typically

a regular file. If the lock file exists the lock is locked; otherwise, it is unlocked. The same blocking

behaviour in locking the lock is expected for lock files.
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In TaDA the atomicity of each operation is specified with respect to an abstraction, such as

Lock(x, v). Therefore, it is possible to extend a module with additional operations without the need to

re-verify the existing operations. Crucially, the operations of a concurrent module do not have to be

atomic with respect to each other. In contrast, atomicity in both fenced refinement and linearisabil-

ity is a whole module property. Henceforth, in order to distinguish between the linearisability-style

atomicity of Turon and Wand and the atomicity specified by TaDA’s atomic Hoare triples, we will

refer to the former as primitive atomicity and to the latter as abstract atomicity.

Following earlier developments in concurrent separation logics for fine-grained concurrency [93, 88]

TaDA utilises a system of generalised capabilities for defining protocols by which clients can atomically

update a shared resource. Such protocols can be used to reason about file-system clients in spite of

the file system being a public namespace. If we define a protocol that denies the environment certain

capabilities on the shared file system then, if the environment follows the protocol, the client’s use of

the file system will not be subject to interference. For example in the case of lock files, if we deny the

environment the capability to alter the path to the lock file, the environment will not interfere with

the path used by the lock-file module implementation.

Several other recent developments in concurrent separation logics for fine-grained concurrency have

incorporated support for atomicity specification. In contrast to TaDA where atomicity is built in

to the logic, the logics of Jacobs and Piessens [58], HOCAP [89], iCAP [88] and Iris [62] encode

atomicity through higher-order specifications. An alternative approach to abstract atomicity is the

use of histories to maintain the changes that were performed to a module.

3.6. Conclusions

We have examined various approaches for specifying and reasoning about concurrent modules. To

achieve modular specifications requires a combination of resource ownership, interference abstraction

and atomicity. The fundamental challenge to a concurrent specification of POSIX file systems is the

fact that file-system operations perform sequences of atomic steps, whereas the nature of the file system

as public namespace presents a challenge to client reasoning. None of the approaches examined in this

chapter are sufficiently capable of addressing both. At the same time however, we have gained some

insight on how tackle both challenges. The specification language of Turon and Wand [94] is suited for

specifying operations as sequences of atomic steps, but their atomic specifications are insufficient to

reason about file-system clients. On the other hand, atomic Hoare triples in the style of TaDA [30, 28]

are well suited for reasoning about file-system clients, but are unable to specify sequences of atomic

steps. In conclusion, it clear that in order to address the challenges in specifying and reasoning about

POSIX file systems, a combination of both approaches is needed.
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4. Formal Methods for File Systems

There has been substantial work on the specification and formal verification of key fragments of POSIX

file systems. File systems have even been the subject of a verification mini-challenge by Joshi and

Holzmann [61], as part of the verification grand-challenge set by Hoare [55].

We can broadly distinguish the work in this field by the following approaches: model checking

(section 4.1), testing (section 4.2), refinement from specification (section 4.3), and program reasoning

(section 4.4). The majority of this work is focused on the verification of file-system implementations.

Only recently, program reasoning approaches based on Separation Logic have been proposed, to allow

reasoning about the behaviour of programs using the POSIX file-system interface. More importantly,

the majority of the related work either completely ignores concurrency assuming a sequential fragment

of POSIX, or assumes a coarse-grained concurrent behaviour where file-system operations take a single

atomic step.

4.1. Model Checking

Model checking has been used to find bugs in file-system implementations with some success. Galloway

et al. [46] apply model checking tools to the Linux VFS and verify structural integrity properties,

deadlock freedom and liveness. By careful examination of the implementation they define a model for

Linux VFS in a subset of C. Thus, this model is focused on the internals of a particular implementation

and not the POSIX file-system interface. Even though inclusive of concurrency, it is simplified to

remain amenable to model checking.

Yang et al. [100] develop FiSC, a model checking based tool aimed at discovering bugs in file-

system implementations. They applied the tool to four widely used file-system implementations, JFS,

ReiserFS, ext3 and XFS, and managed to discover in total 33 bugs of a serious nature. The bugs

discovered include permanent data loss after a host failure, crashes due to invalid memory accesses,

security issues and memory leaks. FiSC extracts models directly from the implementations, but again

these are simplified to remain amenable to model checking. Finally, this work is not focused on

concurrency, albeit it does consider fault-tolerance properties of file-system implementations.

4.2. Testing

On of the significant challenges highlighted in model-checking approaches for file systems is the com-

plexity of the search space. This prompted Groce et al. [50] to use randomised differential testing

to verify the implementation of file system for flash memory. In this approach, the behaviour of the

tested implementation is compared with that of a more trusted reference implementation of similar

functionality through randomly generated tests. Any difference between the behaviour of the tested

system and the reference implementation is considered a potential bug in the tested system. However,
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if the reference implementation itself is not verified, both implementations may exhibit the same bug

that goes unreported, or bugs reported for the tested system may be false positives.

Ridge et al. [83] develop a formal specification of POSIX file systems in the form of operational

semantics. They use the specification both to generate a substantial test suite, and as the test oracle

in their testing framework. The testing framework has been used on several popular file-system

implementations identifying deviations from the POSIX specification. The specification accounts for

concurrency but in a coarse-grained manner. The effect of every POSIX operation on the file system

is specified through a single transition in the operational semantics. In other words, the specification

assumes that every file-operation behaves atomically. As discussed in chapter 2, this assumption is

not valid for POSIX file systems.

4.3. Specification and Refinement to Implementation

Morgan and Sufrin developed the first formal specification of a UNIX file system using Z notation [71].

This work predates the development of the POSIX standard and does not consider concurrency. Freitas

et al. [44, 45] adapt the original Z notation specification of Morgan and Sufrin to align with a fragment

of POSIX file systems, mechanise the specification in Z/Eves and finally refine the specification to a

Java-based implementation. As in the original specification by Morgan and Sufrin this line of work

does not consider concurrency and only specifies sequential file system behaviour.

Damchoom et al. [34] develop a formal specification for a tree structured file system in Event-B and

Rodin. This work is not intended as a specification of the POSIX file-system interface. Event-B and

Rodin are further used by Damchoom and Butler [33] in the verification of a flash-based file system.

Again, the formal specification does not aim to follow POSIX, but focuses on the operations of a file-

system implementation for flash memory. Both of the aforementioned Event-B specifications account

for concurrency by specifying file-system operations as atomic events. The verification of flash-based

file systems is also the subject of other approaches [42, 63]. However, these specifications are idealised

and not aimed at specifying POSIX file systems.

Hesselink and Lali [52] formalise an abstract hierarchical file system by means of partial functions

from paths to data and give specifications for a set of update operations. However, this work does not

consider the POSIX file-system interface, but rather a more generic file store. Arkoudas et al. [11],

develop an abstract file-system specification and an implementation that they prove correct using the

Athena theorem prover. The file-system structure specified in this work is flat and does not distinguish

between directories and regular files.

4.4. Program Reasoning

Program reasoning using separation logic has recently started to be used both for the specification

and verification of file systems, but also to reason about file-system clients.

Ernst et al. [40] have used separation logic to verify parts of the Linux VFS. Chen et al. [27, 26]

use separation logic to build a verified fault-tolerant file-system implementation in the Coq theorem

prover. Both works are on sequential fragment of POSIX file systems and do not handle concurrency.

In order to prove fault-tolerance of file-system operations this work extends separation logic to reason

about the state of the file system after a host failure and the implementation’s recovery procedure.
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This work was developed concurrently to our own approach for reasoning about fault tolerance that

we present in chapter 9. We defer the comparison to chapter 9. Both the work of Ernst et al. and

Chen et al. , are on sequential fragment of POSIX file systems and do not handle concurrency.

Ntzik et al. [47] use structural separation logic to formally specify a fragment of POSIX file systems.

Structural separation logic [97] is a separation logic designed for abstract reasoning about structured

data such as trees, dags and lists, combining earlier concepts from context logics [24, 101, 49, 48] with

Views [35]. This work motivates the use of separation logic style specifications for POSIX file systems

by showing that resource ownership and disjointness allow client reasoning to scale significantly better

than the first-order global reasoning. The authors demonstrate their client reasoning by verifying

properties of a stylised software installer. The specification in this work only consider simple paths

that do not use “.”, “..” or symbolic links.

Subsequently, Ntzik and Gardner [72] demonstrate that structural separation logic is not capable to

extend the POSIX specification to such paths. The fundamental problem of with such paths is that

local updates to the file-system structure have a global effect on the path structure. Even though an

update may change a single directory or regular file, the same update may invalidate the path used

to identify or even other paths to other files. To remedy this, the authors developed fusion logic,

a separation logic in which nodes of the file-system structure are associated with permissions based

on Boyland’s fractional permissions [20]. The permission on each node determines whether it can

be updated or only read, and also how it is affected by a local update if used as part of a path. In

order for these global effects to be propagated across disjoint resources, fusion logic introduces a novel

variation of the frame rule which allows the effects of a local update to be propagated to resources

that are framed off. The global effects on paths may cause bugs in client programs using the file

system. An example of this is the command line utility rm− r which recursively removes a directory

and its contents. The authors applied their approach to popular implementations of this utility and

discovered bugs caused by incorrectly handling paths with “..” or symbolic links.

Both the structural separation logic and fusion logic file-system specifications are given for sequential

fragments of POSIX. The only type of concurrency reasoning that these specifications can support is

disjoint concurrency.
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5. Modelling the File System

We formally define the model of the file-system structure used in the subsequent development of our

POSIX file-system specification. We define the file-system structure as a directed graph, first in a

simpler form without symbolic links, then extended to incorporate symbolic links. We use the basic

structure in chapter 6 to introduce our concurrent specification with simplified paths, after which we

use the extended structure to demonstrate extended specifications with arbitrary paths.

We model the contents of regular files as sequences of bytes, where a byte is a natural number within

the range of natural numbers that can be represented with 8 bits.

Definition 1 (Bytes). The set of byte values is defined as:

Bytes ,
{
n ∈ N

∣∣∣ 0 ≤ n < 28
}

We denote the set of byte sequences with Bytes∗, where ε is the empty byte sequence, and use

the notation y to denote a byte sequence. We also denote the set of non-empty byte sequences with

Bytes?. Additionally, we denote a byte sequence with head y and tail y as y : y , the concatenation

of byte sequences y , y ′ as y :: y ′, and the length of a sequence y as len(y).

Furthermore, we interpret characters in strings as bytes, according to some implementation defined

character encoding, such as ASCII, albeit restricted to a single byte per character. Consequently,

strings are just sequences of bytes. For example, the string “hello” is a sequence of 5 bytes, determined

by the character encoding. Note that we do not consider strings to be null terminated, as in C. The

reason to treat strings as byte sequences is to allow reasoning about file-system clients that store string

data in regular files.

Similarly, we want to reason about storing integer values in regular files. For this, we define bounded

integers that can be represented as a fixed-length byte sequence. The representation of bounded

integers to bytes sequences is implementation defined.

Definition 2 (Bounded Integer Values). Let INT MAX bet the maximum implementation-defined in-

teger value. Let Int , {−INT MAX,−INT MAX + 1, . . .− 1, 0, 1, . . . , INT MAX− 1, INT MAX} be a finite

continuous range of integers. All elements of Int are representable as byte sequences of the same

implementation-defined size sizeof(int). Let IBytes ,
{

y ∈ Bytes?
∣∣∣ len(y) = sizeof(int)

}
be

the set of byte sequences of length sizeof(int). The implementation-defined function, i2b : Int →
IBytes, converts a bounded integer to its byte-sequence representation of size sizeof(int). The

implementation-defined function, b2i : IBytes → Int, converts byte sequences to a bounded integer.

The two functions are mutually inverse.

Filenames are strings, used to name the links in the file-system graph. POSIX allows implemen-

tations to restrict the characters allowed in filename strings, as long as characters in the portable

filename character set are always allowed ([7],XBD,3.278).
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Definition 3 (Filenames). Let FNames ⊆ Bytes? be the countable set of all filenames, ranged by

a, b, . . ..

Definition 4 (Dot and dot-dot). The names dot and dot-dot, denoted by “.” and “..”, are distinct

from filenames.

As explained in chapter 2, inode numbers, simply referred to as inodes, serve as unique identifiers

for the nodes in a file-system graph.

Definition 5 (Inodes). Let Inodes be a countable set of inode numbers, ranged by ι, j, . . .. Let

ι0 ∈ Inodes denote the distinguished inode number of the root directory.

The contents of directory files are modelled as a set of links, where each link associates a filename

with an inode.

Definition 6 (Links). Links are mappings from filenames, “.” and “..”, to inodes.

Links , FNames ∪ {., ..} fin
⇀ Inodes

The contents of regular files are modelled as sequences of bytes. However, regular files may contain

gaps; that is, regions where bytes have not been written to. We represent these gaps as sequences of

the distinguished value ∅.

Definition 7 (File Data). Let ∅ 6∈ Bytes be a distinguished value, indicating the non-existence of a

byte. The set of byte sequences stored in a regular file (including ∅) is defined by the following regular

language:

FileData , Bytes∗; ({∅}∗ ;Bytes?)∗

With all these components in place, we define file-system graphs as a mapping from inodes to either

directory contents or regular file contents.

Definition 8 (Basic File-system Graphs). A basic file-system graph, FS ∈ FS−, is defined as a

mapping from inodes to either directories or regular files.

FS− , Inodes
fin
⇀ Links ∪ FileData

A file-system graph is well-formed, written wffs(FS ), if:

• It does not contain dangling links.

• Every “.” links the directory that contains it.

• Every “..” links a directory that has a link to the directory that contains it.

wffs(FS )
def⇐⇒ ∀δ ∈ codom(FS ) ∩ Links.

codom(δ) ⊆ dom(FS )

∧ ∃ι. δ(.) = ι⇒ FS (ι)(.) = ι

∧ ∃ι. δ(..) = ι⇒ ∃a.FS (FS (ι)(a))(..) = ι

The set of well-formed file-system graphs, FS ∈ FS is defined as:

FS ,
{

FS ′ ∈ FS−
∣∣∣ wffs(FS ′)

}
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Several file-system operations use paths to identify files within the file-system structure.

Definition 9 (Relative Paths). A relative path, p ∈ RPaths, is a sequence of filenames, “.” and “..”,

defined by the following grammar.

p ::= ∅p the empty path

| a filename a ∈ FNames ∪ {., ..}

| a/p a ∈ FNames ∪ {., ..} followed by p

Henceforth, we implicitly omit ∅p after the last / in a path. For example, we write a/b/ to mean

a/b/∅p.

Definition 10 (Absolute paths). Absolute paths are defined by the set:

APaths ,
{
∅p/p

∣∣∣ p ∈ RPaths
}

Henceforth, we implicitly omit ∅p before the first / in an absolute path. For example, we write

/a/b to mean ∅p/a/b. The set of all paths is defined as: Paths , RPaths ∪APaths.

A symbolic link is a link that maps a filename to a path, instead of an inode. We will discuss how

symbolic links affect the resolution of a path within a file-system graph in chapter 6, section 6.3.1.

Definition 11 (File-system Graphs with Symbolic Links). A file-system graph with symbolic links,

FS ∈ FSs, is a mapping from inodes to either directories, regular files or paths.

FSs , Inodes
fin
⇀ Links ∪ FileData ∪Paths

File-system graphs with symbolic links are well formed under the same conditions as basic file-system

graphs.

Note that symbolic links may be dangling. The path they map to does not have to exist within the

file-system graph.

Files are associated with metadata, which include information such as their type and file access

permissions. In this dissertation we focus on file-type metadata and discuss how our POSIX fragment

specification can be extended with file-access permissions in chapter 6, section 6.3.2.

Definition 12 (File Types). File types,

FTypes , {FType,DType,SType}

are labels denoting the type of file in a file-system graph, where FType denotes the regular file type,

DType denotes the directory file type and SType denotes the symbolic link file type.

When file-system operations fail, they return an error. Each error is identified by an error code

associated with the situation that caused the particular failure.

Definition 13 (Error Codes). The set of error codes is defined as:

Errs , {ENOENT, ENOTDIR, ENOTEMPTY, . . .}
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We do not define a complete list of the error codes here. Instead, we discuss the error codes at their

point of use, when we develop formal specifications for POSIX operations.

Finally, we define some useful shorthand notation.

Notation 1 (File-system model notation).

isfile(o) , o ∈ FileData iserr(o) , o ∈ Errs isdir(o) , o ∈ Links

isempdir(o) , isdir(o) ∧ dom(o) ⊆ {“.”, “..”} ishl(o) , o ∈ FileData ∪ Links

issl(o) , o ∈ Paths ι ∈ FS , ι ∈ dom(FS ) a ∈ FS (ι) , a ∈ dom(FS (ι))

a 6∈ FS (ι) , a 6∈ dom(FS (ι)) ftype(o) ,


FType if o ∈ FileData

DType if o ∈ Links

SType if o ∈ Paths

descendants(FS , ι) ,

∅ if ¬isdir(FS (ι))

codom(FS (ι)) ∪
⋃
a∈dom(FS(ι)) descendants(FS ,FS (ι)(a)) otherwise

isabspath(p) , p ∈ APaths isrelpath(p) , p ∈ RPaths
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6. Concurrent Specifications and Client

Reasoning

So far, we have given an overview of the concurrent behaviour of POSIX file-systems and identified the

fundamental challenges to its formal specification in chapter 2. We have also discussed various existing

approaches in reasoning about concurrent modules and atomicity, evaluating their applicability to

POSIX specifications in chapter 3. In this chapter, we present our approach to a formal specification

of POSIX file systems that accounts for the complex concurrent behaviour informally specified in the

POSIX standard.

To account for file-system operations that perform sequences of atomic actions on the file-system

graph, our specifications take the form of “programs”, written in a simple specification language. Our

specification language is of a similar style to that of Turon and Wand [94], but with one major and

fundamental difference. For atomic actions, we do not rely on primitive atomicity, but on abstract

atomicity as developed in recent program logics for fine-grained concurrency. In particular, we base the

specification of atomic actions on the atomic Hoare triples introduced in the program logic TaDA [30].

In section 6.1, we introduce the key features of our specification language and its associated refine-

ment calculus, through characteristic examples of file-system operations. This is done in the context

of a simplified POSIX file-system fragment. In section 6.2, we demonstrate how our specification lan-

guage and refinement calculus are used to reason about client applications by considering the example

of a lock-file module. In particular, we demonstrate how we address file systems being a public names-

pace through specifications conditional on context invariants. Finally, in section 6.3 we demonstrate

the flexibility of our approach by considering various extensions of our specification to larger POSIX

file-system fragments. We defer the formal definition of our specification language, its semantics and

associated refinement calculus to chapter 7. Their use in specifying POSIX file-system operations and

reasoning about client programs here provides the intuition for the formal treatment later.

6.1. Specifications

To simplify the presentation and focus on the specification of the concurrent behaviour of POSIX

file-system operations, we will work with a simplified fragment of POSIX file systems in this section.

We work with the basic file-system graphs of definition 8 and define the specifications in this section

in terms of absolute paths. In section 6.3, we discuss extensions of the specifications developed here

to larger POSIX fragments.

6.1.1. Operations on Links

In section 2.3.1, we have informally described the behaviour of the unlink(path) operation. It performs

a sequence of atomic steps which resolve the argument path and removes the link to the file the path
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Figure 6.1.: Example snapshot of the file-system graph.

identifies. We define the specification of unlink in the form of the following specification program:

let unlinkSpec(path) , let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link delete(r , a)

t link delete notdir(r , a)

else return r fi

The specification program initially splits the path argument to the path prefix p and last name a,

using dirname and basename respectively. If path contains only one name, then dirname returns null.

The path-prefix p is then resolved by calling resolve(p, ι0). The second argument to resolve is the

inode number of the directory from which to start the path resolution. In figure 6.1, this would be the

directory with inode 0. To simplify the presentation in this section, we assume that paths are absolute

(chapter 5, definition 10), and therefore we always start the resolution from the root directory, which

has the known fixed inode ι0. If the resolution fails with an error code, we return it. If the resolution

succeeds, the return value is the inode of the directory containing the link we want to remove. As

we previously discussed in chapter 2.3, POSIX gives implementations the option to prevent attempts

to remove links to directories. This freedom of choice given to implementations introduces angelic

non-determinism. An implementation is allowed to choose which behaviour it implements. On the

other hand, clients must be robust with respect to both behaviours. Essentially, this means that

using unlink on directories is not portable across different implementations. To account for this, we

use the non-deterministic angelic choice operator, t, to compose the operations link delete and

link delete notdir. We will define link delete to remove any link, and link delete notdir to

return an error for a directory link.

The resolve operation is defined as a function that recursively follows path, starting from the initial
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directory with inode ι:

letrec resolve(path, ι) ,

if path = null then return ι else

let a = head(path);

let p = tail(path);

let r = link lookup(ι, a);

if iserr(r) then return r

else return resolve(p, r) fi

fi

The head and tail operations return the first name and the path postfix of the path argument. Note

that if path is a single name, then tail returns null. In each step, resolve calls link lookup(ι, a)

to get the inode of the file the link named a points to, if that link exists in the directory with inode ι.

If the link a does not exist in the ι directory, or if the ι file is not a directory, link lookup returns an

error, the resolution stops and the error is immediately returned. The procedure returns the resolved

inode when there is no more path to resolve, i.e. the postfix p of the path argument is null.

Elements of our specifications are reusable. Any specification that resolves paths will use this

definition. In line with programming practice, we reuse specification code as much as possible.

The unlink operation must behave in at most the same way as the specification program unlinkSpec.

In other words a correct implementation must be a refinement of our specification program:

unlink(path) v unlinkSpec(path)

The refinement relation, v, is contextual: in any concurrent context, every behaviour of unlink is a

behaviour of unlinkSpec. Therefore to reason about a client (a particular context), we can replace

the implementation with its specification. If C is a particular context, then C[unlink(path)] v
C[unlinkSpec(path)]. Then we can define another specification program φ, to be the specification of

the client, so that C[unlinkSpec(path)] v φ. To facilitate such reasoning, we develop a refinement

calculus for our specification language, consisting of an array of refinement laws that allow us to prove

such refinements.

Our unlink specification is incomplete. We have yet to define the aforementioned operations

link lookup, link delete and link delete notdir that lookup and delete a link in a directory.

Note that these are not POSIX operations, but abstract operations corresponding to atomic actions

that POSIX operations perform.

Our aim is to define the abstract atomic action performed by an operation, under any possible

interference from the concurrent environment. Recall from chapter 3, section 3.5, the atomic Hoare

triples introduced by TaDA[30], of the form:

A

x ∈ X. 〈P (x)〉C 〈Q(x)〉

Intuitively, the atomic triple specifies that the program C atomically updates the state satisfying the

precondition P (x) to a state satisfying the postcondition Q(x), for an arbitrary x ∈ X. The pseudo-

quantifier,

A

x ∈ X, serves to restrict the interference from the environment that the specification can

tolerate: before the atomic update is committed, the environment must preserve P (x), but is allowed
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to change x within the set X; after the atomic update is committed, all constraints on the environment

are lifted. The atomic triple thus constitutes a contract between clients and implementations: the

clients can assume that the precondition holds for some x ∈ X until the update is committed.

Atomic Hoare triples explicitly mention the code C implementing the specification. For an abstract

operation, such as link delete, we only care about its behaviour, not the code that implements it. In

our specification language we use atomic specification statements, of the form

A

x ∈ X. 〈P (x), Q(x)〉, to

specify atomic behaviour, without referencing the implementation. Intuitively, an atomic specification

statement specifies the behaviour of any program satisfying the triple

A

x ∈ X. 〈P (x)〉 − 〈Q(x)〉. In

the setting of our refinement calculus, an atomic Hoare triple

A

x ∈ X. 〈P (x)〉C 〈Q(x)〉 corresponds to

a refinement C v

A

x ∈ X. 〈P (x), Q(x)〉.
Now to complete our specification of the unlink operation, we define link lookup, link delete

and link delete notdir as the functions given in figure 6.2. Consider link delete used in the

definition of unlinkSpec earlier, repeated below:

let link delete(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a)

u return enotdir(ι)

There are three cases composed with u, which we will explain shortly. Consider the atomic specification

statement of the first case. In the precondition fs(FS ) ∧ isdir(FS (ι)), the abstract predicate fs(FS )

states that the file-system structure is given by the file-system graph FS , and the pure predicate

isdir(FS (ι)) states that a directory with inode ι must exist in that file-system graph. The pseudo-

quantifier1,

A

FS , states that the environment may arbitrarily change the file system, as along as

the precondition is satisfied, which, in this case, means that a directory with inode ι exists. The

postcondition states that if, at the point the atomic update takes effect, the link named a exists in the

directory with inode ι, the link is removed and the return variable ret is bound to 0. As a convention,

we use the variable ret within a function to bind its return value.

The other two cases specify erroneous behaviour via the functions enoent and enotdir, defined in

figure 6.3. Consider the enoent function repeated below:

let enoent(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS ) ∗ ret = ENOENT〉

The atomic specification statement specifies that, if a link named a does not exist in the directory

with inode ι, the file system is not modified and the return variable is bound to the error code ENOENT.

The second error case defined by enotdir specifies that if the inode ι does not identify a directory, the

file system remains unchanged and the error code ENOTDIR is returned. Most of the file-system related

errors defined by POSIX are common to most file-system operations, and, similarly to resolve, we

treat functions that specify error cases as reusable components for specifications.

The three specification cases in link delete are composed with the non-deterministic demonic

choice operator u. We use demonic choice to account for the non-determinism of a specification due to

scheduling behaviour. In the case of link delete, which of the three possible behaviours we observe

1We write

A

x when x ranges over its entire domain instead of some subset.
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let link lookup(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = FS (ι)(a)〉
u return enoent(ι, a)

u return enotdir(ι)

let link delete(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a)

u return enotdir(ι)

let link delete notdir(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isfile(FS (FS (ι)(a)))⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a)

u return enotdir(ι)

u return err nodir hlinks(ι, a)

let link insert(ι, a, j, b) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ∧ isdir(FS (j)) ,

a ∈ FS (ι) ∧ b 6∈ FS (j)⇒ fs(FS [j 7→ FS (j)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a)

u return eexist(j, b)

u return enotdir(ι)

u return enotdir(j)

let link insert notdir(ι, a, j, b) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ∧ isdir(FS (j)) ,

isfile(FS (FS (ι)(a))) ∧ b 6∈ FS (j)⇒ fs(FS [j 7→ FS (j)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a)

u return eexist(j, b)

u return enotdir(ι)

u return enotdir(j)

u return err nodir hlinks(ι, a)

Figure 6.2.: Specification of atomic operations for link lookup, insertion and deletion.

let enoent(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS ) ∗ ret = ENOENT〉

let enotdir(ι) ,

A

FS . 〈fs(FS ) ∧ ¬isdir(FS (ι)) , fs(FS ) ∗ ret = ENOTDIR〉

let eexist(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = EEXIST〉

let err nodir hlinks(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isdir(FS (FS (ι)(a)))⇒ fs(FS ) ∗ ret = EPERM〉

Figure 6.3.: Specification of error cases in operations on links.
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in a particular execution depends not only on the environment, but also on which of the possible

interleavings the scheduler decides to execute. Thus, we consider the scheduler to act as a demon and

we call such specifications demonic. A client of a demonic specification must be robust against all the

demonic cases. For example, link delete handles errors by returning the error code to the client.

When reasoning about a particular client, if we have information that restricts the environment, for

example by requiring some path to always exist, we can elide the cases that are no longer applicable.

On the other hand, an implementation of a demonic specification must implement all the demonic

cases. For example, an implementation of link delete must implement all three atomic specification

statements. The definition of link delete notdir is similar, except that it succeeds only when the

link being removed does not link a directory, and an extra error case is added for when it does.

The final piece required to complete the specification of unlink is the abstract operation link lookup,

which we use in resolve and define in figure 6.2. The operation succeeds if it is able to find a link

named a within the directory identified by inode ι. The operation fails, by returning an error, in

the same way as link delete. This means that by the error codes alone, a client only determines

why unlink fails, and not when, whether it was during the path resolution, or during the attempted

update.

Through the unlink example we have seen so far, we demonstrate how our refinement-based ap-

proach, of using specification programs, succeeds in tackling some of the challenges of developing a

concurrent specification of POSIX file systems. With sequential composition of atomic specification

statements we specify file-system operations performing multiple atomic steps. With demonic choice

composition we address the non-determinism due to concurrent interleavings. However, with angelic

choice composition alone, we cannot efficiently address all the non-determinism present due to optional

implementation behaviours.

Consider the link(source, target) operation, which acts as the dual of unlink. Informally, it creates

a new link identified by the path target to the file identified by source, if it does not already exist. The

operation has to resolve two paths before the actual linking is attempted. POSIX does not specify the

order in which multiple path arguments are resolved. Since path resolution is a sequence of atomic

steps, the choice space for implementations is substantially larger than if it was atomic. To address this

fact we employ parallel composition, ‖, and compose multiple path resolutions in parallel. Formally,

we give the following refinement specification to link:

link(source, target)

v let ps = dirname(source);

let a = basename(source);

let pt = dirname(target);

let b = basename(target);

let rs , rt = resolve(ps , ι0) ‖ resolve(pt , ι0);

if ¬iserr(rs) ∧ ¬iserr(rt) then

return link insert(rs , a, rt , b)

t link insert notdir(rs , a)

else if iserr(rs) ∧ ¬iserr(rt) then return rs

else if ¬iserr(rs) ∧ iserr(rt) then return rt

else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi
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The link insertion is attempted when both resolutions succeed. In that case, analogously to unlink,

we use angelic choice between link insert and link insert notdir. The former allows the link to

be created for any link, even to a directory, whereas the latter considers this erroneous. The atomic

specification statements for both are defined in figure 6.2. Error handling must be robust against

errors from both resolutions. Note that if both resolutions error, either error code is returned. In

general, a client is unable to determine which path resolution triggered the error.

The parallel composition of the two path resolutions, resolve(ps , ι0) ‖ resolve(pt , ι0), gives the

maximum freedom of choice to implementations. Not only can the resolutions be implemented in any

order, but they can also be interleaved in all possible ways. This fact is engraved in our refinement

calculus. For any two specification programs φ and ψ, their sequential composition is a refinement of

their parallel composition, as expressed by the SeqPar refinement law:

φ;ψ v φ ‖ ψ

This means that we can replace (refine) the parallel composition of φ and ψ with a sequential compo-

sition, without introducing any additional behaviour. On the other hand, if we replace (abstract) the

sequential composition with a parallel composition we are introducing additional behaviours, which

may include undefined behaviours. In particular, if φ and ψ are not thread-safe, composing them

in parallel will lead to undefined behaviour. Semantically, we treat undefined behaviour as faulting.

Faulting acts as the most permissive of specifications; it can be refined by anything. Note that we

treat refinement from a partial correctness perspective. Refinement does not preserve nor guaran-

tee termination. We discuss faulting behaviour and termination when we formally define contextual

refinement in chapter 7, section 7.4.1.

Since parallel composition commutes, its sequential implementation commutes as well. Furthermore,

if φ and ψ are sequences, φ1;φ2 and ψ1;ψ2 respectively, then an implementation can process the

sequences in parallel instead, as captured by Hoare’s Exchange law [56]:

(φ1 ‖ ψ1); (φ2 ‖ ψ2) v (φ1;φ2) ‖ (ψ1;ψ2)

Combining this with SeqPar and commutativity of parallel composition, the implementation can

interleave the sequents in order it so pleases. Suffice to say an implementation link insert may

choose to resolve the two paths truly in parallel.

Finally, consider the rename(source, target) operation, which moves the link identified by the path

source so that it becomes a link identified by the path target . It is arguably the most complex file-

system operation acting on links as it exhibits different behaviour depending on whether it is working

with links to directories or regular files, and whether the target already exists. Fortunately, the

compositional nature of our specification programs aids, to some extend, in tackling its complexity.

The specification for rename is given in figure 6.4. The path resolution is specified as in link, using

parallel composition, to indicate the unordered resolution of multiple paths. If both path prefixes are

successfully resolved, then the move is attempted. There are several success cases, defined in figure 6.5.

The first case, link move noop, specifies that when the source link named a and the target link

named b, exist within the directories with inodes ιs and ιt respectively, and they link files of the same

type, the operation will succeed without modifying the file-system graph. The subsequent success
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rename(source, target)
v let ps = dirname(source);

let a = basename(source);
let pt = dirname(target);
let b = basename(target);
let rs , rt = resolve(ps , ι0) ‖ resolve(pt , ι0);
if ¬iserr(rs) ∧ ¬iserr(rt) then
return //Success cases

link move noop(rs , a, rt , b)
u link move file target not exists(rs , a, rt , b)
u link move file target exists(rs , a, rt , b)
u link move dir target not exists(rs , a, rt , b)
u link move dir target exists(rs , a, rt , b)
//Error cases

u enoent(rs , a)
u enotdir(rs)
u enotdir(rt)
u err source isfile target isdir(rs , a, rt , b)
u err source isdir target isfile(rs , a, rt , b)
u err target notempty(rt , b)
u err target isdescendant(rs , a, rt , b)

else if iserr(rs) ∧ ¬iserr(rt) then return rs

else if ¬iserr(rs) ∧ iserr(rt) then return rt

else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

Figure 6.4.: Specification of rename.

cases specify the different behaviours on regular file links and directory links.

Consider the case of link move file target not exists. The postcondition states that if at the

point the atomic update takes effect, the link named a within the ιs directory identifies a regular file,

and a link name b does not exist in the directory with inode ιt, then the link named a is moved into

the ιt directory and renamed to b. The link move file target exists case specifies that when the

link named b does already exists, then it must link a regular file and the link is overwritten.

The link move dir target not exists and link move dir target exists cases work analogously

for directory links, albeit they place additional restrictions. Specifically, both require that the direc-

tory identified by inode ιt is not a descendant of the directory identified by inode ιs. Otherwise, the

operation would potentially cause the ιs directory to become disconnected from the graph. Addition-

ally, in link move dir target exists, when the link named b already exists in the ιt directory it

must link an empty directory. Note that moving the directory link may update the “..” link within

that directory so that it points to the correct parent.

The rename operation has numerous error cases. It shares the enoent and enotdir error cases with

link and unlink, but also requires additional cases defined in figure 6.6, for returning the appropriate

error code in case the success conditions of link move file and link move dir are not met. The

err source isfile target isdir returns the error code EISDIR if the link named a identifies a

file while the link named b identifies a directory, whereas err source isdir target isfile returns

ENOTDIR in the opposite case. The err target notempty case applies when we attempt to move a
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let link move noop(ιs, a, ιt, b) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) , FS (ιs)(a) = FS (ιt)(b)⇒ fs(FS ) ∗ ret = 0〉

let link move file target not exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isfile(FS (FS (ιs)(a))) ∧ b 6∈ FS (ιt)

⇒ fs(FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]) ∗ ret = 0
〉

let link move file target exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isfile(FS (FS (ιs)(a))) ∧ isfile(FS (FS (ιt)(b)))

⇒ fs(FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]) ∗ ret = 0
〉

let link move dir target not exists(ιs, a, ιt, b) ,
A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isdir(FS (FS (ιs)(a))) ∧ ιt 6∈ descendants(FS , ιs) ∧ b 6∈ FS (ιt)

⇒ ∃FS ′.FS ′ = FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]

∧ (FS ′(ιt)(b)(“..”) 6= ιs ⇒ fs(FS ′))

∧ (FS ′(ιt)(b)(“..”) = ιs ⇒ fs(FS ′[FS ′(ιt)(b) 7→ FS ′(ιt)(b)[“..” 7→ ιt]]))

∗ ret = 0

〉
let link move dir target exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isdir(FS (FS (ιs)(a))) ∧ ιt 6∈ descendants(FS , ιs) ∧ isempdir(FS (FS (ιt)(b)))

⇒ ∃FS ′.FS ′ = FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]

∧ (FS ′(ιt)(b)(“..”) 6= ιs ⇒ fs(FS ′))

∧ (FS ′(ιt)(b)(“..”) = ιs ⇒ fs(FS ′[FS ′(ιt)(b) 7→ FS ′(ιt)(b)[“..” 7→ ιt]]))

∗ ret = 0

〉
Figure 6.5.: Specification of atomic link moving operations.
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let err source isfile target isdir(ιs, a, ιt, b) ,

A

FS .

〈
fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS ,

isfile(FS (FS (ιs)(a))) ∧ isdir(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret = EISDIR

〉

let err source isdir target isfile(ιs, a, ιt, b) ,

A

FS .

〈
fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS ,

isdir(FS (FS (ιs)(a))) ∧ isfile(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret = ENOTDIR

〉

let err target notempty(ιt, b) ,

A

FS . 〈fs(FS ) ∧ ιt ∈ FS , isempdir(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret ∈ {EEXIST, ENOTEMPTY}〉

let err target isdescendant(ιs, a, ιt, b) ,

A

FS . 〈fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS , ιt ∈ descendants(FS ,FS (ιs)(a))⇒ fs(FS ) ∗ ret = EINVAL〉

Figure 6.6.: Additional error case specifications for rename.

directory link, but the existing link points to a non-empty directory. In this case, POSIX allows either

EEXIST or ENOTEMPTY to be returned. Finally, err target isdescendant returns EINVAL if the target

directory is a descendant of the source directory.

6.1.2. Operations on Directories

With the examples in the previous section we have seen how links to existing directories can be moved

with rename, as well as added with link and removed with unlink (if implementations allow it).

New directories are created with the mkdir operation. Informally, mkdir(path), creates a new empty

directory named by the last component of path, within the directory resolved by the path prefix of

path. Formally, we can give the following refinement specification to mkdir:

mkdir(path)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link new dir(r , a)

u eexist(ι, a)

u enotdir(ι)

else return r fi

The path resolution is exactly as in unlink. If path resolution succeeds, either the directory is

created by link new dir, or an error is returned according to enoent and enotdir, which are defined

in figure 6.3. We define link new dir to atomically create the new empty directory as follows:

let link new dir(ι, a) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ,

a 6∈ FS (ι)⇒ ∃ι′. fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ∅[“.” 7→ ι′][“..” 7→ ι]) ∗ ret = 0

〉
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Note that the operation creates the new directory with “.” linking itself and “..” linking its parent.

Recall the discussion in chapter 2.3.3 on the atomicity of directory operations. Even though in

most modern implementations the directory is created in an atomic step, this is not mandated by

POSIX. The rationale behind this underspecification is to allow for historical implementations where

the directory is initially created truly empty, and the “.” and “..” links are added in subsequent steps.

We can easily formalise this behaviour as the following sequence of atomic steps:

∃ι′.

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ∅) ∗ ret = 0〉;

A

FS . 〈fs(FS ) ∧ “.” 6∈ FS (ι′), fs(FS [ι′ 7→ FS (ι′)[“.” 7→ ι′]])〉;

A

FS . 〈fs(FS ) ∧ “..” 6∈ FS (ι′), fs(FS [ι′ 7→ FS (ι′)[“..” 7→ ι′]])〉;

The behaviour of this sequence is related to link new dir. Every observable behaviour of link new dir

can also be observed in the above sequence. In fact, any sequence of atomic steps, is sometimes ob-

served as happening atomically, simply because sometimes the scheduler does not interleave those

steps with other threads. In trace semantics this is known as mumbling [21], and in our refinement

calculus it is expressed as the AMumble refinement law, a simplified version of which is as follows:

A

x ∈ X. 〈P (x), Q(x)〉 v

A

x ∈ X.
〈
P (x), P ′(x)

〉
;

A

x ∈ X.
〈
P ′(x), Q(x)

〉

With this refinement law it is apparent that the single atomic step in link new dir is a refinement

of the sequence of three atomic steps. Note however, that an implementation can choose in which

order to add the “.” and “..” links. Let us abstract each of those steps into the following function:

let link ins dir(ι, a, ι′) ,

A

FS .
〈
fs(FS ) ∧ a 6∈ FS (ι), fs

(
FS [ι 7→ FS (ι)[a 7→ ι′]]

)〉
Now we can define the non-atomic directory creation operation as follows:

let link new dir nonatomic(ι, a) ,

∃ι′.

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ∅) ∗ ret = 0〉;
link ins dir(ι′, “.”, ι′) ‖ link ins dir(ι′, “..”, ι)

Note how we compose the operations creating the “.” and “..” links in parallel to allow them to occur

in any order, similarly to the parallel composition we used on path resolution in link and rename. The

difference here is that they cannot be implemented truly in parallel, since link ins dir() is defined

to be atomic.

Note that the existential quantification on the new inode ι′ is before the whole sequence. This way

the new inode is in scope for both the atomic statement that allocates it and the parallel link ins dirs

that follow. This is in contrast to the atomic specification statement in link new dir, in which the

new inode is existentially quantified in the postcondition. In link new dir nonatomic the choice

of the new inode ι′ is an example of early choice: we chose the inode before the allocation. In

link new dir the choice of the new inode ι′ is an example of late choice: we chose the inode at the

point of allocation. In our refinement calculus late and early choice are equivalent, as expressed with
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the EAAtom refinement law. A simplified version of this law is as follows:

y 6∈ free(P )

∃y.

A

x ∈ X. 〈P (x), Q(x)〉 ≡

A

x ∈ X. 〈P (x), ∃y.Q(x)〉

Effectively, this refinement law states that in contextual refinement there is no context that observes

a difference between early and late choice. Intuitively, we can non-deterministically choose a value

for y. The choice is correct if the postcondition of the atomic specification statement is satisfied for

the chosen value; otherwise, the choice is wrong. All correct early choices for y are also correct when

they are made late and vice versa. All wrong early choices for y are also wrong when they are made

late and vice versa. The validity of both early and late choices is observable at the point the atomic

update takes effect. For all choices, no matter when they are made, the same outcomes are observed.

With the AMumble and EAAtom refinement laws, and with SeqPar, from section 6.1.1, we can

prove the following refinement between the two variants of directory creation:

link new dir(ι, a) v link new dir nonatomic(ι, a)

Even though the atomic specification is arguably simpler, and more desirable to reason about modern

implementations, the non-atomic specification is more inclusive and more aligned with the POSIX

standard text. Portable clients applications, should be aware of the possibility that while creating

a directory, they can observe intermediate states. Therefore, the client facing specification of mkdir

should use link new dir nonatomic instead of the simpler link new dir.

The same reasoning applies to all operations manipulating directories. Specifically, in the previous

section we gave an atomic specification to the abstract operations moving directory links, such as

link move dir target not exists, as part of rename. This was a simplification. By AMumble and

SeqPar we can derive more appropriate specifications for these operations.

Another consequence of mumbling is that we can coalesce all the steps taken by a file-system

operation such as mkdir into just one atomic step, thus refining it to a coarse grained specification.

Even though such atomic specifications can be used to reason about a subset of implementation

behaviours, as for example in SibylFS [83], we have demonstrated in chapter 2.3, section 2.3.2, that

they are completely unsuitable for client applications.

6.1.3. I/O Operations on Regular Files

POSIX defines read and write as the primitive operations for reading and writing data to regular

files. The read operation reads a sequence of bytes from a regular file to the heap, whereas write

writes a sequence of bytes stored in the heap to a regular file. These operations do not identify the file

they act on with a path, but with a file descriptor. A file descriptor acts as a reference to a file and

is associated with additional information controlling the behaviour of I/O operations acting on it.

In order to obtain a file descriptor to a file, a client must first open it for I/O with open. Inci-

dentally, open is also used to create new regular files. The operation, open(path,flags), accepts two

arguments: the path to the being opened, and flags controlling the behaviour of open and subsequent

I/O operations such as read and write. POSIX defines a wide selection of flags. For presentation

simplicity, we only consider the flags in table 6.1 in this section.
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O CREAT Create the file if it does not exist.

O EXCL If used in conjunction with O CREAT and the file already exists, return the EEXIST error.
The test for the existence of the file and its creation if it does not already exist occur
as a single atomic step.

O RDONLY Open the file for reading only.

O WRONLY Open the file for writing only.

O RDWR Open the file for both reading and writing.

Table 6.1.: A selection of flags controlling I/O behaviour.

We treat the flags argument as a subset of the flags controlling the operation. Mimicking the

convention in C, we use its bitwise OR syntax to compose multiple flags. For example, we write

O CREAT|O EXCL to mean {O CREAT} ∪ {O EXCL}.
Depending on the combination of the O CREAT and O EXCL flags, open behaves differently. We give

the following refinement specification to open:

open(path,flags)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

if O CREAT ∈ flags ∧ O EXCL ∈ flags then

return link new file(r , a,flags)

u eexist(r , a)

else if O CREAT ∈ flags ∧ O EXCL 6∈ flags then

return link new file(r , a,flags)

u open file(r , a,flags)

else

return open file(r , a,flags)

u enoent(r , a)

fi

u return enotdir(r)

else return r fi

The path resolution is a usual for a single path. If the path prefix is resolved successfully, the

specification branches depending on flags.

Consider the first branch, where both O CREAT and O EXCL exist in flags. According to table 6.1,

this combination will cause the file to be created atomically if it does not already exist, and otherwise,

the EEXIST error is returned. In the specification, this behaviour is expressed as the demonic choice

between link new file, defined in figure 6.7, and enoent, defined previously in figure 6.3. Consider

the definition of link new file. If a link named a does not already exist in the directory identified

by the ι argument, link new file atomically creates a new empty regular file, adds a link named

a to the file into the ι directory, and allocates and returns a new file descriptor for the file. In

the postcondition, fd(ret, ι′, 0, fdflags(flags)) is an abstract predicate stating that the value of newly

allocated file descriptor is bound to ret, and that the file descriptor is associated with: the inode ι′
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of the newly created file, the initial current file offset 0, and the flags given by fdflags(flags). The

latter is an expression that filters out any flags that do not affect subsequent I/O operations, such as

O CREAT and O EXCL. We explain the use of the current file offset shortly.

let link new file(ι, a,flags) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)), a 6∈ FS (ι)⇒ ∃ι

′. fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε)

∗ fd(ret, ι′, 0, fdflags(flags))

〉

let open file(ι, a,flags) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isfile(FS (FS (ι)(a)))⇒ fs(FS ) ∗ fd(ret,FS (ι)(a), 0, fdflags(flags))〉

Figure 6.7.: Specification of atomic operations that create and open regular files.

Consider the second branch, where O CREAT is included in flags, but O EXCL is not. In this case,

if the file does not already exist, it is created with link new file as before. However, instead of

returning an error if it already exists, it is directly opened with open file, as defined in figure 6.7.

Finally, the third branch applies when O CREAT is not included in flags. In this case, the file is opened

according to open file if it exists, or the ENOENT error is returned according to enoent. Note that

the entire if -then-else is composed demonically with enotdir, since the ENOTDIR error is triggered

in every branch, when the file resolved by the path prefix is not a directory.

Now that we have specified the operation with which we obtain a file descriptor to a file, consider

the write operation with which we can write data to the file associated with an open file descriptor.

We give the following refinement specification to write:

write(fd , ptr , sz ) v return write off(fd , ptr , sz )

u write badf(fd)

We specify the operation as the demonic choice between the write off and write badf abstract

operations, defined in figure 6.8.

let write off(fd , ptr , sz ) ,

A

FS , o ∈ N.

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, o,fl) ∧ iswrfd(fl) ∗ buf

(
ptr , b

)
∧ len

(
b
)

= sz ,

fs
(
FS [ι 7→ FS (ι)[o ← b]]

)
∗ fd(fd , ι, o + sz ,fl) ∗ buf

(
ptr , b

)
∗ ret = sz

〉

let write badf(fd) ,

A

o ∈ N. 〈fd(fd , ι, o,fl) ∧ O RDONLY ∈ fl , fd(fd , ι, o,fl) ∗ ret = EBADF〉

Figure 6.8.: Specification of atomic write actions.

Consider the atomic specification statement of write off. The precondition requires fd to be a

file descriptor for the file with inode ι, with current file offset o and flags fl . Note that the current

file offset is bound by the pseudo-universal quantifier, meaning that until write off takes effect, the

environment can concurrently modify it, with the proviso it remains a valid offset (a natural number).
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The predicate iswrfd(fl) , O WRONLY ∈ fl ∨ O RDWR ∈ fl , states that file descriptor must have been

opened for writing. Furthermore, the predicate buf
(
prt , b

)
states that ptr points to a heap based

buffer storing the byte sequence b. The postcondition states that the byte sequence b stored in the

ptr buffer, is written to the file, offset from the start of the file (offset 0) by o. Any existing bytes

from offset o onward, up to the length of b, are overwritten. The current file offset associated with

the file descriptor is incremented by the number of bytes written, which the operation also returns.

The write badf abstract operation returns the EBADF error, if the file descriptor has not been

opened for writing, and does not modify the file.

Recall the discussion in chapter 2.3 on the atomicity of I/O operations such as write. Partly due

to the standard’s ambiguity on the subject, and partly due to some, otherwise conforming, implemen-

tations not guaranteeing atomicity, whether client applications should rely on these operations being

atomic is a matter of debate between application developers. It then stands to question, if atomicity

is doubt, what is the specification that clients should rely on?

The obvious answer is to specify the operation as non-atomic. In our specification language, apart

from atomic specification statements, we also use Hoare specification statements of the form:

{P, Q}

A Hoare specification statement specifies an update from a state satisfying the precondition P to

a state satisfying the postcondition Q, without enforcing any atomicity guarantees. Intuitively, it

specifies the behaviour of any program that satisfies the Hoare triple {P} − {Q}.

With Hoare specification statements, we can give a non-atomic specification to write, with the

same preconditions and postconditions as in write off and write badf. For example, we can define

the following non-atomic variant of write off:

let write off(fd , ptr , sz ) ,{
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, o,fl) ∧ iswrfd(fl) ∗ buf

(
ptr , b

)
∧ len

(
b
)

= sz ,

fs
(
FS [ι 7→ FS (ι)[o ← b]]

)
∗ fd(fd , ι, o + sz ,fl) ∗ buf

(
ptr , b

)
∗ ret = sz

}

In fact, by the same intuitive argument as in the AMumble refinement law, every atomic specifica-

tion statement is a refinement of a (non-atomic) Hoare specification statement, as expressed by the

following, slightly simplified, AWeaken2 refinement law:

A

x ∈ X. 〈P (x), Q(x)〉 v {P (x), Q(x)}.

Using this law, we can trivially derive non-atomic specifications for I/O operations.

On the other hand, a non-atomic specification of I/O operations such as write may be too weak.

Even if we do not rely on the reads or writes of bytes to files as being atomic, we could still rely on the

update occurring to the current file offset associated with the file descriptor as atomic. This requires a

combined specification, where some part of the state is updated atomically, while the other is updated

non-atomically.

Following the general form of atomic Hoare triples in TaDA [30], our atomic specification statements
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take the following general form2:

A

x ∈ X. 〈Pp | P (x), Qp(x) | Q(x)〉

Here, the precondition and postcondition are split into two parts. The private part, on the left of the

vertical separator, is updated non-atomically. The public part, on the right of the vertical separation,

is updated atomically as in the simpler form atomic specification statements we have used so far. Note

that since the private part has no atomicity guarantees, the private precondition Pp is not bound by

the pseudo universal quantifier. In the private postcondition Qp(x), the variable x is bound to the

value it has at the moment the atomic update on the public part takes effect.

Using the general form of atomic specification statements, we can rewrite the atomic write off to

the following partially atomic specification:

let write off part atomic(fd , ptr , sz ) ,

A

o ∈ N.

〈
∃FS , y . fs(FS [ι 7→ y ])

∣∣∣ fd(fd , ι, o,fl) ∧ iswrfd(fl) ∗ buf
(
ptr , b

)
∧ len

(
b
)

= sz ,

∃FS , y . fs
(
FS [ι 7→ y [o ← b]]

)∣∣∣ fd(fd , ι, o + sz ,fl) ∗ buf
(
ptr , b

)
∗ ret = sz

〉

The current file offset in the file descriptor is update atomically, whereas the file referred to by the

file descriptor is not. The existential quantification over the file-system graph FS in the private part,

allows the environment to concurrently update the file-system graph during the non-atomic update of

the file with inode ι. Note however, that the environment is not allowed to modify the byte sequence

y stored in the file.

A client of this specification may rely on the update of the current file offset being atomic. However,

in order to use the specification and derive strong properties about the contents of the file, the client

is forced to employ concurrency control, so that other threads are prevented from interfering with the

write. Otherwise, to use this specification a client would have to weaken the entire file-system graph,

thus losing information about the information stored in the file.

Once more, this specification is related to the atomic specification write off. An atomic update is

a refinement of a partially atomic update, as expressed by the AWeaken1 refinement law, a slightly

simplified version of which is given below:

A

x ∈ X. 〈Pp ∗ P (x), Qp(x) ∗Q(x)〉 v

A

x ∈ X. 〈Pp | P (x), Qp(x) | Q(x)〉

Thus with our refinement calculus it is easy to prove the following refinement between the specification

variants:

write off(fd , ptr , sz ) v write off part atomic(fd , ptr , sz ) v write off non atomic(fd , ptr , sz )

Note that I/O operations involve copying byte sequences between regular files and buffers in the

heap. Therefore, we need to combine reasoning about the file system with reasoning about the heap. In

figure 6.9 we specify atomic operations on the heap. The malloc(size) operation atomically allocates

a heap buffer of size bytes with arbitrary values and returns the address of the allocated heap buffer.

2For presentation simplicity at this point, this is still not the most general form of atomic specification statements.
Atomic specification statements in their most general form are defined in chapter 7.
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let malloc(size) , 〈true, ∃y . buf(ret, y) ∧ len(y) = size〉

let memset(ptr , byte) , 〈ptr 7→ −, ptr 7→ byte〉

let memget(ptr) , 〈ptr 7→ y , ptr 7→ y ∗ ret = y〉

let memwrite(ptr , bytes) , 〈∃y . buf(ptr , y) ∧ len(y) = len(bytes) , buf(ptr , bytes)〉

let memread(ptr , type) ,
〈buf(ptr , y) ∧ len(y) = sizeof(int) ∧ type = int, buf(ptr , y) ∗ ret = b2i(y)〉
u 〈buf(ptr , y) ∧ len(y) = sz ∧ type = STR(sz ), buf(ptr , y) ∗ ret = y〉

let memcpy(ptrt , ptrs, size) ,
〈buf(ptrt , y) ∧ len(y) = size ∗ buf(ptrs, y ′) ∧ len(y ′) = size, buf(ptrt , y ′) ∗ buf(ptrs, y ′)〉

where:
buf(ptr , y) , (y = ε) ∨ (∃y , y ′. y = y : y ′ ∧ ptr 7→ y ∗ buf(ptr + 1, y ′))

Figure 6.9.: Specification of heap operations.

Note that a heap buffer is a consecutive sequence of heap cells storing bytes. memset(ptr , byte) sets

the byte value of the heap cell with address ptr to byte, whereas memget(ptr) retrieves the byte value

stored in the heap cell with address ptr . The operation memwrite(ptr , bytes) writes the sequence of

bytes bytes to the heap buffer with address ptr . The memread(ptr , type) operation reads the sequence

of bytes stored in the heap buffer at address ptr . The second parameter type determines how the

byte sequence being read is interpreted. If type = int, then it is converted to a bounded integer. If

type = STR(sz ), it is interpreted as sequence of bytes of size sz . Finally, memcpy(ptrt , ptrs, size) copies

the contents of the heap buffer with address ptrs of size size into the heap buffer with address ptrt .

6.2. Client Reasoning

So far we have developed examples of specifications for POSIX file-system operations, and introduced

the key features of our specification language and of refinement between specification programs. The

notion of refinement we employ is that of contextual refinement. If φ and ψ are specification programs

and φ v ψ then, for all contexts C, we have C[φ] v C[ψ]. Client applications are contexts of the

POSIX operations we specified in the previous section. We now use our specifications in context, and

demonstrate how our refinement calculus is used to prove strong functional properties for clients.

We introduce our development through the example of lock files. Lock files are a popular pattern

for implementing mutual exclusion between different processes accessing the file system, with several

library implementations in different programming languages.

The lock-file concept is simple. A lock file is a regular file, under a fixed path, representing the

status of a lock. If the lock file exists, the lock it represents is locked. Otherwise, the lock is unlocked.

For example, /tmp/.X0-lock is a typical lock file in contemporary Linux systems, and in figure 6.1,

the lock it represents is locked.
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Consider an implementation of a lock-file module with two operations: lock(lf ) and unlock(lf ),

where lf is the path identifying the lock file. We implement the operations as follows:

letrec lock(lf ) ,

let fd = open(lf , O CREAT|O EXCL);

if iserr(fd) then return lock(lf )

else close(fd) fi

let unlock(lf ) , unlink(lf )

The lock operation attempts to create the lock file at path lf by invoking open. Recall from sec-

tion 6.1.3 that the flag combination O CREAT|O EXCL causes open to create a file at the given path if

one does not already exist; otherwise, an error is returned. Thus, if open returns an error we try again,

with a recursive call to lock. If it succeeds, we invoke close to close the file descriptor returned by

open. We give the following specification to close:

close(fd) v 〈fd(fd , ι,−) , true〉

By contextual refinement, we can replace the open and unlink with their specifications and thus

derive a specification for lock and unlock respectively. However, this would not be useful for reasoning

about lock files since it fails to capture their abstract behaviour as lock. Instead, we establish the

following specification:

LFCtx(lf ) ` lock(lf ) v

A

v ∈ {0, 1} . 〈Lock(s, lf , v) , Lock(s, lf , 1) ∗ v = 0〉
LFCtx(lf ) ` unlock(lf ) v 〈Lock(s, lf , 1) , Lock(s, lf , 0)〉

The abstract predicate Lock(s, lf , v) states the existence of a lock represented by a lock file at path

lf , with state v , the value of which is either 0, if the lock is unlocked, or 1 if the lock is locked. The

first parameter, s ∈ T1, is a variable ranging over an abstract type. It serves to capture invariant

information, specific to the implementation of the Lock predicate and is opaque to the client. The

specification states that we can abstract each lock-file operation to a single atomic step that updates

the state of the lock. In particular, the lock specification states that the environment can arbitrarily

lock and unlock the lock, but the lock is atomically locked only when it is previously unlocked; the

operation blocks while the lock is locked. The unlock specification states that the lock can only be

atomically unlocked when the lock is locked. The specifications for lock and unlock hold under the

invariant LFCtx(lf ), the purpose of which we explain shortly.

In order to justify the module’s specification, we must show that lock and unlock update the

state of the lock, according to a protocol that determines how its state can change. We follow the

approach of TaDA [30], using shared regions to encapsulate state that is shared by multiple threads,

with the proviso that it can only be accessed atomically. We use tα(x), to denote a shared region

α of type t and abstract state x. The abstract state x abstracts the shared state encapsulated by

the region. The region is associated with an interpretation function, a labelled transition system and

guards. The interpretation function maps abstract states to the encapsulated shared resources. The
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labelled transition system defines the atomic updates that are allowed on the abstract region state.

Transitions are labelled by guards. In order for a thread to change the state of a region, it must own

the guard resource associated with the transition that defines the atomic update. Guard resources

can be taken from any user-defined separation algebra [25]. Therefore, guards serve as generalised

capabilities.

For our current example, we introduce the region type Lock. Regions of this type are parameterised

by the lock-file path. The abstract state of the region corresponds to the state of the lock. We define

a single guard G for the region. The labelled transition system associated with the region is as follows:

G : 0 1 G : 1 0

Ownership of the guard resource G provides the capability to lock the lock, by a transition from

abstract state 0 to 1, and the capability to unlock the lock, by a transition from 1 to 0.

We now need to provide a concrete interpretation for each abstract state of the region, in terms of

the file-system representation of the lock as a lock file. However, at this point, we first need to explain

a fundamental difference between reasoning about typical heap-based modules and file-system based

modules.

In a heap-based implementation of a lock, the interpretation of the region would be defined as the

heap resource representing the lock in memory; for instance, a single heap cell with value either 0 or

1. Any update to the state of the lock must be allowed by the guards and transition system associated

with the region. In this case, the region serves to restrict access to the heap resource implementing the

lock only to the module operations. However, as we discussed in chapter 2.3, the file system is a public

namespace: it is always shared as a whole between all possible threads and processes. Anyone at any

time can access any path of their choosing. We cannot restrict access to the entire file system only

to the operations of a module, since then the context would not be able to access the file system at

all. Yet we do need some restrictions on the context. In the case of a lock-file module, we require the

context not to change the path to the lock-file directory, and that the only way to create or remove the

lock file is via the module operations. The lock-file module cannot enforce such restrictions on its own.

Instead, these restrictions form a proof obligation for the context. We express such proof obligations

with context invariants. For our lock-file module, LFCtx denotes the context invariant under which its

specification holds.

In order to define LFCtx, we first encapsulate the file system within the global file-system shared

region of type GFS. There is only a single instance of this region, with a known identifier which

we keep implicit. All clients accessing the file system do so via this region. The region’s state is a

file-system graph, FS ∈ FS, with the following straightforward interpretation:

Ir(GFS(FS )) , fs(FS )

We keep the guards and labelled transition system of this region open ended. However, we define

LFCtx to place restrictions on the guards and transition system.

To aid our definition of LFCtx, we introduce some additional notation and predicates. Gt denotes the

set of guards associated with the region type t; G•G′ denotes the partial, associative and commutative

composition of guards; G#G′ states that the composition of guards G and G′ is defined; and Tt(G)∗
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denotes the transitions for guard G of the region type t, where the superscript ∗ denotes the reflexive-

transitive closure. We also define the following auxiliary predicates:

!G ∈ Gt , G ∈ Gt ∧ G • G undefined

(x, y) †t G , (x, y) ∈Tt(G)∗∧ ∀G′∈ Gt.G′#G⇒(x, y) 6∈ Tt(G′)∗

The predicate !G ∈ Gt states that there is only one instance of the guard G for the region type t, and

(x, y) †t G states that in regions of type t, the transition from state x to y is defined only for G.

Let p/a be the path to a lock file. We define the predicate p
FS7−−→ ι to assert that the path p resolves

to the file with inode ι in the file-system graph FS as follows:

p
FS7−−→ ι , (p, ι0)

FS7−−→ ι

(a, ι)
FS7−−→ ι′ , FS (ι)(a) = ι′

(a/p, ι)
FS7−−→ ι′ , ∃ι′′.FS (ι)(a) = ι′′ ∧ (p, ι′′)

FS7−−→ ι′

Additionally, we define the expression FS�p to identify the sub-graph of FS that is formed by the

path p as follows:

FS�p , FS�ι0p

FS�ιa , ι 7→ (a 7→ FS (ι)(a))

FS�ιa/p , ι 7→ (a 7→ FS (ι)(a)) ] FS�FS(ι)(a)
p

We define the file-system states that the lock-file module can be in as follows:

ULK(p/a) ,
{

FS | ∃ι. p FS7−−→ ι ∧ isdir(FS (ι)) ∧ a 6∈ FS (ι)
}

LK(p/a) ,
{

FS | ∃ι. p FS7−−→ ι ∧ isdir(FS (ι)) ∧ a ∈ FS (ι)
}

LF(p/a) , ULK(p/a) ∪ LK(p/a)

ULK denotes the unlocked states, where the lock file does not exist, whereas LK denotes the locked

states, where the lock file exists. LF denotes both possibilities. Note that the directory containing

the lock file always exists. The following predicates describe the updates that create and remove the

lock file in its directory:

lk(FS ,FS ′, p/a) , ∃ι, ι′. p FS7−−→ ι ∧ FS ′ = FS [ι 7→ FS (ι)[a 7→ ι′]][ι′ 7→ ε]

ulk(FS ,FS ′, p/a) , ∃ι. p FS7−−→ ι ∧ FS ′ = FS [ι 7→ FS (ι) \ {a}]

We can now define the context invariant as follows:

LFCtx(p/a) ,

∃FS ∈ LF(p/a).GFS(FS ) ∧ ! [LF(p/a)] ∈ GGFS

∧ ∀FS ∈ ULK(p/a).∃FS ′. lk(FS ,FS ′, p/a) ∧ (FS ,FS ′) †GFS LF (p/a)

∧ ∀FS ∈ LK(p/a). ∃FS ′. ulk(FS ,FS ′, p/a) ∧ (FS ,FS ′) †GFS LF (p/a)

∧ ∀G ∈ GGFS.∀FS ,FS ′ ∈ LK(lf ). (FS ,FS ′) ∈ TGFS(G)∗ ⇒ FS�p = FS ′�p
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The first line of the definition restricts the states of the global file-system region to those in which the

path to the lock-file directory exists and the lock file itself may exist or not. Additionally, it requires

the indivisible guard LF (p/a) to be defined for the global file-system region. The second and third

lines of the definition state that transitions creating or removing the lock file in its directory are only

defined for the guard LF (p/a). Therefore, only ownership of this guard grants a thread the capability

to transition between locked and unlocked states. Finally, the last line of the definition requires all

transitions between lock-file states to maintain the same file-system sub-graph for the path p. This

guarantees that the context does not modify the sub-graph such that the path is diverted to a different

location.

Assuming the context satisfies LFCtx(lf ), we can now define the interpretation of the Lock region

as:
Ir(Lockα(lf , 0)) , ∃FS ∈ ULK(lf ).GFS(FS ) ∗ [LF(lf )]

Ir(Lockα(lf , 1)) , ∃FS ∈ LK(lf ).GFS(FS ) ∗ [LF(lf )]

Finally, we instantiate the Lock predicate and T1 as follows:

T1 , RId

Lock(α, lf , 0) , Lockα(lf , 0) ∗ [G]α
Lock(α, lf , 1) , Lockα(lf , 1) ∗ [G]α

where RId is the set of region identifiers.

It remains to prove the refinement between the implementation and our specification. First, to

reduce the complexity of reasoning about open, we derive the following refinement specific to its use

in lock(), where we focus only on the O CREAT|O EXCL behaviour.

open(path, O CREAT|O EXCL)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link new file(r , a)

u eexist(r , a) u enotdir(r , a)

else return r fi

In figure 6.10 we give a sketch proof for the lock operation. Throughout the proof we assume that

LFCtx holds. On the other hand, LFCtx is a proof obligation for the context.

We begin the refinement proof with the specification of lock at the bottom of figure 6.10. In the

first refinement step we apply the MakeAtomic refinement law, discussed shortly, refining the atomic

specification statement to a Hoare specification statement.

In section 6.1.3, we have introduced the AWeaken2 refinement law that allows a non-atomic Hoare

specification statement to be refined by an atomic statement. The reverse, atomicity abstraction, only

holds when we can prove that the state of a region is updated only once. This is captured by the
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S
e
q

let fd = open(lf , O CREAT|O EXCL);
v by figure 6.11

A

FS ∈ LF(lf ).

〈
fs(FS ) ∧ p

FS7−−→ r ,
(fs(FS ) ∗ fd = EEXIST)
∨ (∃FS ′. lk(FS ,FS ′, lf ) ∗ fs(FS ′) ∗ fd(fd ,−, 0))

〉
v by UseAtomic and ACons

A

FS ∈ LF(lf ).

〈
GFS(FS ) ∗ [LF(lf )],

(GFS(FS ) ∗ fd = EEXIST)
∨ (∃FS ′ ∈ LK(lf ).GFS(FS ′) ∗ fd(fd ,−,−)) ∗ [LF(lf )]

〉
v by AEElim〈
∃FS ∈ LF(lf ).GFS(FS ) ∗ [LF(lf )],

(∃FS ∈ LF(lf ).GFS(FS ) ∗ fd = EEXIST)
∨ (∃FS ′ ∈ LK(lf ).GFS(FS ′) ∗ fd(fd ,−,−)) ∗ [LF(lf )]

〉
v by UpdateRegion〈
∃v ∈ {0, 1} .Lockα(lf , v) ∗ α Z⇒ �, ∃v ∈ {0, 1} .Lockα(lf , v) ∗ (α Z⇒ � ∗ fd = EEXIST)

∨ (α Z⇒ (0, 1) ∗ fd(fd ,−,−))

〉A
v by AWeaken2{
∃v ∈ {0, 1} .Lockα(v) ∗ α Z⇒ �, ∃v ∈ {0, 1} .Lockα(lf , v) ∗ (α Z⇒ � ∗ fd = EEXIST)

∨ (α Z⇒ (0, 1) ∗ fd(fd ,−,−))

}A

If
T
h
e
n
E
l
se

if iserr(fd) then
return lock(lf )
v by assumption

{∃v ∈ {0, 1} .Lockα(lf , v) ∗ α Z⇒ �, α Z⇒ (0, 1)}A
v by HCons (precondition strengthening)

{∃v ∈ {0, 1} .Lockα(lf , v) ∗ α Z⇒ � ∗ fd = EEXIST, α Z⇒ (0, 1)}A
else
close(fd)
v by specification
〈fd(fd ,−,−) , true〉

v by AWeaken2
{fd(fd ,−,−) , true}

v by HFrame and HCons (precondition strengthening)

{∃v ∈ {0, 1} .Lockα(lf , v) ∗ α Z⇒ (0, 1) ∗ fd(fd ,−,−) , α Z⇒ (0, 1)}A
fi

v
{
∃v ∈ {0, 1} .Lockα(lf , v) ∗ (α Z⇒ � ∗ fd = EEXIST)
∨ (α Z⇒ (0, 1) ∗ fd(fd ,−,−))

, α Z⇒ (0, 1)

}A
v assuming lock(lf ) refines the same specification

{∃v ∈ {0, 1} .Lockα(lf , v) ∗ α Z⇒ �, α Z⇒ (0, 1)}Ak
v by MakeAtomic

A

v ∈ {0, 1} . 〈Lockα(lf , v) ∗ [G]α , Lockα(lf , 1) ∗ [G]α ∗ v = 0〉

Figure 6.10.: Proof sketch of lock(lf ) refining its specification, assuming LFCtx(lf ) at every step.
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A
S
t
u
t
t
e
r

let p = dirname(path);
let a = basename(path);
let r = resolve(p, ι0);
v by AStutter and Ind

A

FS ∈ LF(lf ).
〈

fs(FS ) , fs(FS ) ∧ p
FS7−−→ r

〉
if ¬iserr(r) then
return link new file(r , a)

u eexist(r , a) u enotdir(r , a)
v by DChoiceIntro

link new file(r , a) u eexist(r , a)
v by figure 6.7, ACons, Subst1 and AConj

A
FS ∈ LF(lf ).

〈
fs(FS ) ∧ p

FS7−−→ r ,
(a 6∈ FS (ι)⇒ ∃FS ′. lk(FS ,FS ′, lf ) ∗ fs(FS ′) ∗ fd(ret,−, 0))
∧ (a ∈ FS (ι)⇒ fs(FS ) ∗ ret = EEXIST)

〉
v by ACons

A

FS ∈ LF(lf ).

〈
fs(FS ) ∧ p

FS7−−→ r ,
(fs(FS ) ∗ ret = EEXIST)
∨ (∃FS ′. lk(FS ,FS ′, lf ) ∗ fs(FS ′) ∗ fd(ret,−, 0))

〉
else return r fi

v

A

FS ∈ LF(lf ).

〈
fs(FS ) ∧ p

FS7−−→ r ,
(fs(FS ) ∗ ret = EEXIST)
∨ (∃FS ′. lk(FS ,FS ′, lf ) ∗ fs(FS ′) ∗ fd(ret,−, 0))

〉
v

A

FS ∈ LF(lf ).

〈
fs(FS ) ∧ p

FS7−−→ r ,
(fs(FS ) ∗ ret = EEXIST)
∨ (∃FS ′. lk(FS ,FS ′, lf ) ∗ fs(FS ′) ∗ fd(ret,−, 0))

〉

Figure 6.11.: Refinement of open(lf , O CREAT|O EXCL) used in lock(lf ).
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MakeAtomic refinement law. A slightly simplified version of this law is as follows:

{(x, y) | x ∈ X, y ∈ Y (x)} ⊆ Tt(G)∗

{∃x ∈ X. tα(x) ∗ α Z⇒ �, ∃x ∈ X, y ∈ Y (x). α Z⇒ (x, y)}α:x∈X Y (x)

v

A

x ∈ X. 〈tα(x) ∗ [G]α , tα(y) ∗ [G]α〉

The atomic specification statement of the conclusion specifies an atomic update on the state of the

region α, of region type t, from x ∈ X to y ∈ Y (x). The environment may change the state of the

region before the atomic update takes effect, with the proviso that it remains in X. The update to the

state of the region must be justified by the guard resource [G]α. The premiss of the law requires that

the update from x to y is allowed by the transition system for the guard G. The atomic specification

statement is refined by a non-atomic Hoare specification that ensures the update happens atomically.

The atomicity context in the superscript, α : x ∈ X  Y (x), records the update the specification

statement must perform. The atomic tracking resource, α Z⇒ �, acts as a proxy to the guard. However,

it permits only a single update to the region in accordance to the atomicity context. Until the update

is performed, the region’s state is guaranteed to be within the set X. When the update takes effect,

the atomic tracking resource is simultaneously updated to α Z⇒ (x, y), recording the actual update

performed.

In the next step, we use the Seq refinement law, which allows us to refine a Hoare specification

statement to a sequence of specification statements. A simplified version of this law is as follows:

φ v {P, R} ψ v {R, Q}

φ;ψ v {P (x), Q(x)}

With Seq, we split the Hoare specification that we obtained using MakeAtomic into a Hoare speci-

fication statement for open and a Hoare specification statement for the if -then-else statement.

Consider the refinement of the Hoare specification statement for open. In the first step, we apply

AWeaken2 to refine the Hoare specification to an atomic specification statement. Then, we use the

UpdateRegion law.

The UpdateRegion refinement law allows us to refine the atomic update required by an atomicity

tracking resource for a region into an atomic update to the region’s interpretation. A simplified version

of the this refinement law is as follows:

A

x ∈ X.〈Ir(tα(x)) ∗ P (x),
(∃y ∈ Y (x). Ir(tα(y)) ∗Q1(x, y))

∨ (Ir(tα(x)) ∗Q2(x)) 〉
v

A

x ∈ X.〈tα(x) ∗ P (x) ∗ α Z⇒ �,
(∃y ∈ Y (x). tα(y) ∗Q1(x, y) ∗ α Z⇒ (x, y))

∨ (tα(x) ∗Q2(x) ∗ α Z⇒ �) 〉α:x∈X Y (x)

Note that the atomic specification statement we obtain by UpdateRegion in figure 6.10 uses

existential quantification on the file-system graphs. Existential quantification in atomic specification

statement can be refined to pseudo universal quantification according to the AEElim refinement law,
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a simplified version of which is as follows:

A

x ∈ X. 〈P (x), Q(x)〉 v 〈∃x ∈ X.P (x), ∃x ∈ X.Q(x)〉

In the final refinement step to open in figure 6.10, we justify the atomic update of open according

to the corresponding transition on the global file-system region GFS with the UseAtomic refinement

law. A simplified version is as follows:

∀x ∈ X. (x, f(x)) ∈ Tt(α)∗

A

x ∈ X. 〈Ir(tα(x)) ∗ P (x) ∗ [G]α , Ir(tα(f(x))) ∗Q(x)〉
≡

A

x ∈ X. 〈tα(x) ∗ P (x) ∗ [G]α , tα(f(x)) ∗Q(x)〉

This allows us to refine an atomic update to the abstract state of a region into an atomic update to

the region’s interpretation, as long as we have the required guard resource for which the update is

allowed by the region’s transition system.

Consider the refinement to if -then-else statement that follows open. Here, we are using the

IFThenElse law to refine the specification of the branch to the two branches. This refinement

law is analogous to the rule of if -then-else statements in Hoare logic and is given in detail in chap-

ter 7, section 7.7. Note that in the if -branch, we assume that lock already refines the specification

that we are refining, as per the Ind refinement law discussed in chapter 7.

In figure 6.11 we proceed to refine the atomic specification for open that we use in figure 6.10 into its

POSIX specification program. This refinement proof relies on using the AStutter refinement law,

to coalesce the multiple atomic steps in the POSIX specification of open into a single atomic step. A

simplified version of this law is as follows:

A

x ∈ X. 〈P (x), P (x)〉;

A

x ∈ X. 〈P (x), Q(x)〉 v

A

x ∈ X. 〈P (x), Q(x)〉

This law allows us to refine an atomic update by adding steps that do not affect the shared state.

Note that the LF(lf ) from the specification statement that we are refining guarantees that resolve

in figure 6.11 succeeds. Thus we are only concerned with refining the if -branch. We begin the

refinement from the bottom of the if -branch by strengthening the postcondition into a conjunction of

two implications, one for the case where the lock file does not exist and one for the case where it does.

This is achieved by using the ACons refinement law, which is directly analogous to the consequence

rule of Hoare logics. We present the ACons law in detail in chapter 7.

In the next refinement step we split the atomic specification statement into two cases, corresponding

to the earlier implications, composed with demonic choice. This is analogous to using the conjunction

rule of Hoare logics, which in our refinement calculus corresponds to the AConj refinement law. A

slightly simplified version of this law is as follows:

A

x ∈ X. 〈P1(x), Q1(x)〉 u

A

x ∈ X. 〈P1(x), Q1(x)〉 v

A

x ∈ X. 〈P1(x) ∧ P2(x), Q1(x) ∧Q2(x)〉

By using AConj followed by another use of the ACons law we refine the atomic specification state-

ment to the demonic composition of link new file and eexist. In order to reach the specification

program of open(lf , O CREAT|O EXCL) in the last refinement we also add the enotdir demonic case.
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Refinement always allows us to add more demonic cases to a specification program, as captured by

the following DChoiceIntro refinement law:

φ u ψ v φ

6.3. Extending Specifications

6.3.1. Symbolic Links and Relative Paths

In section 6.1 we have given simplified specifications of POSIX file-system operations, where we as-

sumed that file-system graphs do not use symbolic links, paths are absolute and do not use “.” and

“..”. We now demonstrate how our specifications can be extended to remove these restrictions, by

revisiting the specification of unlink.

Symbolic links, relative paths, and “.” and “..” affect path resolution. To account for the existence

of symbolic links, we use the file-system graphs of definition 11. Note that the definition of resolve

in section 6.1.1 can already handle “.” and “..”. When resolve encounters a “.” along the path, it

follows the “.” link within the current lookup directory, if it exists, to the same directory. When it

encounters a “..”, it follows the “..” link within the current lookup directory, provided it exists, to the

parent directory. However, resolve must be extended in order to work with symbolic links.

A symbolic link is a file that stores an arbitrary path. During path resolution, if the current path

component names a link to a file that is a symbolic link, then the path stored in the symbolic link file

is prefixed to the remaining unresolved path, and path resolution restarts with the combined path. If

the combined path is relative, then path resolution restarts from the current lookup directory, whereas

if it is absolute, it restarts from the root directory.

In order to obtain the path stored in a symbolic link, we first extend the link lookup abstract

operation from figure 6.2, as follows:

let link lookup sl(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι) ∧ ishl(FS (FS (ι)(a)))⇒ fs(FS ) ∗ ret = FS (ι)(a)〉
u

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι) ∧ issl(FS (FS (ι)(a)))⇒ fs(FS ) ∗ ret = FS (FS (ι)(a))〉
u return enoent(ι, a)

u return enotdir(ι)

From the definition of link lookup, we have split the atomic specification statement of the success

case into two. In the first atomic specification statement, the predicate ishl(FS (FS (ι)(a))) of the

postcondition requires that the link named a within the directory with inode ι does not point to a

symbolic link file. As before, if the link named a exists in the ι directory, the inode of the file it points

to is returned. In the second atomic specification statement, the predicate issl(FS (FS (ι)(a))) requires

that the link named a within the ι directory points to a symbolic link file. In this case, if the link

exists, the path stored in the symbolic link file is returned.

Symbolic links may introduce loops causing path resolution to not terminate. POSIX requires

implementations to return the ELOOP error, in case of such loops. A naive implementation of this

behaviour would be to detect the existence of cycles in the file-system graph along the path. For

example, the resolution process could maintain a set of all the symbolic link paths resolved, and if a
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symbolic link path is already in that set, return the error. However, this works only on a quiescent

system, or if path resolution is atomic. Since path resolution is not atomic, the concurrent environment

may always introduce loops that are not detectable by graph cycle detection algorithms. For this

reason, POSIX specifies path resolution to follow a bounded number of symbolic links. This bound is

defined by implementations as global constant SYMLOOP MAX, with a minimum value of 8.

Using link lookup sl instead of link lookup and adapting to account for ELOOP, we extend the

specification of path resolution in figure 6.12. The additional parameter c counts the number of

letrec resolve sl(path, ι, c) ,
if path = null then return ι else

let a = head(path);
let p = tail(path);
let r = link lookup sl(ι, a);
if iserr(r) then return r
else if ispath(r) then

if c ≤ SYMLOOP MAX then
if isabspath(r) then return resolve sl(r/p, ι0, c + 1)
else return resolve sl(r/p, ι, c + 1) fi

else return ELOOP fi
else return resolve sl(p, r , c) fi

fi

Figure 6.12.: Path resolution specification accounting for symbolic links.

symbolic links encountered. If the current pathname component a names a link to a symbolic link

file, then link lookup sl returns the symbolic-link path. In this case, provided that we are not

exceeding the SYMLOOP MAX limit, the resolution continues on the symbolic-link path prefixed to the

remaining unresolved path. The path resolution continues from the root directory, if the symbolic-link

path is absolute, or otherwise, from the current lookup directory, incrementing the counter c. If the

SYMLOOP MAX limit is reached, ELOOP is returned.

Every process is associated with a current working directory. If a relative path is given as an

argument to a file-system operation such as unlink, its path resolution initiates from the current

working directory of the invoking process. We introduce the abstract predicate cwd(pid , ι), which

states that the inode of current working directory, associated with the process with process identifier

pid , is ι. With this abstract predicate, we define the following function, returning the inode of the

current working directory of a process.

let get cwd inode(pid) ,

A

ι. 〈cwd(pid , ι) , cwd(pid , ι) ∗ ret = ι〉

Using get cwd inode and resolve sl, we specify the resolution of an arbitrary path as the following

function:
let resolve(path, ι) ,

if isabspath(path) then return resolve sl(path, ι0, 0)

else return resolve sl(path, ι, 0)fi

If the given path is absolute, path resolution initiates from the root directory, which has the known
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inode ι0. Otherwise, path is a relative path. In this case, path resolution initiates from the directory

with inode ι, which we can obtain via get cwd inode.

We now have the means in place to modify our simplified specification of unlink to one that can

handle arbitrary paths, as follows:

unlink(path)

v let p = dirname(path);

let a = basename(path);

let cwd = get cwd inode(pid);

let r = resolve(p, cwd);

if ¬iserr(r) then

return link delete(r , a)

t link delete notdir(r , a)

else return r fi

The difference from the original is the use of get cwd inode to obtain the inode of the current working

directory, and using the extended resolve. Note that here, pid is a special variable, bound to

the process id of the current process. All our other simplified specifications in section 6.1, can be

analogously extended to work with arbitrary paths.

POSIX additionally defines unlinkat(fd , path) as a variant of unlink(path). The additional ar-

gument is a file descriptor opened for a directory. If path is an absolute path, unlinkat behaves in

the same way as unlink. However, if path is relative, then the resolution of path initiates from the

directory associated with the file descriptor fd . Alternatively, fd may take the value AT FDCWD, in

which case the resolution initiates from the current working directory of the process. We define the

following function to return the inode associated with a file descriptor:

let get fd inode(fd) , 〈fd(fd , ι, off ,flags) , fd(fd , ι, off ,flags) ∗ ret = ι〉

With get fd inode we can give the following refinement specification to unlinkat:

unlinkat(fd , path)

v let p = dirname(path);

let a = basename(path);

let cwd = if fd = AT FDCWD then return get cwd inode(pid)

else return get fd inode(fd) fi;

let r = resolve(cwd , p);

if ¬iserr(r) then

return link delete(r , a)

t link delete notdir(r , a)

else return r fi

Note that it is easy to prove that unlinkat(AT FDCWD, path) ≡ unlink(path) in our refinement

calculus.
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6.3.2. File-Access Permissions

POSIX defines the traditional UNIX security model. The operating system has groups of users, where

each user belongs to at least one group. Users and groups are identified by numerical identifiers, which

we take from the set of natural numbers. Each user or group identifier is associated with a string,

acting as the user or group name respectively. Every process is associated with a user identifier, and

a set of group identifiers for the groups the user belongs in.

Permission bit Capability

S IRUSR User can read.
S IWUSR User can write
S IXUSR User can execute.

S IRGRP Group can read.
S IWGRP Group can write.
S IXGRP Group can execute.

S IROTH Others can read.
S IWOTH Others can write.
S IXOTH Others can execute.

Table 6.2.: File-access permission bits.

Every file is associated with a user identifier, a group identifier and access permission bits. The user

identifier identifies the file’s owner. The group identifier identifies the group to which the file belongs.

The access permission bits define the capabilities the owner, the group and the rest of the world

have on the file. We summarise available permission bits and the associated capabilities in table 6.2.

The execute permission bits are interpreted differently for directories and regular files. For example,

S IXOTH for a directory means that every user can traverse the directory during path resolution. On

the other hand, the same permission bit for a regular file means that every user can run the file as an

executable program.

Let PermBits denote the set of permission bits defined in table 6.2. We define an ownership and

permission assignment environment:

Π ∈ PermHeaps , Inodes
fin
⇀ UserIds×GroupIds× P(PermBits)

that associates inodes with a user identifier uid ∈ UserIds , N, a group identifiers gid ∈ GroupIds ,

N, and a set of active permission bits. We introduce the abstract predicate fap(Π), stating that the

files comprising the file-system are given ownership and permission metadata according to Π.

To specify path resolution under file access permissions, all we need is to modify the definition of

link lookup. Specifically, when the link that is being followed identifies a directory, we must check

that the process has the capability to traverse it, via an execute permission bit. A directory link can

be followed if one of the following holds:

• the user identifier of the process is the user identifier of the directory’s owner and the execute

permission bit is set for the owner,

• one of the group identifiers of the process matches the group identifier of the directory and the

execute permission bit set for the group, and
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• the execute permission bit is set for others.

We encode these conditions with the following auxiliary predicate:

ix(fuid , fgid , bits) , (S IXUSR ∈ bits ∧ fuid = uid)

∨ (S IXGRP ∈ bits ∧ fgid ∈ gids)

∨ (S IXOTH ∈ bits)

The arguments fuid , fgid and bits correspond to the identifiers of the user and group owning the file,

and the set of enabled permission bits for the file respectively. The variables uid and gids are special

variables, binding the user and group identifiers associated with the current process.

We redefine link lookup based on the definition given section 6.3.1, taking symbolic links into

account, as follows:

let link lookup(ι, a) ,

A

FS ,Π.

〈
fs(FS ) ∧ isdir(FS (ι)) ∗ fap(Π) ,

a ∈ FS (ι) ∧ isdir(FS (ι)(a)) ∧ ix(Π(FS (ι)(a)))⇒ fs(FS ) ∗ fap(Π) ∗ ret = FS (ι)(a)

〉
u

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι) ∧ isfile(FS (ι)(a))⇒ fs(FS ) ∗ ret = FS (ι)(a)〉
u

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι) ∧ issl(FS (ι)(a))⇒ fs(FS ) ∗ ret = FS (FS (ι)(a))〉
u return eaccess x(ι, a)

u return enoent(ι, a)

u return enotdir(ι)

We distinguish the success case into three sub-cases based on the type file the links is pointing to. In the

first case, an existing link to a directory is followed only if the process has the execute capability. In the

second and third cases permissions are not checked. Specifically, the second case applies to a regular

file link, at which point path resolution stops and some other action is subsequently performed on the

file. It is the responsibility of the subsequent action to check that the process has the appropriate

privileges. The third case covers symbolic links, at which point path resolution restarts with the

symbolic-link path. Thus permissions will be checked for the symbolic-link path during its resolution.

The additional error case, eaccess x, is defined as follows:

let eaccess x(ι, a) ,

A

FS ,Π.

〈
fs(FS ) ∧ isdir(FS (ι)) ∗ fap(Π) ,

a ∈ FS (ι) ∧ isdir(FS (ι)(a)) ∧ ¬ix(Π(FS (ι)(a)))⇒ fs(FS ) ∗ fap(Π) ∗ ret = EACCESS

〉

When the process does not have execute permission on the directory the link points to, the EACCESS

error is returned.

Consider the case of the unlink operation. After a successful path resolution, we want to remove a

link from the resolved directory with either link delete or link delete notdir. This entails writing

to the directory, and therefore the process is required to have a write permission for it. We encode
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the test for this permission as the following auxiliary predicate:

iw(fuid , fgid , bits) , (S IWUSR ∈ bits ∧ fuid = uid)

∨ (S IWGRP ∈ bits ∧ fgid ∈ gids)

∨ (S IWOTH ∈ bits)

To account for the permission check, we redefine link delete and link delete notdir as follows:

let link delete(ι, a) ,

A

FS ,Π.

〈
fs(FS ) ∧ isdir(FS (ι)) ∗ fap(Π) ,

a ∈ FS (ι) ∧ iw(Π(ι))⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ fap(Π) ∗ ret = 0

〉
u return eaccess w(ι)

u return enoent(ι, a)

u return enotdir(ι)

let link delete notdir(ι, a) ,

A

FS ,Π.

〈
fs(FS ) ∧ isdir(FS (ι)) ∗ fap(Π) ,

isfile(FS (ι)(a)) ∧ iw(Π(ι))⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ fap(Π) ∗ ret = 0

〉
u return eaccess w(ι)

u return enoent(ι, a)

u return enotdir(ι)

u return err nodir hlinks(ι, a)

The success cases are amended with the permission check. The eaccess w error case returns the

EACCESS error when the check fails, and is defined as follows:

let eaccess w(ι) ,

A

Π. 〈fap(Π) , ¬iw(Π(ι))⇒ fap(Π) ∗ ret = EACCESS〉

POSIX additionally defines operations for modifying the ownership and permission bits of files.

Consider the example of the chmod operation. Informally, chmod(path, bits), resolves path and atom-

ically sets the permissions bits enabled for the resolved file to those in bits. Formally, we give the

following refinement specification to the operation:

chmod(path, bits)

v let cwd = get cwd inode(pid);

let r = resolve(path, cwd);

if ¬iserr(r) then return update perms(r , bits)

else return r fi

where update perms performs the atomic update of the permission bits for the resolve file and is
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defined as follows:
let update perms(ι, bits) ,

A

Π. 〈fap(Π) , iu(Π(ι))⇒ fap(Π[ι 7→ bits]) ∗ ret = 0〉
u eperm u(ι)

Updating the permission bits is allowed only if the process is running with a user identifier matching

the owner of the file, or with one of its group identifiers matching the group of the file. We encode

this permission check with the following auxiliary predicate:

iu(fuid , fgid ,mode) , uid = fuid ∨ fgid ∈ gids

The eperm u error case returns the EPERM error, if the permission check fails, as defined below:

let eperm u(ι) ,

A

Π. 〈fap(Π) , ¬iu(Π(ι))⇒ fap(Π) ∗ ret = EPERM〉

6.3.3. Threads and Processes

POSIX is a standard for mulit-process operating systems, where processes are running concurrently

and each process may have concurrent threads of execution. In the previous sections we have been

implicit about this distinction. We will now introduce what this formally means within the context of

our specification language.

Every process, and consequently every thread, shares the same file system. On the other hand,

every process has its own heap memory, as well as process based state associated with the file system,

such as file descriptors. We will refer to the combination of heap memory, and process based state

associated with the file system as the process heap. The process heap is shared by all threads within

the same process. Every process has a unique process identifier (an integer) that is bound to the

variable pid. Note that this variable is process-local: it is bound to a different value in different

processes.

In order to distinguish between resources of different processes heaps, every process-heap predicate

is indexed by a process identifier. For example, the heap cell predicate x
pid7→ n, asserts the existence of

a heap cell with address x and value n within the process heap of the process with process identifier

pid . Note that in x
pid7→ n ∗ x

pid ′
7→ n, the heap cells are disjoint. Even though the heap cells have

the same address, they belong to a different process heap. We omit the process identifier when the

predicate is indexed by pid. For example, fd(fd ,−,−,−) , fd(fd ,−,−,−)pid, and thus the predicate

fd(fd ,−,−,−), asserts the existence of the file descriptor fd within the current process.

In section 6.1.1, we have used the parallel composition φ ‖ ψ, in the specifications of link and

rename. This composition is thread-parallel, where φ and ψ are threads of the same process. For

example, in

A

n ∈ N. 〈x 7→ n, x 7→ n+ 1〉 ‖

A

n ∈ N. 〈x 7→ n, x 7→ n+ 1〉, we have two threads, each

atomically incrementing the same heap cell.

For parallel processes, we introduce the process-parallel composition φ9ψ, where φ and ψ run as dif-

ferent processes. In φ and ψ, pid is bound to a different value. Therefore, in

A

n ∈ N. 〈x 7→ n, x 7→ n+ 1〉9

A

n ∈ N. 〈x 7→ n, x 7→ n+ 1〉, we have two processes, each incrementing a different heap cell.
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We encode the process-parallel composition φ9ψ in terms of thread-parallel composition as follows:

φ 9 ψ , ∃new pid . {P ∗ P (pid), pid 6= new pid ∗ P ∗ P (pid) ∗ P (new pid)}Ak ;

φ ‖ (λpid. ψ) new pid

Consider the first specification statement in the definition. Here, we use P (pid) to denote the resources

indexed by the process identifier pid , and we use P to denote resources that can be shared between

processes, such as the file system. The statement creates P (new pid) as a duplicate of the resources

of the current process P (pid). The process identifier new pid is chosen non-deterministically by the

existential quantification. Note that in the postcondition ensures that new pid 6= pid. In the subse-

quent thread-parallel composition the specification φ uses pid as the process identifier. Effectively, φ

takes the role of the parent process. In order for ψ to inherit the new process identifier new pid , we

wrap it a function that binds its argument to pid and apply it to new pid . Thus, within this function

pid is bound to a different value than that in φ. Finally, since in both φ and ψ the current process

identifier variable is bound to a different value, each specification can only access P (pid) for their

value of pid. This guarantees isolation between process based resources.

In this setting, process-based resources, such as heap cells, are abstract predicates implemented in

terms of concurrent indexes. For example, in the case of heap cells we can use a concurrent index

mapping process identifiers to normal heaps: M : N fin
⇀ Heap. Let Map(M) be an abstract predicate

asserting the existence of the index M. Then, we can implement a process-heap predicate as follows:

x
pid7→ y , ∃M.Map(M) ∧M(pid) = x 7→ y

Abstract specifications for concurrent indexes using abstract predicates such as Map, as well as an

implementation to the concurrent skip-list of java.util.concur have been studied using TaDA [98].

Since the specification statements developed in this dissertation are based on TaDA it should be

possible to use the same specifications here as well.

6.4. Conclusions

We have presented our approach for developing a concurrent specification for POSIX file-system oper-

ations and reasoning about client applications that use the file system, demonstrating that it success-

fully tackles the challenges we identified in chapter 2, section 2.3: operations perform multiple atomic

actions, they exhibit high levels of non-determinism and that the file system is a public namespace.

Our approach is based on a specification programming language with which file-system operations

are specified as specification programs. The building blocks of such specification programs are the

atomic and Hoare specification statements for specifying atomic and non-atomic actions respectively.

Atomic and Hoare specification statements are based on the atomic and Hoare triples of the TaDA [30]

program logic respectively. Specification statements can be composed to form more complex specifica-

tions via sequential, non-deterministic and parallel composition, which allow us to specify operations

that perform sequences of atomic actions and exhibit non-deterministic behaviour.

Reasoning about our specifications is facilitated by a refinement calculus for proving contextual

refinements between specification programs. Thus our approach can be viewed as a combination of
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TaDA specifications and reasoning with contextual refinement. We have demonstrated how protocols

describing the concurrent interaction between threads in the form of TaDA shared regions and guards

are used to reason about client programs of the file system. In particular, the same mechanism is used

to define context invariants that constraint the actions of the environment such that we can derive

useful specifications for clients within the public-namespace nature of the file system.

We have informally introduced the key features of our specification language and its associated

refinement calculus through select examples of specifying core file-system operations in section 6.1

and reasoning about a lock-file client module in section 6.2. The informal introduction provides the

necessary intuition for the formal development of the language and calculus in chapter 7.

In order to focus on the challenges of formalising the concurrent behaviour in section 6.1 we focused

on simplified core fragment of POSIX file-system operations, using simplified paths and ignoring fea-

tures such as file-access permissions. The core fragment covers core operations for manipulating links,

directories and regular file I/O. The complete specification of this fragment is given in appendix A. In

section 6.3 we demonstrate how our specification can be extended to larger fragments, including sym-

bolic links, relative paths, file-access permissions and reasoning about threads of different processes.

Sections 6.1 and 6.3 highlight a significant advantage of our approach: its flexibility. Our specifica-

tions can be easily adapted to account for different interpretations of the text in the POSIX standard,

to capture implementation specification behaviour, or even to update the specification to future revi-

sions of the standard. The granularity of atomicity in our specifications can be easily adapted. For

example, in section 6.1.2 we discussed how directory creation can be split into multiple atomic actions

and reciprocally coalesced into a single atomic step, as is expressed by mumbling in the refinement

calculus. Following this pattern, more atomic steps can be added or removed from the specification

whenever required. Furthermore, the atomicity guarantees offered by file-system operations, or indi-

vidual steps comprising such operations, are adaptable. Atomic specification statements can be used

to specify actions that are observed to update the file-system state atomically. In the absence of any

atomicity guarantees, Hoare specification statements can be used to specify non-atomic operations. As

discussed in section 6.1.3 using the example of I/O operations, the general form of atomic specification

statements even allows us to specify actions that atomically update only some parts of the state and

non-atomically update other parts. The laws of our refinement calculus easily allow us to adapt an

atomic specification, choosing which parts of the state are updated atomically and which are not.

In summary, our approach is not only capable of giving a formal specification of POSIX file-system

operations that faithfully captures their concurrent behaviour, but it can easily adapt to future changes

in the POSIX standard and its implementations.
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7. Atomicity and Refinement

We now present the technical details behind the specification and reasoning approach introduced in

chapter 6. In section 7.1 we define the syntax of our core specification language and TaDA assertion

used therein. The core specification language does not define atomic specification statements as a

primitive. Instead, we define the primitive atomic specification statement, of the form a(∀~x. P, Q),

which specifies an atomic action in terms of primitive atomicity, in a similar style to Turon and Wand’s

atomic actions and linearisability. In section 7.2 we define a general state model and the semantics of

TaDA assertions. In section 7.3 we define operational and denotational semantics for our specification

language and in section 7.4 we define the semantics of contextual refinement and present our soundness

proof. In section 7.5 we introduce general refinement laws as well as refinement laws for primitive

atomicity. In section 7.6 we encode atomic specification statements in terms of our core specification

language for primitive atomicity and give refinement laws for abstract atomicity. Therefore, we develop

abstract atomicity as a derived construct. Finally, in section 7.7 we define the syntactic constructs

used in the specification given in chapter 6.

7.1. Specification Language

Specification programs and the assertions used in specification statements share the same variable

environment. We do not distinguish between program variables and logical variables. For the general

theory of atomicity and refinement that we develop in this chapter, we only use a basic set of boolean

and integer values and associated expressions. We leave these definitions open-ended and applications

of our theory, such as the POSIX specification, can extend these as appropriate.

Definition 14 (Variables and values). Let Var be a countable set of variables. Let Val be the set of

values assigned to variables, at least comprising booleans, integers and the unit value, 1 , {()}:

Val , B ∪ Z ∪ 1 . . .

Variable stores, ρ ∈ VarStore , Var→ Val, assign values to variables.

The variable environment defined above is basic, and will require extensions when defining the

semantics of assertions and specification programs. This is because some variables, for functions and

recursion, will receive special treatment.

93



Definition 15 (Expressions). Expressions, e, e′ ∈ Expr, are defined by the grammar:

Expressions e, e′ ::= v value v ∈ Val

| x variable x ∈ Var

Boolean Expressions | ¬e negation

| e ∧ e′ conjunction

| e ∨ e′ disjunction

| e = e′ equality

| e < e′ inequality

Integer Expressions | e+ e′ addition

| e− e′ subtraction

| e · e′ multiplication

| e÷ e′ division

| . . .

Here we have chosen the ÷ for division, to distinguish from the path separator used in POSIX.

Expressions have a standard, albeit partial, denotational semantics.

Definition 16 (Expression evaluation). Expression evaluation, J−K− : VarStore → Expr ⇀ Val,

is defined as a partial function over expressions parameterised by a variable store:

JvKρ , v

JxKρ , ρ(x )

J¬eKρ , ¬ JeKρ if JeKρ ∈ B
q
e ∧ e′

yρ
, JeKρ ∧

q
e′

yρ
if JeKρ ∈ B and

q
e′

yρ ∈ B
q
e ∨ e′

yρ
, JeKρ ∨

q
e′

yρ
if JeKρ ∈ B and

q
e′

yρ ∈ B
q
e = e′

yρ
, JeKρ =

q
e′

yρ
q
e < e′

yρ
, JeKρ <

q
e′

yρ
if JeKρ ∈ Z and

q
e′

yρ ∈ Z
q
e− e′

yρ
, JeKρ −

q
e′

yρ
if JeKρ ∈ Z and

q
e′

yρ ∈ Z
q
e · e′

yρ
, JeKρ ·

q
e′

yρ
if JeKρ ∈ Z and

q
e′

yρ ∈ Z
q
e÷ e′

yρ
, JeKρ ÷

q
e′

yρ
if JeKρ ∈ Z and

q
e′

yρ ∈ Z \ {0}

In all other cases, the result is undefined.

When the denotation of an expression is undefined, a fault is triggered in the semantics of our

specification language.

For the purposes of our POSIX fragment specification we extend the basic expressions further with

additional operators and values. An example of this are sets and the standard set operators such

as union and intersection. Sets have many uses in our POSIX specification, such as a more abstract

treatment of flag arguments instead of low-level bitwise manipulation as seen in chapter 6, section 6.1.3.

We discuss these extensions in detail in appendix A.

Our assertion language is based on TaDA [30, 28], extending intuitionistic separation logic [81] with
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regions, guards, atomicity tracking resources and abstract predicates.

Definition 17 (Assertion Language). Assertions, P,Q,R ∈ Assrt, are defined by the grammar:

Assertions P,Q,R ::= false falsehood

| true truthfulness

| P ∗Q separating conjunction

| P ∧Q conjunction

| P ∨Q disjunction

| ¬P negation

| ∃x. P existential quantification

| ∀x. P universal quantification

| P ⇒ Q implication (material)

| e 7→ e′ heap cell at e storing e′

| tkα(~e, e′) shared region α, of type t, region level k,

parameterised by ~e and with abstract state e′

| Ir(tkα(~e, e′)) shared-region interpretation

| [G(~e)]α guard G for region α, parameterised by ~e

| α Z⇒ � atomicity tracking resource for region α,

allowing atomic update

| α Z⇒ ♦ atomicity tracking resource for region α,

not allowing atomic update

| α Z⇒ (e, e′) atomicity tracking resource for region α,

witnessing an atomic update from e to e′

| ap(~e) application of abstract predicate ap to parameters ~e

| Ia(ap(~e)) interpretation of abstract predicate

| prede application of concrete predicate pred to e

| e expression

Concrete Predicates pred ::= λx. P non-recursive predicate

| µX. λx. P recursive predicate

| X recursion variable

Recursion variables, X ∈ AssrtRecVars, are taken from a countable set, disjoint from Var. The

binding precedence, from strongest to weakest, is: ¬, ∗,∧,∨,∀,∃,⇒.

The specification language we informally presented in chapter 6 builds on atomic specification

statements of the form,

A

x ∈ X. 〈P (x), Q(x)〉, and Hoare specification statements of the form {P, Q}.
However, the reality is more complicated. The atomic and Hoare specification statements are not

primitive constructs of the specification language. The primitive construct for specifying an atomic

action is the primitive atomic statement of the form, a(∀~x. P, Q)Ak . Intuitively this specifies a physical

atomic action on the shared state. Examples of such actions include compare-and-swap (CAS), and

atomic reads and writes to heap cells. In contrast to the atomic specification statement, it always

tolerates all possible interference; the specified action will always update the state of the precondition

to the state of the postcondition atomically, irrespective of actions taken by the environment.
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We define a core specification language, based on the primitive atomic statement. As we will see

in section 7.6, the atomic and Hoare specification statements are defined in terms of sequences of

primitive atomic statements.

Definition 18 (Specification Language). The language of specifications, L, is defined by the following

grammar:

Specifications φ, ψ ::= φ;ψ Sequential composition

| φ ‖ ψ Parallel composition

| φ t ψ Angelic choice

| φ u ψ Demonic choice

| ∃x. φ Existential quantification

| let f = F in φ Function binding

| Fe Function application

| a(∀~x. P, Q)Ak Primitive atomic statement

Functions F ::= f Function variable

| A Recursion variable

| Fl Function literal

Function Literals Fl ::= µA. λx. φ Recursive function

| λx. φ Function

where k ∈ RLevel and A ∈ AContext are defined in section 7.2. Recursion variables, A ∈
RecVars, and function variables, f ∈ FuncVars, are taken from disjoint countable sets, both

disjoint from Var, and cannot be bound nor free in P or Q. Predicate-recursion variables, X ∈
AssrtRecVars, are also disjoint from RecVars and FuncVars and cannot be bound nor free in

φ. The operator binding precedence, from strongest to weakest, is: Fe, µA. , λx. ,u,t,∃x. ; , ‖, with

parentheses used to enforce order.

The specification language includes traditional programming constructs including sequential compo-

sition φ;ψ, parallel composition φ ‖ ψ, together with first-order functions and recursion. We include

additional constructs to account for specification non-determinism. Angelic choice, φ t ψ, behaves

either as φ or as ψ. Demonic choice, φuψ, behaves as φ and ψ. The unlink specification in section 6

is an example that uses both angelic and demonic non-determinism. Existential quantification, ∃x. φ,

behaves as φ for some choice of x.

In a(∀~x. P, Q)Ak , the binder ∀~x. binds variables across the precondition and postcondition. Free

variables, anywhere in the specification language, are implicitly universally quantified by the context.

The subscript k is analogous to the subscript in region assertions in definition 17. The region level is

simply an integer which signifies that only regions below level k may be replaced by their interpretation

(opened) in the refinement of a specification statement. Their purpose is to ensure that we cannot

open the same region twice during a refinement derivation, as this could unsoundly duplicate resources

encapsulated by the region. The atomicity context, A, defines the atomic updates performed on

regions. In all our examples, we only use an atomicity context to define an atomic update to a single
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shared region. In general, we allow the atomicity context to update multiple regions with one atomic

update per region.

We keep the specification language minimal. For simplicity and to keep specifications declarative,

variables are immutable. Atomic and Hoare specification statements are defined in terms of this core

specification language in section 7.6. Additional programming constructs used in the specifications

given in chapter 6 are easily encoded. We formally define the encodings of these syntactic features in

section 7.7.

7.2. Model

Our assertions about the shared state are based on those of TaDA. The same applies to the models

of assertions which we develop here. Therefore, the contents of this chapter are heavily based on the

model defined in the technical report of TaDA [31] and da Rocha Pinto’s thesis [28].

Regions, guards, atomicity tracking resources, region levels, atomicity contexts and abstract pred-

icates are merely instrumentation – also referred to as ghost state in the literature – of the concrete

shared state, the purpose of which to enable scalable, modular and compositional reasoning for con-

current programs. We take the concrete state shared between threads to be the heap memory.

Definition 19 (Heaps). Let Addr be the set of addresses such that Addr ⊆ Val. A heap, h ∈
Heap , Addr

fin
⇀ Val, is a finite partial function from addresses to values. Heaps form a separation

algebra (Heap,], ∅), where ] is the disjoint union of partial functions and ∅ is the partial function

with an empty domain. Heaps are ordered by resource ordering, h1 ≤ h2
def⇐⇒ ∃h3. h1 ] h3 = h2.

Recall from chapter 4, that when we refer to separation algebras, we mean separation algebras in the

style of the Views framework [35]. These are different from the separation algebras initially introduced

by Calcagno et al. [25], in that they do not require the cancellative property and allow multiple units.

Even though we use heaps for concrete shared states, any separation algebra with resource ordering

can be used instead. All instrumentation is eventually reified to concrete states.

Our POSIX specification is using abstract predicates to describe the state of the file system. For

example we model the file system as a graph FS ∈ FS and use the abstract predicate fs(FS ) to

assert that the state of the file system is FS . This difference between the concrete states in the

semantics of our specification language and abstract states in our POSIX specification is intentional.

This will allow us to refine the POSIX specification to various heap based implementations in the

future, something which would not have been possible if we used file-system graphs as the concrete

states of the specification language.

As mentioned in chapter 6, guard resources represent capabilities to atomically update the state of

a shared region. Guard resources can be taken from any user-defined separation algebra [25], with

some additional properties that we require of guards. Therefore, we refer to such separation algebras

as guard algebras.

Definition 20 (Guards and Guard Algebras). Let Guard be a set containing all the possible guards.

A guard algebra ζ = (G, •,0,1) comprises:

• a guard carrier set G ⊆ Guard,
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• a partial, binary, associative and commutative operator • : G × G ⇀ G,

• an identity element, 0 ∈ G, such that ∀x ∈ G.0 • x = x,

• a maximal element, 1 ∈ G, such that ∀x ∈ G. x ≤ 1, where x ≤ y def⇐⇒ ∃z. x • z = y.

We denote the set of all guard algebras as GAlg. A guard algebra is a separation algebra with a

single unit, 0. Given guard algebra ζ ∈ GAlg we denote the carrier set of guards with Gζ , the identity

(zero) guard with 0ζ , the maximal guard with 1ζ and the resource ordering ≤ζ . Let g1, g2 ∈ Gζ . We

use the notation g1#g2 to denote the fact that g1 • g2 is defined.

Regions denote shared abstract state. Each region is associated with a labelled transition system,

the transitions of which define how the abstract state of the region can be atomically updated. Each

transition is labelled by a guard. A thread has the capability to update the abstract state of a region,

as long as it owns the guard resource that “guards” the transition by which the update is allowed.

Definition 21 (Abstract States and Transition Systems). Let AState be a set containing all the

possible region abstract states. Let ζ ∈ GAlg. A guard-labelled transition system, T : Gζ
mono→

P(AState×AState), is a function mapping guards to abstract state binary relations. The mapping

is required to be monotone with respect to guard resource ordering (≤ζ) and subset ordering; having

more guard resources permits more transitions. The set of all ζ-labelled transition systems is denoted

by Astsζ .

Regions have types that associate regions of the same type with a guard algebra and a guard-labelled

transition system.

Definition 22 (Abstract Region Types). Let RTName be the set of region type names. An abstract

region typing,

T ∈ ARType , RTName→
⊎

ζ∈GAlg

{ζ} ×Astsζ

maps region type names to pairs of guard algebras and guard-labelled transition systems. Let t ∈
RTName. The guard labelled transition system of the region type name t is denoted by Tt.

Following TaDA, as well as other separation logics for fine-grained concurrency [36, 88], we use

abstract predicates as mechanism for data abstraction.

Definition 23 (Abstract Predicates). Let APName be the set of abstract predicate names. An ab-

stract predicate ap ∈ APName×Val∗, comprises an abstract predicate name and a list of parameters.

An abstract predicate bag, b ∈APBag,Mfin (APName×Val∗), is a finite multiset of abstract pred-

icates. Abstract predicate bags form a separation algebra, (APBag,∪, ∅), where ∪ is the multiset union

and ∅ is the empty multiset. Abstract predicate bags are ordered by the subset order ⊆.

Regions may refer to other regions and circularities may arise. This is a problem for the refinement

laws that allow us to open a region by replacing it with its interpretation. During the derivation of a

refinement, if there is a circularity, then the refinement laws could be used to open the same region

twice. This is unsound as it would replicate the resource encapsulated by the region. To prevent this

unsoundness, we associate each region and specification statement with a region level.
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Definition 24 (Region Levels). A region level, k ∈ RLevel , N, is a natural number. Levels are

ordered by the ≤ ordering on natural numbers.

Intuitively, region levels track the nesting depth of regions. The region level associated with a region

indicates how deeply the region is nested. The region level associated with a specification statement

indicates how far we can look into regions. In order to open a region, we require that the region level

associated with the region is less than the region level associated with the specification statement.

When a region is opened, the region level associated with the specification statement containing it is

decreased. Then, if the same region is encountered again, its region level will be greater that than of

the specification statement, and thus it will not be possible to open it again.

Each region has a unique identifier, which is used to identify the region’s type, region level and

parameters.

Definition 25 (Region Assignments). Let RId be a countable set of region identifiers. A region

assignment, r ∈ RAss , RId
fin
⇀ RLevel×RTName×Val∗, is a finite partial function from region

identifiers to region levels and parameterised region type names. Region assignments are ordered by

extension ordering: r1 ≤ r2
def⇐⇒ ∀α ∈ dom(r1). r2(α) = r1(α).

In the following definitions, we assume a fixed abstract region typing, T ∈ ARType. Each region

in a region assignment is associated with guards from the guard algebra defined in the region typing.

Definition 26 (Guard Assignments). Let r ∈ RAss be a region assignment. A guard assignment,

γ ∈ GAssnr ,
∏

α∈dom(r)

GT(r(α)↓2)↓1

is a mapping from the regions declared in the region assignment r to the guards of the appropriate type

for each region. The guards assigned to a region with region identifier α are denoted by γ(α). Guard

assignments form a separation algebra, (GAssnr, •, λα.0T(r(α)↓2)↓1), where • is the pointwise lift of

guard composition:

γ1 • γ2 , λα. γ1(α) • γ2(α)

For γ1 ∈ GAssnr1 and γ2 ∈ GAssnr2 with r1 ≤ r2, guard assignments are ordered extensionally:

γ1 ≤ γ2
def⇐⇒ ∀α ∈ dom(γ1). γ1(α) ≤ γ2(α)

Each region in a region assignment is associated with an abstract state: the abstract state of the

region.

Definition 27 (Region States). Let r ∈ RAss be a region assignment. A region state

β ∈ RStater , dom(r)→ AState

is a mapping from the regions declared in r to abstract states. For β1 ∈ RStater1 and β2 ∈ RStater2,

with r1 ≤ r2, region states are ordered extensionally:

β1 ≤ β2
def⇐⇒ ∀α ∈ dom(β1). β1(α) = β2(α)
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Hitherto, we have given the semantic definitions required for regions. Now we proceed to develop the

semantics definitions for the instrumented states that constitute the models of the assertion language

of definition 17. We call these instrumented states worlds.

Definition 28 (Worlds). A world

w ∈World ,
⊎

r∈RAss

({r} ×Heap× APBag ×GAssnr ×RStater)

consists of a region assignment, a heap, an abstract predicate bag, a guard assignment and a region

state.

Worlds are composed, provided they agree on the region assignment and region state, by compos-

ing the heap, abstract predicate bag and guard assignment components in their respective separation

algebras. Worlds form a multi-unit separation algebra (World, ◦, emp), where

(r, h1, b1, γ1, β)◦ (r, h2, b2, γ2, β) , (r, h1]h2, b1∪ b2, γ1 •γ2, β) emp ,
{

(r, ∅, ∅, λα.0T(r(α)↓2)↓1 , β)
}

Worlds are ordered by product order:

(r1, h1, b1, γ1, β1) ≤ (r2, h2, b2, γ2, β2)
def⇐⇒ r1 ≤ r2 ∧ h1 ≤ h2 ∧ b1 ≤ b2 ∧ γ1 ≤ γ2 ∧ β1 ≤ β2

Thus, if w1 ≤ w2, we can get w2 from w1 by adding new regions, with arbitrary associated type name

and state, and adding new heap, abstract predicates and guards.

Another part of the instrumentation is the atomic tracking resource associated with a region. This

can be in one of three states denoting the ability or inability to perform an atomic update and if the

atomic update has or has not yet taken effect. These three states form a separation algebra.

Definition 29 (Atomic Tracking Component Separation Algebra). Let � denote the right to perform

an update to the abstract state of a region. Let ♦ denote the absence of a right to perform an update

to the abstract state of a region. Let (x, y) ∈ AState×AState denote the update performed on the

abstract state of a regions, from state x to state y. The atomic tracking component separation algebra

is defined as:

((AState×AState) ] {�,♦} , �, (AState×AState) ] {♦})

where � is defined by:

� �♦ = � = ♦ � � ♦ �♦ = ♦ (x, y) � (x, y) = (x, y)

and undefined otherwise. Resource ordering on atomic tracking components is defined by the following

two rules:

∀k ∈ (AState×AState) ] {�,♦} . k ≤ k ♦ ≤ �

We now extend the worlds of definition 28 with an environment mapping region identifiers to atomic

tracking components.
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Definition 30 (Worlds with Atomic Tracking). Let R ⊆fin RId, be a finite set of region identifiers.

A world with atomic tracking, w ∈ AWorldR , World × (R → (AState×AState) ] {�,♦}),
consists of a world with a mapping from regions in R to atomic tracking resources.

Let d1, d2 ∈ R → (AState×AState) ] {�,♦}. The composition of atomic tracking components

is lifted to maps:

d1 � d2 , λα. d1(α) � d2(α)

Maps of atomic tracking components form the following separation algebra:

((R → (AState×AState) ] {�,♦}) , �, ∅)

They are ordered by extension ordering: d1 ≤ d2
def⇐⇒ ∀α ∈ dom(d1). d2(α) = d1(α). Consequently,

worlds with atomic tracking components form a separation algebra, (AWorldR, ◦, empR), where:

(w1, d1) ◦ (w2, d2) , (w1 ◦ w2, d1 � d2) empR = (emp, ∅)

Worlds with atomic tracking are ordered by product order:

(w1, d1) ≤ (w2, d2)
def⇐⇒ w1 ≤ w2 ∧ d1 ≤ d2

We consider that World = AWorld∅, and generally use the term world to refer to a world

with (possibly empty) atomic tracking, unless explicitly stated otherwise. Let w ∈ AWorldR be a

world. We denote its region assignment component with rw, its heap component with hw, its abstract

predicates component with bw, its guard assignment component with γw, its region states component

with βw, and its atomicity tracking components as dw.

Definition 31 (World Predicates). Let R ⊆fin RId, be a finite set of region identifiers. A world

predicate, p, q ∈ WPredR , P↑(AWorldR), is a set of worlds that is upwards closed with respect

to the world ordering: ∀w ∈ p.∃w′. w ≤ w′ ⇒ w′ ∈ p. Composition of world predicates is obtained by

lifting the composition of worlds1:

p ∗ q ,
{
w | ∃w′ ∈ p, w′′ ∈ q. w = w′ ◦ w′′

}
World predicates form a separation algebra, (WPred, ∗,World).

Definition 32 (Atomicity Context). An atomicity context, A ∈ AContext , RId
fin
⇀ AState ⇀

P(AState), is a finite partial mapping from region identifiers to partial, non-deterministic abstract

state transformers.

The atomicity context records the abstract atomic update that is to be performed on the shared

region and is used while proving a refinement of an atomic specification statement. This has implica-

tions on both how a thread can perform the update (guarantee) and what the environment is allowed

to do on the same region (rely). Specifically, the environment is allowed to update a region for which

it owns a guard, in any way allowed by the transition system for that guard. The guard owned by

1The result of the composition is upwards closed: any extension to the composition of two worlds can be tracked back
and applied to one of the components.
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the environment has to be compatible with the guard owned by the thread. If an atomic update is

pending in the atomicity context, then the environment is only allowed to update the region to those

states stated in the atomicity context. Environment interference is abstracted by the rely relation.

Definition 33 (Rely Relation). Let A ∈ AContext be an atomic context, with R = dom(A), the

rely relation, RA ⊆ AWorldR × AWorldR, is the smallest reflexive and transitive relation that

satisfies the following rules:

g#g′ (s, s′) ∈ Tt(g′)∗
(
d(α) ∈ {�,♦} ⇒ s′ ∈ dom(A(α))

)
(r[α 7→ (k, t, ~v)], h, b, γ[α 7→ g], β[α 7→ s], d)RA(r[α 7→ (k, t, ~v)], h, b, γ[α 7→ g], β[α 7→ s′], d)

(s, s′) ∈ A(α)

(r[α 7→ (k, t, v)], h, b, γ, β[α 7→ s], d[α 7→ ♦])RA(r[α 7→ (k, t, v)], h, b, γ, β[α 7→ s′], d[α 7→ (s, s′)])

Consider the first rule. It states that the environment can update a region, if it owns a guard g′

for which the update is allowed and as long as that guard is compatible with the thread’s own guard

g. If there is a pending atomic update for the region in the atomicity tracking component, then the

environment is restricted to update the region to a state within one of those specified in the atomicity

context. Now consider the second rule. It states that if the thread owns � (the thread has not yet

performed an update), the environment can update the state in accordance to the atomicity context.

Interference is explicitly confined to shared regions and atomicity tracking resources. In addition,

extending the atomicity context restricts the interference.

Definition 34 (Guarantee Relation). Let R ⊆ RId, be a set of region identifiers. Let k ∈ RLevel

be a region level. Let A ∈ AContext be an atomicity context. The guarantee relation, Gk;A⊆
AWorldR ×AWorldR, is defined as:

w Gk;A w
′ def⇐⇒

∀α. (∃k′ ≥ k. rw(α) = (k′,−,−))⇒ βw(α) = βw′(α)

∧ ∀α ∈ dom(A).

(
(dw(α) = dw′(α) ∧ βw(α) = βw′(α))

∨ (dw(α) = � ∧ dw′(α) = (βw(α), βw′(α)) ∧ (βw(α), βw′(α)) ∈ A(α))

)

The guarantee relation enforces that regions with level k or higher cannot be modified. It also

enforces that regions mentioned in the atomicity context can only be updated according to what is

specified in the atomicity context.

Definition 35 (Stable World Predicates and Views). Let A ∈ AContext, be an atomicity context.

A stable world predicate is a world predicate that is closed under the rely relation.

A ` p stable
def⇐⇒ RA(p) ⊆ p

Stable world predicates are referred to as views. The set of views, with atomicity context A, are

denoted by ViewA.

ViewA ,
{
p ∈WPreddom(A) | RA(p) ⊆ p

}
View is shorthand for View∅. If A′ is an extension of A, there is a coercion from ViewA to ViewA′,

by extending the atomicity tracking component for the additional regions in every possible way. That
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is, if p ∈ ViewA and q ∈ ViewA′, with A ≤ A′, then

p ≤ q def⇐⇒ ∀w ∈ p, w′ ∈ q. w ≤ w′

The least upper bound of a set of views with atomicity context A is denoted by tViewA.

Lemma 1. Stable world predicates are closed under ∗, ∪ and ∩:

A ` p stable ∧ A ` q stable⇒ A ` p ∗ q stable

A ` p stable ∧ A ` q stable⇒ A ` p ∪ q stable

A ` p stable ∧ A ` q stable⇒ A ` p ∩ q stable

In chapter 6, we have given examples of how regions are interpreted into the shared state they

encapsulated and how abstract predicates are interpreted to their implementation through respective

interpretation functions. We now formally define these interpretation functions.

Definition 36 (Region Interpretation). A region interpretation

Ir ∈ RInterp , (RLevel×RTName×Val∗)×RId×AState→ Assrt

associates an assertion with each abstract state of each parameterised region.

Definition 37 (Abstract Predicate Interpretation). An abstract predicate interpretation

Ia ∈ APInterp , APName×Val∗ → Assrt

associates an assertion with each abstract predicate.

We give a denotational semantics to the assertions of definition 17 in terms of world predicates

within a given atomicity context. We require assertions to be stable and thus the denotations of

assertions are required to be views. To ensure the stability of the denotations we use the following

auxiliary predicate:

stab(A, p) ,

p if p ∈ ViewA

∅ otherwise

Let A ∈ AContext be an atomicity context. We extend the basic values of definition 14 with

views and extend the variable stores analogously. Furthermore, to define the denotation of recursive

predicates, we extend the variable stores so that predicate-recursion variables are mapped to functions

from values to views.

ValA , Val∪ViewA VarStoreA , Var→ ValA] (AssrtRecVars→ (Val→ ViewA))

Definition 38 (Assertion Interpretation). Let A ∈ AContext be a given atomicity context. The

assertion interpretation function, L−M−A : Assrt→ VarStoreA → ViewA ∪ (Val→ ViewA), maps
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assertions to views, or functions from values to views, within a variable store.

LfalseMρA , ∅

LtrueMρA , tViewA

LP ∗QMρA , LP MρA ∗ LQMρA
LP ∧QMρA , LP MρA ∩ LQMρA
LP ∨QMρA , LP MρA ∪ LQMρA

L¬P MρA , (tViewA) \ LP MρA

L∃x. P MρA ,
⋃

v∈Val
LP Mρ[x 7→v]

A

L∀x. P MρA ,
⋂

v∈Val
LP Mρ[x 7→v]

A

LP ⇒ QMρA ,
(
(tViewA) \ LP MρA

)
∪ LQMρA

Le 7→ e ′MρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ hw(JeKρ) = Je′Kρ
})

Ltkα(~e, e′)MρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ rw(α) =
(
k, t,
−−→
JeKρ

)
∧ βw(α) = Je′Kρ

})
LIr(tkα(~e, e′))MρA , LIr((k, t,

−−→
JeKρ), α,

q
e′

yρ
)MρA

L[G(~e)]αMρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ G
(−−→
JeKρ

)
≤ γw(α)

})
Lα Z⇒ �MρA , stab

(
A,
{
w ∈ AWorlddom(A)

∣∣∣ dw(α) = �
})

Lα Z⇒ ♦MρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ dw(α) = ♦ ∨ dw(α) = �
})

Lα Z⇒ (e, e′)MρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ dw(α) = (JeKρ , Je′Kρ) ∧ dw(α) ∈ A(α)
})

Lap(~e)MρA , stab
(
A,
{
w ∈ AWorlddom(A)

∣∣∣ (ap,
−−→
JeKρ) ∈ bw

})
LIa(ap(~e))MρA , LIa(ap,

−−→
JeKρ)MρA

Lλx . P MρA , λv. LP Mρ[x 7→v]
A

LµX. λx. P MρA ,
⋂{

wf ∈ Val→ ViewA

∣∣∣ Lλx. P Mρ[X 7→wf ]
A ≤ wf

}
LXMρA , ρ(X)

Lpred(e)MρA , stab
(
A, LpredMρA(JeKρ)

)
LeMρA ,


tViewA if JeKρ = true

JeKρ if JeKρ ∈ ViewA

∅ otherwise

Note that on their own, concrete predicates are interpreted as functions from values to views.

Functions from values to views, Val→ ViewA, are ordered by pointwise extension of the ordering

on ViewA. Together with the following lemma, this guarantees the existence of the least fixed point

for recursive predicates.

Lemma 2. For all assertions P and recursion variables X, the function, LP Mρ[X 7→−]
A : (Val →

ViewA)→ ViewA, is monotonic.
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Proof. By straightforward induction over P .

Assertions are interpreted as views. These include all the instrumentation in terms of regions,

guards, atomicity tracking components and abstract predicates. We now proceed to define the means

by which all of the aforementioned instrumentation is reified to concrete heaps.

Definition 39 (Region Collapse). Let R ⊆ RId. Let Ir ∈ RInterp be a given region interpretation.

Given a region level k ∈ RLevel, and atomicity context, A ∈ AContext, the region collapse of a

world w ∈ AWorldR, is a set of worlds given by:

w↓k;A,
{
w ◦ (w′, ∅)

∣∣∣ w′ ∈ ~{α | ∃k′<k.rw(α)=(k′,−,−)}LIr(rw(α), α, βw(α))M∅A
}

Region collapse is lifted to world predicates as expected: p↓k;A,
⋃
w∈pw↓k;A.

Definition 40 (Abstract Predicate Collapse). The one-step abstract predicate collapse of a world is

a set of given worlds given by:

(r, h, b, γ, β, d)�1;A,
{

(r, h, ∅, γ, β, d) ◦ (w, ∅)
∣∣∣ w ∈ ~ap∈bLIa(ap)M∅A

}
This is lifted to world predicates as expected: p �1;A,

⋃
w∈pw �1;A. The one-step collapse gives rise

to multi-step collapse: p �n+1;A, (p�n;A) �1;A. The abstract predicate collapse of a predicate (view),

applies the multi-step collapse until all abstract predicates are collapsed:

p�A, {w | ∃n.w ∈ p�n;A ∧ bw = ∅}

The above approach to interpreting abstract predicates effectively gives a step-indexed interpretation

to the predicates. The concrete interpretation of a predicate is given by the finite unfoldings of the

abstract predicate collapse. If a predicate cannot be made fully concrete by finite unfoldings, then it’s

interpreted as false.

Definition 41 (Reification). The reification operation on worlds collapses the regions and the abstract

predicates, and then only retains the heap component:

TwUk;A ,
{
hw′ | w′ ∈ w↓k;A �A

}
The operation is lifted to world predicates as expected: TpUk;A ,

⋃
w∈pTwUk;A.

7.3. Operational Semantics

The semantics of primitive atomic statements are defined via a state transformer on concrete states:

the heaps of definition 19.

Definition 42 (Atomic Action State Transformer). Given an atomicity context, A ∈ AContext,

and region level, k ∈ RLevel, the atomic action state transformer, a(−,−)Ak (−) : ViewA×ViewA →
Heap→ P(Heap), associates precondition and postcondition views to a non-deterministic state trans-
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former:

a(p, q)Ak (h) ,{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ p ∗ r.
h ∈ TwUk;A ∧ ∃w′. w Gk;A w

′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ q ∗ r

}

Given a starting heap, h ∈ Heap, which is contained in the reification of p composed with all

possible frames, a(p, q)Ak (h) returns the set of heaps that result from the reification of q composed

with all possible frames, as long as the result is within the guarantee relation.

The use of a state transformer for the semantics of atomic actions is similar to the semantics of

atomic actions in the Views framework [35]. The definition of the atomic action state transformer we

have given here, corresponds to the definition of the primitive atomic satisfaction judgement in the

semantics of TaDA [31], that defines the semantics of physically atomic actions.

View-shifts [35] are relations between assertions that reify to the same concrete states but may

use different instrumentation. In other words, view-shifts allow us to change the view of the under-

lying state. Examples of view-shifts include the allocation/deallocation of shared regions and the

opening/closing of abstract predicates.

Definition 43 (View Shift). View shifts are defined as follows:

k;A ` P 4 Q def⇐⇒
∀ρ.∀r ∈ ViewA.∀w ∈ LP MρA ∗ r. ∀h ∈ TwUk;A. ∃w′ ∈ w Gk;A w

′ ∧ h ∈ Tw′Uk;A ∧ w′ ∈ LQMρA ∗ r

Lemma 3 (Implications are View Shifts).

A ` P ⇒ Q

A; k ` P 4 Q

We give a largely standard operational semantics for the specification language of definition 18.

Definition 44 (Operational Semantics). Let
 
denote fault. Let outcomes be o ∈ Heap

 
, Heap]

{  }
.

Let configurations be κ ∈ Configs ,
(

(L ×Heap) ∪Heap
 )

. The single-step operational transition

relation,  ⊆ (L ×Heap)×Configs, is the smallest relation satisfying the rules:

(7.1)

φ, h φ′, h′

φ;ψ, h φ′;ψ, h′

(7.2)

φ, h h′

φ;ψ, h ψ, h′

(7.3)

φ, h 
 

φ;ψ, h 
 

(7.4)

φ ‖ ψ, h κ

ψ ‖ φ, h κ

(7.5)

φ, h φ′, h′

φ ‖ ψ, h φ′ ‖ ψ, h′

(7.6)

φ, h h′

φ ‖ ψ, h ψ, h′

(7.7)

φ, h 
 

φ ‖ ψ, h 
 

(7.8)

φi, h κ i ∈ {1, 2}

φ1 t φ2, h κ

(7.9)

∀i ∈ {1, 2} . φi, h κ

φ1 u φ2, h κ

(7.10)

v ∈ Val φ [v/x] , h κ

∃x. φ, h κ

(7.11)

φ [F/f ] , h κ

let f = F in φ, h κ

(7.12)

(λx. φ [µA. λx. φ/A])e, h κ

(µA. λx. φ)e, h κ
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(7.13)

φ [JeK /x] , h κ

(λx. φ)e, h κ

(7.14)

h′ ∈
{

a
(
LP M[~x7→~v]

A , LQM[~x7→~v]
A

)A
k

(h)

∣∣∣∣ ~v ∈ −−→Val}
a(∀~x. P, Q)Ak , h h′

(7.15)

∀~v ∈
−−→
Val. a

(
LP M[~x7→~v]

A , LQM[~x7→~v]
A

)A
k

(h) = ∅

a(∀~x. P, Q)Ak , h 
 

where: JeK denotes the denotation of the expression e in the empty variable store, i.e. e has no

variables; ~v ∈
−−→
Val denotes a vector of values; and [~x 7→ ~v] denotes a function mapping each variable

in the vector ~x to a value in the vector ~v. The multi-step operational transition relation,  ∗, is defined

as the reflexive, transitive closure of  .

The operational semantics is defined on closed specification programs. A specification program is

closed when it has no free variables. This is largely for simplicity; variables are immutable. The

operational semantics of a specification program with free variables can be defined with respect to

all closing contexts. In section 7.4.2 we additionally define a denotational semantics for specification

programs with respect to a variable store.

7.4. Refinement

In the previous sections, we have defined the syntax and semantics of specification programs with

physical atomicity. As highlighted in chapter 6, we use specification programs to reason about con-

current behaviour by “comparing” them. We say that a relatively concrete specification program φ,

implements a more abstract specification program ψ, when every behaviour of φ is also a behaviour

of ψ. Then, any client or context interacting with ψ can also interact with φ in the same way, without

observing different behaviour. Formally, this is expressed as contextual refinement, which we define in

section 7.4.1.

Reasoning about contextual refinement involves reasoning about all possible contexts, which hin-

ders our ability to derive useful refinement laws to include in a refinement calculus for atomicity. To

overcome this difficulty, we additionally define a denotational trace semantics for specification pro-

grams, giving rise to a denotational version of refinement in section 7.4.2, which we prove sound with

respect to contextual refinement in section 7.4.3. Then, by the compositional nature of denotational

semantics, we are able to justify a large selection of refinement laws in section 7.5.

7.4.1. Contextual Refinement

We consider standard single-holed contexts of specifications. We denote a (single-holed) specification

context by C and context application by C[φ].

Definition 45 (Contextual Refinement). Let h ∈ Heap.

φ vop ψ ⇐⇒ ∀C, h, h′.

C[φ], h ∗
 
⇒ C[ψ], h ∗

 

C[φ], h ∗ h′ ⇒ C[ψ], h ∗ h′ ∨ C[ψ], h ∗
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Contextual refinement is given a partial correctness interpretation. If φ terminates by faulting, then

ψ must do the same. On the other hand, if φ terminates successfully, then ψ must either successfully

terminate with the same result, or fault. Faults are treated as unspecified behaviour. They are the

most permissible of specifications; everything is a valid refinement of unspecified behaviour. Finally,

if φ does not terminate, it is still a refinement of ψ. Hence, φ vop ψ does not guarantee termination

of either φ or ψ.

7.4.2. Denotational Refinement

Following the approach of Turon and Wand [94], the denotational model for specification programs is

based on Brookes’s transition trace model [21], adjusted to account for heaps and faults. A transition

trace is finite sequence of pairs of heaps, (h, h′), called moves, possibly terminated by a fault, either

due to the specification program faulting on its own accord, (h,
 
), or due to interference from the

environment causing the specification program to fault, (
 
,
 
).

Definition 46 (Transition Traces). Single successful transitions (moves) in a trace are: Move ,

Heap×Heap. Faulty transitions in a trace are: Fault , Heap
 
×
{  }

. Transition traces are defined

by the regular language: Trace ,Move∗;Fault?. The empty trace is denoted by ε.

We use s, t, u ∈ Trace to range over traces and S, T, U ⊆ Trace to range over sets of traces.

Note that sets of traces form a lattice: the powerset lattice. Due to the existence of faults, we extend

concatenation of transition traces such that an early fault causes termination.

Definition 47 (Trace Concatenation). Let s, t ∈ Trace. Concatenation between traces is defined

such that a fault on the left discards the trace on the right:

st ,

s if ∃u ∈ Trace. s = u(h,
 
) ∨ s = u(

 
,
 
)

st otherwise

Trace concatenation is lifted pointwise to sets of traces: S;T ,
{
st
∣∣∣ s ∈ S ∧ t ∈ T}.

Each move in a trace corresponds to a timeslice of the execution of a specification program φ, where

we observe a starting and an ending state from the operational semantics. Arbitrary interference is

allowed between discrete timeslices of execution.

Definition 48 (Multi-Step Observed Traces). The multi-step observed traces relation, OJ−K ⊆ L ×
P(Trace), is the smallest relation that satisfies the following rules:

(7.16)

(
 
,
 
) ∈ OJφK

(7.17)

φ, h ∗ o

(h, o) ∈ OJφK

(7.18)

φ, h ∗ ψ, h′ t ∈ OJψK

(h, h′)t ∈ OJφK

For example, a trace (h1, h
′
1)(h2, h

′
2) for φ comprises two moves. The first, (h1, h

′
1), is a timeslice

arising from an execution φ, h1  ∗ ψ, h′1. The second, (h2, h
′
2), is a timeslice arising from an execution

ψ, h2  ∗ ψ′, h′2. In between the two timeslices, the environment executed some other specification

program thus changing h′1 to h2.
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The denotational semantics, defined shortly, provide an alternative mechanism to OJφK that is

compositional on the structure of φ. However, to define the denotations of parallel composition,

φ ‖ ψ, in terms of the traces of φ and ψ, we need to non-deterministically interleave sets of traces.

Definition 49 (Trace Interleaving). Let s, t ∈ Trace. The non-deterministic interleaving of s and

t, denoted by s ‖ t, is the smallest set of traces that satisfies the following rules:

(7.19)

s ∈ t ‖ u

s ∈ u ‖ t

(7.20)

s ∈ t ‖ u

(h, h′)s ∈ (h, h′)t ‖ u

(7.21)

(h, h′)u ∈ (h, h′) ‖ u

(7.22)

(h,
 
) ∈ (h,

 
) ‖ u

The interleaving is lifted pointwise to sets of traces: T ‖ U ,
{
s ∈ t ‖ u

∣∣∣ t ∈ T ∧ u ∈ U}.

In the model of Brookes, the transition traces OJφK of φ are closed under stuttering and mum-

bling [21]. Stuttering adds a move (h, h) to a trace, whereas mumbling merges two moves with a

common midpoint. For example, (h, h′)(h′, h′′) is merged by mumbling to (h, h′′). The stuttering and

mumbling closures correspond to the reflexivity and transitivity of  ∗ respectively.

Definition 50 (Trace Closure). The trace closure of a set of traces T , denoted by T †, is the smallest

set of traces that satisfies the following rules:

(7.23)

t ∈ T

t ∈ T †

CLStutter

st ∈ T †

s(h, h)t ∈ T †

CLMumble

s(h, h′)(h′, o)t ∈ T †

s(h, o)t ∈ T †

(7.24)

(
 
,
 
) ∈ T †

(7.25)

t(h,
 
) ∈ T †

t(h, h′)u ∈ T †

Let f : Val → P(Trace). Trace closure is pointwise extended to functions from values to sets of

traces: f † , λv. f(v)†.

The last two rules regarding faults were added to the closure of Brookes [21] by Turon and Wand [94].

Intuitively, rule (7.24) captures the fact that the environment of a specification program φ, may cause

it to fault at any given time. The rule (7.25) captures the fact that faulting behaviour is permissive:

a specification program that terminates with a fault after a trace t, can always be implemented by a

specification program that continues after t.

The denotational semantics of specification programs are defined as sets of (closed) traces. We

extend the variable stores used for assertions, so that function and recursion variables are mapped to

functions from values to sets of traces.

VarStoreµ ,

( ⋃
A∈AContext

VarStoreA

)
] (FuncVars ]RecVars→ (Val→ P(Trace)))

Definition 51 (Denotational Semantics). The denotational semantics of specification programs are

given by the function, J−K− : VarStoreµ → L → P(Trace), mapping specification programs to sets
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of traces, within a variable environment.

Jφ;ψKρ , (JφKρ ; JψKρ)†

Jφ ‖ ψKρ , (JφKρ ‖ JψKρ)†

Jφ t ψKρ , (JφKρ ∪ JψKρ)†

Jφ u ψKρ , (JφKρ ∩ JψKρ)†

J∃x. φKρ ,

( ⋃
v∈Val

JφKρ[x 7→v]

)†
Jlet f = F in φKρ , JφKρ[f 7→JF Kρ]

JFeKρ , JF Kρ JeKρ

JfKρ , ρ(f)†

JAKρ , ρ(A)†

JµA. λx. φKρ ,
⋂{

Tf ∈ Val→ P(Trace)
∣∣∣ Tf = Tf ′

† ∧ Jλx. φKρ[A 7→Tf ′ ] ⊆ Tf ′†
}

Jλx. φKρ , λv. JφKρ[x 7→v]

r
a(∀~x. P, Q)Ak

zρ
,


{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A 6= ∅




†

The semantics are relatively straightforward. Sequential composition is concatenation and parallel

composition is non-deterministic interleaving (of closed traces). Angelic and demonic choice are union

and intersection respectively. These correspond to the join and meet of the lattice of trace sets (the

powerset lattice) respectively. Existential quantification is the standard set union over all values.

For recursive functions we use the Tarskian least fixed point. Note that functions from values to

trace sets, Val → P(Trace), are ordered by the pointwise extension of the ordering on P(Trace).

Furthermore, the
⋂

and ⊆ in the fixed-point definition correspond to the meet and partial order of

the lattice arising from the pointwise extension of P(Trace) to the function space Val→ P(Trace).

Together with the following monotonicity lemma, this guarantees the existence of the fixed point.

Lemma 4. Let xf ∈ FuncVars ]RecVars, φ ∈ L and ρ ∈ VarStoreµ. The function JφKρ[xf 7→−] :

(Val→ P(Trace))→ P(Trace) is monotonic.

Proof. By straightforward induction over φ. Base cases A, f trivial. Inductive cases follow directly

from the induction hypothesis.

The denotational semantics are defined in terms of sets of finite traces. A finite trace is always

terminated either by the implementation itself, or by a fault caused by the environment. Infinite

traces are discarded. Consider the denotations of the specification program (µA. λx.Ax) (). By

the least fixpoint and rule (7.24) of the trace closure (definition 50), the only finite trace for this

specification program is (
 
,
 
). The denotational semantics of infinite recursion are finite traces that

terminate with a fault caused by the environment.
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With the denotational semantics defined, we can give a denotational version of refinement based on

the partial order of trace sets.

Definition 52 (Denotational Refinement). φ vden ψ iff, for all closing ρ, JφKρ ⊆ JψKρ.

Throughout this dissertation, unless explicitly stated, we use denotational refinement, writing φ v ψ
to mean φ vden ψ. When φ v ψ and ψ v φ, the specifications φ and ψ are equivalent: φ ≡ ψ.

7.4.3. Adequacy

We relate the denotational and operational versions of refinement in two steps. First, we establish

the following lemma, showing that denotational semantics produce the same closed trace sets as the

operational semantics. The proof details are given appendix B.1.

Lemma 5. If φ is closed, then JφK∅ = (OJφK)†.

Proof. From corollary 5 established in appendix B.1.

Second, with the following theorem we establish that the denotational refinement is a sound ap-

proximation of contextual refinement. We are not interested in establishing completeness; all the

refinement laws in the subsequent sections are justified by the denotational semantics.

Theorem 1 (Adequacy). If φ vden ψ, then φ vop ψ.

Proof. Let φ vden ψ. Let C be a context that closes both φ and ψ. We write C[φ] and C[ψ]

for the closed specifications under C. Then, by definition 52, JC[φ]K∅ ⊆ JC[ψ]K∅. By lemma 5,

(OJC[φ]K)† ⊆ (OJC[ψ]K)†.

• Let C[φ], h ∗
 
. By rule (7.17) (def. 48), (h,

 
) ∈ OJC[φ]K. By definition 50, (h,

 
) ∈ (OJC[φ]K)†

and thus (h,
 
) ∈ (OJC[ψ]K)†. Then by definition 50, either (h,

 
) ∈ OJC[ψ]K or there exist h′, h′′, s

such that (h, h′)s(h′′,
 
) ∈ OJC[ψ]K. In both cases, by definition 48, we get that C[ψ], h  ∗

 

and thus C[ψ], h
 
.

• Let C[φ], h  ∗ h′. By rule (7.17) (def. 48), (h, h′) ∈ OJC[φ]K. By definition 50, (h, h′) ∈
(OJC[φ]K)† and thus (h, h′) ∈ (OJC[ψ]K)†. Then, by definition 50, we have the following cases:

i). (h, h′) ∈ OJC[ψ]K

ii). there exist h′′, h′′′, s such that (h, h′′)s(h′′′, h′) ∈ OJC[ψ]K

iii). (h,
 
) ∈ OJC[ψ]K

iv). there exist h′, h′′, s such that (h, h′)s(h′′,
 
) ∈ OJC[ψ]K

Cases i) and ii), by definition 48 give that C[ψ], h ∗ h′.

Cases iii) and iv), by definition 48 give that C[ψ], h ∗
 
.

Therefore, C[ψ], h ∗ h′ ∨ C[ψ], h ∗
 
.
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7.5. Refinement Laws

Having defined the semantics of refinement in the previous section, we now state the refinement

laws that comprise our refinement calculus for reasoning about concurrency. We distinguish the

refinement laws into two broad groups: general refinement laws about our core specification language

from definition 18, and refinement laws specific to primitive atomic specification statements.

First we define three primitive specifications statements that server as limits of our refinement

calculus and behave as the unit of composition operators.

Definition 53 (Primitive specifications).

abort , a(false, true)k

miracle , a(true, false)k

skip , a(true, true)k

The abort statement always faults, since its precondition is never satisfied. It is the most permissive

of specifications and serves as the top element in the partial order of refinement. Semantically, it

is the set of all possible traces. On the other hand, the miracle statement never faults, as its

precondition is always satisfied, but also never takes any steps as its postcondition is never satisfied.

Semantically, miracle does nothing; modulo the closure of definition 50, it is the empty trace ε. It

is a valid implementation of any specification and serves as the bottom element in the partial order

of refinement. Finally, skip does not fault, but also does not modify the heap. The semantics of

assertions is intuitionistic and therefore true denotes the empty heap resource. Thus, skip acts as the

identity of sequential and parallel composition, as well as angelic and demonic choice. Note that skip

is a specification statement which specifies that no state update is observed at the current level of

abstraction. This does not necessarily mean that no update is performed. By contextual refinement

we can refine skip to a statement that performs some update by, for example, strengthening the

postcondition.

Definition 54 (General Refinement Laws).

Refl

φ v φ

Trans

φ v ψ′ ψ′ v ψ

φ v ψ

AntiSymm

φ v ψ ψ v φ

φ ≡ ψ

Skip

skip;φ ≡ φ ≡ φ; skip

Assoc

φ; (ψ1;ψ2) ≡ (φ;ψ1);ψ2

MinMax

miracle v φ v abort

EElim

φ [e/x] v ∃x. φ

EIntro

x 6∈ free(φ)

∃x. φ v φ

AChoiceEq

φ t φ ≡ φ
AChoiceId

φ t miracle ≡ φ
AChoiceAssoc

φ t (ψ1 t ψ2) ≡ (φ t ψ1) t ψ2

AChoiceComm

φ t ψ ≡ ψ t φ

AChoiceElim

φ v φ t ψ
AChoiceDstR

(φ1 t φ2);ψ ≡ (φ1;ψ) t (φ2;ψ)

AChoiceDstL

ψ; (φ1 t φ2) ≡ (ψ;φ1) t (ψ;φ2)

DChoiceEq

φ u φ ≡ φ
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DChoiceId

φ u abort ≡ φ
DChoiceAssoc

φ u (ψ1 u ψ2) ≡ (φ u ψ1) u ψ2

DChoiceComm

φ u ψ ≡ ψ u φ

DChoiceElim

φ v ψ1 φ v ψ2

φ v ψ1 u ψ2

DChoiceIntro

φ u ψ v φ
DChoiceDstR

(φ1 u φ2);ψ ≡ (φ1;ψ) u (φ2;ψ)

DChoiceDstL

ψ; (φ1 u φ2) ≡ (ψ;φ1) u (ψ;φ2)

AChoiceDstD

φ t (ψ1 u ψ2) ≡ (φ t ψ1) u (φ t ψ2)

DChoiceDstA

φ u (ψ1 t ψ2) ≡ (φ u ψ1) t (φ u ψ2)

Absorb

φ t (φ u ψ) ≡ φ ≡ φ u (φ t ψ)

Demonise

φ u ψ v φ t ψ
ParSkip

φ ‖ skip ≡ φ
ParAssoc

φ ‖ (ψ1 ‖ ψ2) ≡ (φ ‖ ψ1) ‖ ψ2

ParComm

φ ‖ ψ ≡ ψ ‖ φ
Exchange

(φ ‖ ψ); (φ′ ‖ ψ′) v (φ;φ′) ‖ (ψ;ψ′)

AChoiceExchange

(φ ‖ ψ) t (φ′ ‖ ψ′) v (φ t φ′) ‖ (ψ t ψ′)

SeqPar

φ;ψ v φ ‖ ψ
ParDstLR

φ; (ψ1 ‖ ψ2) v (φ;ψ1) ‖ ψ2

ParDstLL

φ; (ψ1 ‖ ψ2) v ψ1 ‖ (φ;ψ2)

ParDstRL

(φ ‖ ψ1);ψ2 v φ ‖ (ψ1;ψ2)

ParDstRR

(φ ‖ ψ1);ψ2 v (φ;ψ2) ‖ ψ1

EAChoiceEq

∃x. φ ≡
⊔

v∈Val
φ [v/x]

ESeqExt

x 6∈ free(φ)

∃x. φ;ψ ≡ φ;∃x. ψ

ESeqDst

∃x. φ;ψ v ∃x. φ; ∃x. ψ
EAChoiceDst

∃x. φ t ψ ≡ (∃x. φ) t (∃x. ψ)

EDChoiceDst

∃x. φ u ψ ≡ (∃x. φ) u (∃x. ψ)

EParDst

∃x. φ ‖ ψ v (∃x. φ) ‖ (∃x. ψ)

CMono

φ v ψ

C[φ] v C[ψ]

FApplyElim

φ [e/x] ≡ (λx. φ) e

FApplyElimRec

φ [(µA. λx. φ) /A] [e/x] ≡ (µA. λx. φ) e

FElim

Fl ≡ λx. Flx

FRename

φ [e1/x] v φ [e2/x]

(λx. φ) e1 v (λx. φ) e2

FRenameRec

φ [(µA. λx. φ) /A] [e1/x] v φ [(µA. λx. φ) /A] [e2/x]

(µA. λx. φ) e1 v (µA. λx. φ) e2

FuncIntro

x 6∈ free(φ)

(λx. φ) () ≡ φ

Inline

φ [F/f ] ≡ let f = F in φ

Ind

λx. φ [ψ/A] v λx. ψ

µA. λx. φ v λx. ψ

UnrollR

A 6∈ free(φ) ∪ free(ψ)(
µA. λx. ψ t φ;Ae′

)
e ≡ ψ [e/x] t φ [e/x] ;

(
µA. λx. ψ t φ;Ae′

)
e′ [e/x]

UnrollL

A 6∈ free(φ) ∪ free(ψ)(
µA. λx. ψ tAe′;φ

)
e ≡ ψ [e/x] t

(
µA. λx. ψ tAe′;φ

)
e′ [e/x] ;φ [e/x]
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RecSeq

A 6∈ free(φ) ∪ free(ψ1) ∪ free(ψ2)(
µA. λx. ψ1 t φ;Ae′

)
e;ψ2 [e/x] ≡

(
µA. λx. ψ1;ψ2 t φ;Ae′

)
e

Typically, we name refinement laws in the order of refinement; that is, as if reading the law right

to left. Many of the refinement laws in definition 54 are familiar from the literature.

From left to right, top to bottom, the laws Refl, Trans and AntiSymm reflect the fact that

refinement is a partial order. Skip and Assoc state that skip is the unit of sequential composition

and that sequential composition is associative respectively. The MinMax law defines miracle and

abort as the top and bottom specifications in the partial order of refinement as discussed earlier.

The next two laws concern existential quantification. EElim allows elimination of the quantifier

during refinement, by replacing the quantified variable with an expression. Conversely, the EIntro

refinement law allows the introduction of an existentially quantified variable.

The next block of refinement laws are about angelic and demonic choice, most of which correspond

to the laws of boolean algebra, with the join operator being angelic choice, the meet operator be-

ing demonic choice, the bottom element being miracle and the top element being abort. In fact,

the partial order of refinement forms a complete, boolean and atomic lattice. The AChoiceElim

refinement law captures the intuition behind the angelic non-deterministic choice: we can choose to

refine the choice to one of the two components. On the other hand, the analogous law for demonic

choice, DChoiceElim, states that the refinement of a demonic choice must be a refinement of both

components. This law is analogous to the conjunction rule of Hoare logic.

Next is a set of laws regarding parallel composition. The most important refinement laws of this

block are Exchange and AChoiceExchange. The former refines the parallel composition of two

sequences into a sequential composition of two parallels, whereas the latter refines the parallel com-

position of two angelic choices to an angelic choice of two parallels. Both originate from Hoare’s

algebraic laws [57, 56]. The SeqPar law, as well as the subsequent distributivity laws for sequential

and parallel composition can be derived from Exchange, ParComm and ParSkip.

In the next set of laws we return to existential quantification. The ESeqExt refinement law allows

us to increase or decrease the scope of the existentially quantified variable. The rest of the laws for

existential quantification concert its distributivity in sequential, non-deterministic choice and parallel

composition.

The CMono refinement law is obvious, and the most pervasively used law in refinement derivations.

It reflects the fact that denotational refinement is contextual refinement, as shown in theorem 1.

The next block of refinement laws is about functions. The laws follow directly from the semantics for

functions in our specification language. FApplyElim allows the elimination of a function application

by replacing the argument variable with the argument passed to the function. FElim allows us to

eliminate indirect function applications. The FRename and FRenameRec allow the refinement of

a function application to a different argument, for non-recursive and recursive functions respectively.

The FuncIntro law allows the introduction of a function application and Inline allows function

definitions to be inlined at the point of application.

The Ind refinement law is standard fixpoint induction.

The last block of refinement laws is useful in derivations of refinements between recursive specifi-

cations. The UnrollR and UnrollL laws allow us to do loop unrolling on recursive specification
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programs. Finally, the RecSeq refinement law allows us to extract the final specification executed in

a (tail) recursive specification outside the recursion.

We justify the soundness of our refinement laws by denotational refinement, which in turn is sound

with respect to contextual refinement. Transitively, the refinement laws are also sound with respect

to contextual refinement.

Theorem 2 (Soundness of General Refinement Laws). The general refinement laws of definition 54

are sound.

Proof. See appendix B.2.

Apart from the general refinement laws, we also define a set of laws for refinements between primitive

atomic specification statements.

Definition 55 (Refinement Laws for Primitive Atomic Specification Statements.).

UElim

a(∀~x. P, Q)Ak v a(∀y, ~x. P, Q)Ak

EPAtom

x 6∈ free(P )

∃x. a(∀~y. P, Q)Ak ≡ a(∀~y. P, ∃x.Q)Ak

EPElim

a(∀~y, x. P, Q)Ak v a(∀~y. ∃x. P, ∃x.Q)Ak

PDisjunction

a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

PConjunction

a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak

Frame

a(∀~x. P, Q)Ak v a(∀~x. P ∗R, Q ∗R)Ak

Stutter

a(∀~x. P, P )Ak ; a(∀~x. P, Q)Ak v a(∀~x. P, Q)Ak

Mumble

a(∀~x. P, Q)Ak v a
(
∀~x. P, P ′

)A
k

; a
(
∀~x. P ′, Q

)A
k

Interleave

a(∀~x. P1, Q1)Ak ‖ a(∀~x. P2, Q2)Ak

≡
(
a(∀~x. P1, Q1)Ak ; a(∀~x. P2, Q2)Ak

)
t
(
a(∀~x. P2, Q2)Ak ; a(∀~x. P1, Q1)Ak

)
PParallel

a(∀~x. P1, Q1)Ak ‖ a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∗ P2, Q1 ∗Q2)Ak

Cons

∀~x. P 4 P ′ ∀~x.Q′ 4 Q

a
(
∀~x. P ′, Q′

)A
k
v a(∀~x. P, Q)Ak

RLevel

k1 ≤ k2

a(∀~x. P, Q)Ak1 v a(∀~x. P, Q)Ak2

AContext

α 6∈ A

a(∀~x. P, Q)Ak v a(∀~x. P, Q)
α:x∈X Y (x),A
k

PAChoice

a
(
∀~x. P, Q ∨Q′

)A
k
v a(∀~x. P, Q)Ak t a

(
∀~x. P, Q′

)A
k

115



RIEq

a
(
∀x ∈ X,~x ∈

−→
X. Ir(t

k
α(~e, x)) ∗ P (~x), Ir(t

k
α(~e, x)) ∗Q(~x)

)A
k

≡ a
(
∀x ∈ X,~x ∈

−→
X. tkα(~e, x) ∗ P (~x), tkα(~e, x) ∗Q(~x)

)A
k+1

RUEq

α 6∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

a
(
∀x ∈ X,~x ∈

−→
X. Ir(t

k
α(~e, x)) ∗ P (~x) ∗ [G]α , Ir(t

k
α(~e, f(x))) ∗Q(~x)

)A
k

≡ a
(
∀x ∈ X,~x ∈

−→
X. tkα(~e, x) ∗ P (~x) ∗ [G]α , tkα(~e, f(x)) ∗Q(~x)

)A
k+1

The refinement laws stated here have an implicit side condition that requires assertions on both sides

of v are stable.

The UElim refinement law allows us to refine a primitive atomic specification statement in which a

variable is explicitly universally quantified, to a primitive atomic specification in which the variable is

free, and thus implicitly universally quantified in the context. The effect is that of turning a variable

that is locally bound in the specification statement, to a global variable. The EPAtom states that late

choice, in the existential quantification in the postcondition, is equivalent to early choice. EPAtom

together with ESeqExt from definition 54, allow us to treat the existential quantifier similarly to the

scope extrusion laws of π-calculus. With the EPElim law we can eliminate existential quantification

analogously to the existential elimination rule of Hoare logic. The PDisjunction and PConjunction

refinement laws are analogous to the conjunction and disjunction rules of Hoare logic. The Frame

refinement law is directly analogous to the frame rule of separation logic [81].

The Stutter and Mumble refinement laws are due to the trace closure of definition 50, and

originate from Brookes’s trace semantics [21]. Stuttering reflects the fact that a specification is unable

to observe steps of a refinement that do not modify the state. On the other hand, mumbling reflects

the fact that a sequence of atomic steps can be implemented by a single atomic step. Note that by

setting P ′ to be P in Mumble we obtain an equivalence for stuttering. The Interleave refinement

law captures the intuition behind parallel composition: it causes interleaving between atomic steps.

The PParallel refinement law is analogous to the parallel rule in disjoint concurrent separation

logic [76] and can be derived from Interleave, Frame and AChoiceEq.

The Cons refinement law is directly analogous to the consequence rule of Views [35]. Recall that

an implication between assertions is also a view-shift by lemma 3. Therefore, Cons is also used

analogously to the consequence rule of Hoare logic. We can refine a primitive atomic specification

statement by weakening its precondition and strengthening its postcondition. Conversely, we can

abstract a primitive specification statement by strengthening the precondition and weakening the

postcondition.

The refinement laws in definition 55 discussed so far, with the exception of EPAtom, are analo-

gous to rules found in Hoare and separation logics. Analogous laws to EPAtom, EPElim, Frame,

Stutter, Mumble and Cons exist in the calculus of Turon and Wand [94]. Our Cons law differs

from Turon and Wand’s in that it uses view-shifts instead of normal implications. Even though not

present in the refinement calculus of Turon and Wand, we expect that analogous laws to UElim,

PDisjunction, Interleave and PParallel can be justified for their atomic actions as well. This

is not the case for PConjunction, as demonic choice is not supported in their specification language.
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The next set of laws, following Cons, comes from our use of the TaDA model. RLevel reflects the

fact that we can refine a specification statement of a higher region level to a specification statement

of lower region level. The AContext law allows us to extend the atomicity context with an update

to a region, for which an update is not already required. The RIEq and RUEq allows us to replace

a shared region in a primitive atomic specification statement with its interpretation. In RIEq, where

the state of the region is not modified, we can do this directly. In RUEq, the region is being updated

and thus we require ownership of the guard by which the atomic update is allowed for that region in

the state transition system.

Theorem 3 (Soundness of Primitive Atomic Refinement Laws). The primitive atomic refinement

laws of definition 55 are sound.

Proof. See appendix B.3.

7.6. Abstract Atomicity

In the previous sections, we have defined our specification language and refinement calculus for

concurrency. The basic statement of our language is the primitive atomic specification statement,

a(∀~x. P, Q)Ak , specifying a physical atomic update of the precondition state P to the postcondition

state Q. The assertions P and Q are based on the assertion language of TaDA [30]. However, the

whole purpose of combining refinement with TaDA is to use the concept of abstract atomicity specified

in TaDA with atomic Hoare triples.

Atomic triples in TaDA have the general form:

k;A `

A

~x ∈
−→
X. 〈Pp | P (~x)〉C

E

~y ∈
−→
Y . 〈Qp(~x, ~y) | Q(~x, ~y)〉

The precondition and postcondition are split into two parts: the private part on the left of the vertical

separator; and the public part on the right. Resources in the public part are updated atomically from

P (~x) to Q(~x, ~y). Interference by the environment is restricted by the pseudo universal quantifier,

A

~x ∈
−→
X . Until the atomic update takes effect, the environment can change ~x as long as it is contained within
−→
X , and as long as the precondition P (~x) is satisfied. Additionally the implementation must preserve

P (~x) until the atomic update takes effect. After the atomic update takes effect, the environment can

do anything with the public resources. Additionally, the implementation loses all access to resources

in the public part. In the postcondition, ~x is bound to the values it obtains at the point the atomic

update takes effect (the linearisation point). The update of the private resources from Pp to Qp(~x, ~y)

is not atomic. Note that private does not mean local to the thread. Resources in the private part

can still be shared, but they are not part of the atomic update. The private precondition does not

depend on ~x, since the environment can change it. The pseudo existential quantifier,

E

~y ∈
−→
Y , links

the private and public postcondition with ~y, which is chosen arbitrarily by the implementation from
−→
Y at the point the atomic update takes effect.

The behaviour of a program satisfying the atomic Hoare triple is illustrated with the example trace

in figure 7.1. In the example, we take the pseudo universal quantification to be over the values {0, 1}
and the pseudo existential quantification to be on the value 42. At the beginning of C’s execution,

the private part is Pp and x in the public part has value 0. The implementation initially updates
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Pp ∗ P (0)

Pp ∗ P (1)

Pp1 ∗ P (1)

Pp1 ∗ P (0)

Pp2 ∗ P (0)

...

Ppn−1 ∗ P (1)

Ppn ∗Q(1, 42)

Ppn

Ppn+1

...

Ppn+m

Qp(1, 42)

Qp(1, 42)

C Single atomic step by thread.

Multiple atomic steps by environment.

Figure 7.1.: Example behaviour of a program satisfying the general form of the atomic Hoare triple,
where the pseudo universal quantification is

A

x ∈ {0, 1}, the pseudo existential quantifi-
cation is

E

y ∈ {42}, and at the start of the execution the value of x is 0.

118



the private part to an intermediate state Ppn−1 in a sequence of atomic steps, in between which the

environment constantly changes x in the public part, from 0 to 1 and vice-versa, whilst maintaining

P (x). Then, the implementation takes one atomic step in which it updates the public precondition

to the public postcondition as well as the intermediate private state. This is the step in which the

abstract atomic update takes effect, thus forming the linearisation point. The implementation then

relinquishes any information about the public part and proceeds with another sequence of atomic

steps, updating the private part until reaching the private postcondition. Note that the environment

does not modify the private part.

The example in figure 7.1 also illustrates that the behaviour of a program is abstractly atomic if

the sequence of atomic steps it performs follows a particular pattern. Using our core specification

language of definition 18, we can define this pattern of abstract atomicity as a specification program

comprising as sequence of primitive atomic specification statements.

Notation

We often write specification programs that use inline functions: (λx . φ) e or (µA. λx . φ) e. Sev-

eral times, the function body, φ, may be relatively large. To increase readability in these cases,

we use line breaks and whitespace instead of parenthesis to distinguish between the inline func-

tion and its application. For example, for a relatively large function body φlarge;ψhuge, we will

write:
µA. λx . φlarge;

ψhuge

·e

to mean (µA. λx . φlarge;ψhuge) e.

Definition 56 (Atomic Specification Statement). The atomic specification statement is defined in

terms of primitive atomic specification statements as follows:

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
,

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X, ~y ∈

−→
Y .∃p′′p. a

(
pp ∗ P (~x), p′′p ∗Q(~x, ~y)

)A
k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(~x, ~y)

)A
k

·p′′p
·pp

The first primitive atomic statement solely serves to capture the states satisfied by the private

precondition Pp into the variable pp, so that it can be passed as an argument to the subsequent

recursive function. This is a silent atomic step. Indeed, since it does not change the state before the

step that immediately follows, by Stutter, the first primitive atomic statement is not observable.

Furthermore, by Cons followed by Frame the first primitive atomic statement is refined into skip,

and thus, by Skip, does not have to implemented at all.
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The recursive function captures the essence of abstract atomicity. Initially, it performs a non-

deterministic (angelically) number of atomic steps, including zero, that only update the private part.

In between these steps, the environment can change the public part, P (~x). However, since the precon-

dition of each primitive atomic specification statement requires P (~x) for all ~x ∈
−→
X , each step in the

environment can change ~x, but only within
−→
X , whilst maintaining P (~x), in order to avoid faulting.

By the angelic choice, the implementation chooses when to finish updating the private part. When

the updates to the private part complete, the subsequent primitive atomic specification statement

updates the public part, from P (~x) to Q(~x, ~y), as well as the private part. The values ~x and ~y are

non-deterministically chosen by the implementation. This step is the linearisation point of the imple-

mentation. Finally, the inner recursive function follows, which performs a non-deterministic number

of atomic updates to the private part, until it is updated to the private postcondition Qp(~x, ~y). The

inner recursive function completely disregards the public parts, since after the linearisation point, the

implementation is relieved of any responsibility for it.

Note the difference on the quantification on ~x ∈
−→
X between the sequence of primitive atomic steps

that lead up to the linearisation point, and the primitive atomic step of the linearisation point. The

former use universal quantification, whereas the latter uses existential. The universal quantification

forces P (~x) to be maintained between steps, even if ~x changes within
−→
X . The existential quantification

on the step performing the linearisation point allows the implementation to choose for which ~x ∈
−→
X

to perform the atomic update. If we had used universal quantification for this step as well, we would

force implementations to commit the update for every ~x ∈
−→
X , which would be wrong. For example,

recall the abstract atomic lock specification discussed in chapter 6, section 6.2, where the unlocked

state is denoted by 0 and the locked state is denoted by 1. According to the specification, the lock

is locked only when the lock is previously unlocked: x = 0. However, universal quantification on

x ∈ {0, 1} at the linearisation point would force implementations to lock the lock all the time, even

when it is still locked!

The pattern of definition 56, where we use a silent atomic read to capture the states satisfied by an

assertion into a variable, which is then passed as an argument to a function, appears every time we

prove various refinements for atomic specification statements, such as the refinement laws for abstract

atomicity. The following lemma demonstrates that this step is indeed silent and is useful for several

of the refinement proofs about atomic specification statements.

Lemma 6 (Assertions as Function Arguments). When Fe, with p free, does not occur within φ, then:

∃p. a(∀~x. P, P ∧ p)Ak ;
(
λp. a(∀~x. p, Q)Ak ;φ

)
p v a(∀~x. P, Q)Ak ;φ [P/p]

∃p. a(∀~x. P, P ∧ p)Ak ;
(
λp. a(∀~x. p, Q1)Ak ;φ t a(∀~x. p, Q2)Ak ;ψ

)
p

v a(∀~x. P, Q1)Ak ;φ [P/p] t a(∀~x. P, Q2)Ak ;ψ [P/p]

∃p. a(∀~x. P, P ∧ p)Ak ;
(
µA. λp. a(∀~x. p, Q)Ak ;φ

)
p v a(∀~x. P, Q)Ak ;φ [P/p]

[
(µA. λp. a(∀~x. p, Q)Ak ;φ)/A

]
∃p. a(∀~x. P, P ∧ p)Ak ;

(
µA. λp. a(∀~x. p, Q1)Ak ;φ t a(∀~x. p, Q2)Ak ;ψ

)
p

v a(∀~x. P, Q1)Ak ;φ [P/p]
[
(µA. λp. a(∀~x. p, Q1)Ak ;φ t a(∀~x. p, Q2)Ak ;ψ)/A

]
t a(∀~x. P, Q2)Ak ;ψ [P/p]

[
(µA. λp. a(∀~x. p, Q1)Ak ;φ t a(∀~x. p, Q2)Ak ;ψ)/A

]
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Proof. The first refinement is proven by application of FApplyElim, CMono, Stutter and finally

EIntro. The second refinement is proven similarly, with AChoiceDstL before Stutter. The next

two refinements are proven in the same way as the first two, except FApplyElimRec is used instead

of FApplyElim.

In most of chapter 6, we have used atomic specification statements of a simpler form that does not

include the private part, defined as follows:

A

~x ∈
−→
X. 〈P (~x), Q(~x)〉Ak ,

A

~x ∈
−→
X. 〈true | P (~x),

E

y ∈ 1. true | Q(~x)〉Ak

The general form of the atomic specification statement is a generalisation not only of an atomic

update, but also of non-atomic updates. Other useful and important forms of specification statements,

such as the Hoare specification statements we’ve informally discussed in chapter 6, are encoded in terms

of the general atomic specification statement.

Definition 57 (Derived Specification Statements). The following specification statements are defined

as special cases of the atomic specification statement.

•
∃~x ∈

−→
X. I(~x) `

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
,

A

~x ∈
−→
X.
〈
Pp | P (~x) ∗ I(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y) ∗ I(~x)

〉A
k

• ∃~x ∈
−→
X. I(~x) `

A

~x ∈
−→
X. 〈P (~x), Q(~x)〉Ak ,

A

~x ∈
−→
X. 〈P (~x) ∗ I(~x), Q(~x) ∗ I(~x)〉Ak

• ∃~x ∈
−→
X. I(~x) ` {P, Q(~x)}Ak ,

A
~x ∈
−→
X. 〈P | I(~x),
E

y ∈ 1. Q(~x) | I(~x)〉Ak

• {P, Q}Ak , ∃z ∈ 1. true ` {P, Q}Ak

• [P ]Ak , {true, P}Ak

• ∃~x ∈
−→
X. I(~x) ` [P (~x)]Ak , ∃~x ∈

−→
X. I(~x) ` {true, P (~x)}Ak

• {P}Ak , {P, P}
A
k

• I ` {P}Ak , I ` {P, P}
A
k

The most important of the derived statements, is the Hoare specification statement of the form

{P, Q}, which specifies an update from a state satisfying the precondition P , to a state satisfying the

postcondition Q, without any atomicity guarantees. Intuitively, it stands for any program that satisfies

the Hoare triple {P} − {Q}. Hoare specification statements also have a form using an invariant:

∃~x ∈
−→
X. I(~x) ` {P, Q(~x)}. This specifies a non-atomic update from a state satisfying P , to a state

satisfying Q(~x), which maintains the invariant I(~x). The invariant is maintained at every step of the

implementation that uses it. Note that the result of the update may depend on the invariant.

Both the general atomic specification statement and its simpler version that elides the private part

are also given forms with invariants. These are useful in that resources that are only read during an

atomic update do not have to be stated in both the precondition and postcondition, reducing verbosity.

The other two derived statements are the assumption statement of the form, [P ], and the assertion

statement, {P}. The assumption statement specifies any non-atomic update that results in P , whereas
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the assertion statement specifies non-atomic updates starting and ending in P . Both statements are

also given forms with invariants.

Recall our use of context invariants in chapter 6 to specify modules implemented over the file

system. We treat context invariants as normal invariants for specification statements. We write

I ` φ v

A

x ∈ X. 〈P (x), Q(x)〉 for a refinement of an atomic update conditional on the context

invariant I, to mean φ v I `

A

x ∈ X. 〈P (x), Q(x)〉. From definition 57, this means that the atomic

specification statement on the right maintains the context invariant I. The environment must also

maintain I, at least up to the point the atomic update takes effect.

According to definitions 57 and 56 the Hoare specification statement, {P, Q}, is a sequence of

atomic steps, where the first begins in state P and the last ends in state Q. However, the recursive

function part of definition 56 is more complex that what is intuitively necessary for Hoare specification

statements. Fortunately, with the following lemma we show that the encoding of Hoare specification

statements according to definition 56 is equivalent to a much simpler pattern.

Lemma 7 (Hoare Specification Statement Refinement).

{P, Q}Ak ≡ ∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

Proof. We demonstrate a refinement between {P, Q}Ak , as given by definition 56, and the simpler

form, in both directions. First, we show that:

{P, Q}Ak v ∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

{P, Q}Ak ≡ by definitions 57 and 56

∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t ∃p′′. a(p, p′′)Ak ;

µB.λp′′. ∃p′′′. a(p′′, p′′′)Ak ;Bp′′′

t a(p′′, Q)Ak
·p′′

·p

v by Ind and CMono, where the following establishes the premiss

begin with substitute A and α-convert

122



∃p′. a(∀~x. p, p′)Ak ;µA.λp. ∃p′′. a(p, p′′)Ak ;Ap′′

t a(p, Q)Ak
·p′

t ∃p′. a(∀~x. p, p′)Ak ;

µA.λp. ∃p′′. a(p, p′′)Ak ;Ap′′

t a(p, Q)Ak
·p′

≡ by AChoiceEq

∃p′. a(∀~x. p, p′)Ak ;µA.λp. ∃p′′. a(p, p′′)Ak ;Ap′′

t a(p, Q)Ak
·p′

v by AChoiceElim and CMono

a(∀~x. p, Q)Ak
t ∃p′. a(∀~x. p, p′)Ak ;µA.λp. ∃p′′. a(p, p′′)Ak ;Ap′′

t a(p, Q)Ak
·p′

≡ by AChoiceComm and UnrollR

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

v ∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

Now we show that:
∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

v {P, Q}Ak

∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t a(p, Q)Ak
·p

vMumble, EElim and CMono

∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t ∃p′′. a(p, p′′)Ak ; a(p′′, Q)Ak
·p
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v by AChoiceElim and CMono

∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t ∃p′′. a(p, p′′)Ak ; a(p′′, Q)Ak t ∃p′′′. a(p′′, p′′′)Ak ; µB.λp′′. ∃p′′′. a(p′′, p′′′)Ak ;Bp′′′

t a(p′′, Q)Ak
·p′′

·p

v FApplyElimRec and CMono

∃p. a(P, P ∧ p)Ak ;

µA.λp. ∃p′. a(p, p′)Ak ;Ap′

t ∃p′′. a(p, p′′)Ak ;

µB.λp′′. ∃p′′′. a(p′′, p′′′)Ak ;Bp′′′

t a(p′′, Q)Ak
·p′′

·p

≡ by definitions 57 and 56

{P, Q}Ak

We define refinement laws for atomic specification statements, most of which directly correspond to

rules in the TaDA program logic [30]. We have seen some of these laws, in their simpler form without

the private part, in chapter 6.

Definition 58 (Abstract Atomicity Refinement Laws).

MakeAtomic
α 6∈ A {(x, y) | x ∈ X, y ∈ Y (x)} ⊆ Tt(G)∗

∃~x ∈
−→
X. I(~x) `

{
Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ �, ∃x ∈ X, y ∈ Y (x). Qp(x, y) ∗ α Z⇒ (x, y)

}α:x∈X Y (x),A
k′

v

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A
k′

UpdateRegion

A

x ∈ X,~x ∈
−→
X.

〈
Pp

∣∣∣∣∣Ir(tkα(~e, x)) ∗ P (x, ~x),

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y)

∣∣∣∣∣
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)〉A
k

v

A

x ∈ X,~x ∈
−→
X.〈Pp | tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y) |
(
tkα(~e, y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

) 〉
α:x∈X Y (x),A

k+1

OpenRegion

A

x ∈ X,~x ∈
−→
X.
〈
Pp | Ir(tkα(~e, x)) ∗ P (x, ~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Ir(tkα(~e, x)) ∗Q(x, ~x, ~y)

〉A
k

≡

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ P (x, ~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | tkα(~e, x) ∗Q(x, ~x, ~y)

〉A
k+1
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UseAtomic
α 6∈ A ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗

A

x ∈ X,~x ∈
−→
X.
〈
Pp | Ir(tkα(~e, x)) ∗ P (x, ~x) ∗ [G(~e ′)]α ,

E

~y ∈
−→
Y .Qp(~x, ~y) | Ir(tkα(~e, f(x))) ∗Q(x, ~x, ~y)

〉A
k

≡

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ P (~x) ∗ [G(~e ′)]α ,

E

~y ∈
−→
Y .Qp(~x, ~y) | tkα(~e, f(x)) ∗Q(~x, ~y)

〉A
k+1

AFrame

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∗R′ | P (~x) ∗R(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∗R′ | Q(~x, ~y) ∗R(~x)

〉A
k

AWeaken1

A

~x ∈
−→
X.
〈
Pp | P ′ ∗ P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q′(~x, ~y) ∗Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∗ P ′ | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∗Q′(~x, ~y) | Q(~x, ~y)

〉A
k

Primitive

a
(
∀~x ∈

−→
X.Pp ∗ P (~x), ∃~y ∈

−→
Y .Qp(~x, ~y) ∗Q(~x, ~y)

)A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

AEElim

A

x ∈ X,~x ∈
−→
X.
〈
Pp | P (x, ~x),

E

~y ∈
−→
Y . Pp(x, ~x, ~y) | Q(x, ~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | ∃x ∈ X.P (x, ~x),

E

~y ∈
−→
Y .∃x ∈ X.Pp(x, ~x, ~y) | ∃x ∈ X.Q(x, ~x, ~y)

〉A
k

EAAtom
x 6∈ free(Pp) ∪ free(P ) y 6∈ free(Pp) ∪ free(P )

∃y.∃x.

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

≡

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y, ~y ∈
−→
Y .Qp(~x, y, ~y) | ∃x.Q(~x, y, ~y)

〉A
k

AStutter

A

~x ∈
−→
X.
〈
Pp | P (~x), P ′p | P (~x)

〉A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

AMumble

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y . P ′p | P ′(~x)

〉A
k

;

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

ADisj

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
t

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∨ P ′p | P (~x) ∨ P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∨Q′p(~x, ~y) | Q(~x, ~y) ∨Q′(~x, ~y)

〉A
k

AConj

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
u

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∧ P ′p | P (~x) ∧ P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∧Q′p(~x, ~y) | Q(~x, ~y) ∧Q′(~x, ~y)

〉A
k
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ACons
Pp 4 P

′
p

∀~x ∈
−→
X.P (~x) 4 P ′(~x) ∀~x ∈

−→
X, ~y ∈

−→
Y .Q′p(~x, ~y) 4 Qp(~x, ~y) ∀~x ∈

−→
X, ~y ∈

−→
Y .Q′(~x, ~y) 4 Q(~x, ~y)

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Subst1
f : X ′ → X

A

x ∈ X,~x ∈
−→
X.
〈
Pp | P (x, ~x),

E

y ∈ Y (x), ~y ∈
−→
Y .Qp(x, ~x, ~y) | Q(x, ~x, ~y)

〉A
k

v

A

x′ ∈ X ′, ~x ∈
−→
X.
〈
Pp | P (f(x′), ~x),

E

y ∈ Y (f(x′)), ~y ∈
−→
Y .Qp(f(x′), y, ~y) | Q(f(x′), y, ~y)

〉A
k

Subst2
fx : Y ′(x)→ Y (x)

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y′ ∈
−−−→
Y ′(x), ~y ∈

−→
Y .Qp(~x, fx(y′), ~y) | Q(~x, fx(y′), ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y ∈ Y (x), ~y ∈
−→
Y .Qp(~x, y, ~y) | Q(~x, y, ~y)

〉A
k

ARLevel
k1 ≤ k2

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k1

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k2

AAContext
α 6∈ A

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉α:x∈X Y (x),A

k

The refinement laws stated here have an implicit side condition that requires assertions on both sides

of v are stable.

The MakeAtomic refinement law allows atomicity abstraction. The atomic specification statement

in the conclusion, atomically updates the region α from an abstract state x ∈ X, to the state y ∈ Q(x).

For that, it requires ownership of the guard G, for the same region, and by the premiss, the update

must be allowed by the region’s transition system for G. The atomic specification statement is refined

by the Hoare specification statement, that uses the atomicity tracking resource, in place of the guard,

to guarantee that the update on the region happens atomically. The atomicity context is extended

to record the update that must take effect during the Hoare statement. Recall that assertions are

stable under interference from the environment. Until the update takes effect, the region’s state may

be changed by the environment, but remains within X, and the atomicity tracking resource records

that the update defined in the atomicity context has not taken effect. When the atomic update takes

effect, the atomicity tracking resource is simultaneously updated to record the actual update on the

region. Note that the region is not present in the postcondition of the Hoare specification statement.

This is because after the atomic update takes effect, the environment is allowed to do anything, even

destroy the region.

In MakeAtomic, the atomic specification statement is also atomically reading the resources in
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I(~x). This allows the atomic update to the region to use additional resource, with the proviso that

it does not modify I(~x). The pseudo universal quantification on ~x ∈ −→x allows the environment to

change ~x within
−→
X as long as I(~x) is maintained. Therefore, the Hoare specification statement is also

required to be invariant under I(~x). This is a slight generalisation of the analogous rule in TaDA,

which does not support such invariants.

The UpdateRegion refinement law allows us to discharge an atomicity tracking resource and

thus commit the atomic update required in the atomicity context. Note that in the postcondition,

either the update specified in the atomicity context occurs, or no update occurs. This is in order to

allow working with conditional atomic operations, such as compare-and-swap. The OpenRegion law

allows us to access the contents of a shared region, while maintaining its abstract state. The concrete

resources that comprise the region’s interpretation can be updated, as long as the abstract state is

preserved. The UseAtomic law is used to justify an update to the abstract state of a region, by an

atomic update to the region’s interpretation. For that, we require ownership of a guard, for which the

update to the abstract state of the region is permitted in its transition system. Note that even though

UpdateRegion, OpenRegion and UseAtomic operate on a single region, they also allow other

resources to be atomically updated. Therefore, it is possible by successive applications of these laws

to refine atomic specification statements that atomically update multiple regions at the same time.

The AFrame law is the extension of Frame law for atomic specification statements. The AWeaken1

refinement law allows a non-atomic update to the private to be implemented as an atomic update.

Primitive allows an abstractly atomic update to be implemented by a physical atomic update, in-

cluding for the update to the private part. Note that this refinement law states an inequality; abstract

atomicity is a generalisation of physical atomicity. The Primitive law comes as a consequence of

Mumble.

The AEElim law allows us to eliminate existential quantification in the public part, by refining it to

a pseudo universal quantifier. Note that elimination to a standard universal quantifier, as in EPElim

would be unsound. Existential quantification allows the environment to change x, whereas universal

quantification requires its value to be fixed during execution. The former allows more interference

than the latter, thus the latter cannot be a refinement of the former. The EAAtom law extends the

EPAtom law to atomic specification statements. Note that this law allows the early choice to be

made for both the private and public parts of the postcondition.

The AStutter and AMumble refinement laws are extensions of Stutter and Mumble to atomic

specification statements. AMumble is a direct consequence of Mumble. However, AStutter can-

not be justified by Stutter because of private-part updates and requires more complex refinement

reasoning. Similarly, the ADisj and AConj refinement laws are extensions of PDisjunction and

PConjunction to atomic specification statements respectively.

The ACons refinement law is the analogous to Cons for atomic specification statements. Subst1

allows interference on x to be strengthened (when abstracting); an atomic update allowing less inter-

ference can be refined to an atomic update allowing more interference. On the other hand, Subst2

allows the analogous of weakening on the pseudo existentially quantified y.

Finally, ARLevel and AAContext are extensions of RLevel and AContext to atomic speci-

fication statements.

Since the atomic specification statement is just a program in out core specification language, most
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of the refinement laws on abstract atomicity are simply proven as refinements between specification

programs, by using the general laws of our refinement calculus (definition 54) and the laws for primitive

atomic statements (definition 55). The only refinement laws where we need to appeal to the assertion

model are the MakeAtomic and UpdateRegion rules. These are the most challenging refinement

laws of our entire development. Fortunately, since these laws and the assertion language is based on

TaDA, we can make the same case as in the TaDA semantics when appealing to the model.

Theorem 4 (Soundness of Abstract Atomicity Refinement Laws). The refinement laws for abstract

atomicity in definition 58 are sound.

Proof. See appendix B.4.

We complete the development of refinement laws in this section, with laws for Hoare specification

statements. At this point, none of these laws should be surprising.

Definition 59 (Hoare Specification Statement Refinement Laws).

Seq

φ v I ` {P, R}Ak ψ v I ` {R, Q}Ak
φ;ψ v I ` {P, Q}Ak

Disjunction

φ v I ` {P1, Q1}Ak ψ v I ` {P2, Q2}Ak
φ t ψ v I ` {P1 ∨ P2, Q1 ∨Q2}Ak

Conjunction

φ v I ` {P1, Q1}Ak ψ v I ` {P2, Q2}Ak
φ u ψ v I ` {P1 ∧ P2, Q1 ∧Q2}Ak

Parallel

φ v I ` {P1, Q1}Ak ψ v I ` {P2, Q2}Ak
φ ‖ ψ v I ` {P1 ∗ P2, Q1 ∗Q2}Ak

HFrame

I ` {P, Q}Ak v I ` {P ∗R, Q ∗R}
A
k

EElimHoare

I ` {P, Q}Ak v I ` {∃y. P, ∃y.Q}
A
k

EHAtom

x 6∈ free(P ) x 6∈ free(I)

∃x. I ` {P, Q}Ak ≡ I ` {P, ∃x.Q}
A
k

AWeaken2

A

~x ∈
−→
X.
〈
Pp | P (~x) ∗ I(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y) ∗ I(~x)

〉A
k

v ∃~x ∈
−→
X. I(~x) `

{
Pp ∗ P (~x), ∃~y ∈

−→
Y .Qp(~x, ~y) ∗Q(~x, ~y)

}A
k

HCons

P 4 P ′ Q′ 4 Q

I `
{
P ′, Q′

}A
k
v I ` {P, Q}Ak

HRLevel

k1 ≤ k2

I ` {P, Q}Ak1 v I ` {P, Q}
A
k2

HAContext

α 6∈ A

I ` {P, Q}Ak v I ` {P, Q}
α:x∈X Y (x),A
k

The Seq, Disjunction and Conjunction refinement laws directly correspond to the sequence,

disjunction and conjunction rules of Hoare logic. Parallel directly corresponds to the parallel rule

of separation logic [76]. The HFrame law corresponds to the frame rule of separation logic [81],

and is a direct consequence of AFrame. EElimHoare allows existential quantification elimination

as the analogous rule in Hoare logic. The AWeaken2 refinement law allows a non-atomic update

defined by the Hoare specification statement, to be implemented atomically by an atomic specification

statement. It is a direct consequence of AWeaken1 when the entire public part is moved to the private
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part. The HCons law, is the consequence rule of Hoare logic for Hoare specification statements.

Finally, HRLevel and HAContext allows the same as ARLevel and AAContext, but for Hoare

specification statements.

Theorem 5 (Soundness of Hoare Specification Statement Refinement Laws). The refinement laws

for Hoare specification statements, in definition 59, are sound.

Proof. See appendix B.5.

7.7. Syntax Encodings

The specifications in chapter 6 use programming constructs such as let-bindings and control flow that

are not present in the specification language formalised in this chapter. Fortunately, the specification

language is expressive enough for these constructs to be encoded as syntactic sugar.

Definition 60 (Syntactic Sugar).

if P then φ else ψ fi , ([P ];φ) t ([¬P ];ψ) when P is pure

λx1, x2 . . . , xn. φ , λx1. λx2. . . . λxn. φ

f(x1, x2 . . . xn) , ((fx1)x2) . . . xn

let f(~x) = φ in ψ , let f = λ~x, ret. φ in ψ

letrec f(~x) = φ in ψ , let f = µA. λ~x, ret. φ [A/f ] in ψ

return x , [ret = x]

return f(~x) , let y = f(~x) in return y

return f1( ~x1) u . . . fn( ~xn) , return f1( ~x1) u . . . return fn( ~xn)

let x = f(~y) in φ , ∃x. f(~y, x);φ when x 6∈ ~y

let x = f(~y);φ , let x = f(~y) in φ

let w, z = f(~x) ‖ f(~y) in φ , ∃w, z. f(~x,w) ‖ g(~y, z);φ

let w, z = f(~x) ‖ f(~y);φ , let w, z = f(~x) ‖ f(~y) in φ

Our treatment of control flow and function return values are the most important aspects of the

definitions above.

Control flow, via if P then φ else ψ fi, is encoded using angelic choice between the two branches,

guarded by assumptions testing P . Recall that, [P ] , {true, P}. This means that one of the two

assumptions guarding each branch in the angelic choice will fault. In that case, the faulting branch

will be equivalent to miracle and by AChoiceId, only the behaviour of the non-faulting branch, in

which the test for P succeeds, will be observed.

It is also possible to give the dual definition using demonic choice: ({P};φ)u({¬P};ψ). Recall that,

{P} , {P, true}. Here, the faulting branch will be equivalent to abort, and only the non-faulting

branch is observed by DChoiceId. In fact, we can prove that the two encodings are equivalent:

if P then φ else ψ fi ≡ ([P ];φ) t ([¬P ];ψ) ≡ ({P};φ) u ({¬P};ψ)
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Both encodings are standard in the refinement calculus [13].

To reason about if-then-else, we introduce the following refinement law, which corresponds the

analogous rule in Hoare logic:
IfThenElse

[P ];φ1 v ψ [¬P ];φ2 v ψ

if P then φ1 else φ2 fi v ψ

In a demonic choice encoding of if-then-else, the premisses would need to use an assertion instead of

an assumption.

To facilitate function return values, we add the distinguished variable ret at the end of the argument

list of each function definition. In a function body, return x, simply binds the value of x to the

variable ret. When invoking a function, the let-binding of the return value is encoded as existential

quantification of the additional last argument that binds to ret within the function.

7.8. Conclusions

We have presented the technical details of our specification language and associated refinement cal-

culus. Even though the specifications discussed in chapter 6 where built around atomic specification

statements of the form

A

x ∈ X. 〈P (x), Q(x)〉 and Hoare specification statements of the form {P, Q},
we have opted to a simpler core specification language based on the primitive atomic statement of the

form a(∀~x. P, Q). A primitive atomic specification statement specifies a physically atomic operation.

In the setting of contextual refinement it intuitively corresponds to the specification of the linearisation

point of a linearisable operation.

Our core specification language is inspired by the earlier approach of Turon and Wand [94] and

therefore the specification languages are similar. However, the most fundamental differences between

them are the choice of assertions and their semantics as well as the semantics of the primitive atomic

specification statement. Whereas Turon and Wand are using plain classical separation logic assertions

and their semantics we are using the intuitionistic assertion language and semantics of the TaDA

program logic [30]. This allows us to dispense with the fenced refinement approach of Turon and

Wand and use more recent features of concurrent separation logics for fine-grained concurrency such

as abstract predicates and client-defined separation algebras for defining protocols of concurrent inter-

actions. Even though these differences are fundamental, we are still able to retain the overall structure

of the main adequacy theorem (theorem 1).

Even though the core specification language is simple, it is also flexible as several of the constructs

used in chapter 6 are actually encoded into the core language. The most important of these encoded

constructs is the atomic specification statement which is captures the concept of abstract atomicity

from the atomic Hoare triples of TaDA. In direct contrast to TaDA abstract atomicity is not a primi-

tive construct. Instead, we derive abstract atomicity directly from the primitive atomicity of our core

specification language. This means that primitive atomicity and abstract atomicity can coexist within

the same language and reasoning system. TaDA, being a program logic, introduced a series inference

rules for deriving atomic Hoare triples. These rules are now recast as refinement laws for atomic

specification statements of our calculus. As atomic specification statements are encoded in terms of

primitive atomic statements the soundness of most of the refinement laws for abstract atomicity is

justified within the refinement calculus itself, the only exceptions being the MakeAtomic and Up-
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dateRegion laws for which we also appeal to the properties of the model. In contrast the soundness

of all the TaDA inference rules is justified by appealing to the underlying operational semantics. Ad-

ditionally to the refinement laws corresponding to TaDA inference rules we also introduce additional

laws for abstract atomicity, namely the laws for mumbling and stuttering. These allow Lipton reduc-

tion [66] style proofs for abstract atomicity, something that is not possible with the TaDA program

logic.
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8. Client Examples

In this chapter we demonstrate the scalability of our refinement calculus for client reasoning by consid-

ering further client examples. In section 8.1 we revisit lock files and derive a CAP-style specification

that utilises ownership transfer of a resource invariant. In section 8.2 we revisit the example of the con-

current email client-server interaction from chapter 2, section 2.3.2, which highlights the importance

of client reasoning based on the fine-grained concurrent specification of POSIX operations. With our

formal POSIX specification and reasoning in place, we study this example formally, demonstrating

that reasoning with simplified coarse-grained specifications is unreliable. In section 8.3 we present

our case-study example of named pipes. We develop a specification for named pipes based on their

informal specification in the POSIX standard. We then proceed to develop an implementation of

named pipes within our specified file-system fragment by using regular files, and lock files. Finally, we

verify the implementation utilising the CAP-style specification of lock files developed in section 8.1

8.1. CAP Style Locks

In chapter 6, section 6.2, we have introduced atomic specifications for the operations of a lock-file

module that implements the behaviour of an abstract lock. The atomicity guarantee in the specification

captures the essence of a lock as a synchronisation primitive, regardless of its particular use by clients.

On the other hand, client applications most typically use locks to enforce mutual exclusion over a

critical section of code, that non-atomically updates some shared resource. In essence, the lock, acting

a mutual exclusion mechanism, protects access to the shared resource.

In separation logic based program logics, reasoning about mutual exclusion employs ownership

transfer. If we do not assume mutual exclusion as a language primitive, as in concurrent separation

logic [76], the ownership-transfer pattern is used within the specification of operations used to enforce

mutual exclusion. This is the case of the lock specification using CAP by Dinsdale-Young et al. [36],

which enforces exclusive ownership over a resource invariant.

In the case of our lock-file module, we can derive the following CAP-style specification for the

lock-file operations:

LFCtx(lf ) `
lock(lf ) v {isLock(s, lf ) , isLock(s, lf ) ∗ Locked(s, lf ) ∗ Inv}
unlock(lf ) v {Locked(s, lf ) ∗ Inv, true}

The specification is parameterised by an abstract predicate Inv, representing the resource invariant

protected by the lock. The client can choose how to instantiate the predicate as long as it is invariant

under interference from the environment. The specification employs two abstract predicates itself:

isLock(s, lf ) and Locked(s, lf ). The implementation of these abstract predicates is required to satisfy
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the following axioms:

isLock(s, lf ) ⇐⇒ isLock(s, lf ) ∗ isLock(s, lf ) Locked(s, lf ) ∗ Locked(s, lf )⇒ false

The first axiom states that ownership of isLock can be freely duplicated. Any number of threads can

own isLock. By the specification of lock, ownership of isLock bestows the capability to lock the lock

at path lf . The second axiom states that Locked is an exclusive resource. Locked depicts that the

lock is locked. Furthermore, by the specification of unlock, only one thread can unlock the lock. The

abstract parameter s ∈ T2 captures implementation specific invariant information.

When the lock is unlocked, the resource invariant is owned by the implementation of the module,

and thus is inaccessible by any thread. When the lock is locked, ownership of the resource invariant is

transferred to thread that performed the lock. When the lock is unlocked, ownership of the resource

invariant is returned back to the module’s implementation.

In order to implement the specification we introduce the region type CapLock. The guard sepa-

ration algebra comprises an indivisible guard named K as well as the empty guard 0. We define the

guard composition operator such that ∀x ∈ {0,K} .0 • x = x and K • K is undefined.

The transition system for the region has two states: 0 and 1, stating that the lock is unlocked and

locked respectively. We allow any thread to acquire the lock if it is unlocked, but only the thread

holding the guard K is able to unlock it. This is enforced with the following transition system:

0 : 0 1 K : 1 0

We give the region interpretation for each abstract state as follows:

Ir(CapLockα(lf , s, 0)) , Lock(s, lf , 0) ∗ [K]α ∗ Inv

Ir(CapLockα(lf , s, 1)) , Lock(s, lf , 1)

With this interpretation we guarantee that when the lock is unlocked, i.e. at abstract state 0, the

guards K and Inv are in the region. When a thread acquires the lock by transitioning to abstract state

1, it removes the guard and invariant from the region. We can now give the interpretation to the

abstract predicates and T2 as follows:

T2 , RId× T1

isLock((α, s), lf ) , ∃v ∈ {0, 1} .CapLockα(lf , s, v)

Locked((α, s), lf ) , CapLockα(lf , s, 1) ∗ [K]α

The first argument of both predicates is instantiated as a pair containing the region identifier α and

the logical identifier s of the underlying module. The isLock predicate states that there is a lock at

path lf . The Locked predicate asserts the region must be at state 1, meaning it is locked, as guaranteed

by holding the guard K.

The proofs that lock and unlock satisfy their CAP-style specification are given in figure 8.1 and

figure 8.2 respectively. Throughout the proofs we assume that the context invariant LFCtx holds.

The CAP-style specification and the proofs presented here are analogous to those using the TaDA
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lock(lf )
v

A

v ∈ {0, 1} . 〈Lock(s ′, lf , v) , Lock(s ′, lf , 1) ∗ v = 0〉
AFrame : v = 0⇒ [K]α ∗ Inv, ACons

v

A

v ∈ {0, 1} . 〈Lock(s ′, lf , v) ∗ (v = 0 ∗ [K]α ∗ Inv) ∨ v = 1, Lock(s ′, lf , 1) ∗ [K]α ∗ Inv〉
UseAtomic, AEElim, AWeaken2

v {∃v ∈ {0, 1} .CapLockα(lf , s ′, v), CapLockα(lf , s ′, 1) ∗ [K]α ∗ Inv}
Abstract, s = (α, s ′)

v {isLock(s, lf ) , isLock(s, lf ) ∗ Locked(s, lf ) ∗ Inv}

Figure 8.1.: Proof that lock satisfies the CAP-style specification.

unlock(lf ) v 〈Lock(s ′, lf , 1) , Lock(s ′, lf , 0)〉
AFrame

〈Lock(s ′, lf , 1) ∗ [K]α ∗ Inv, Lock(s ′, lf , 0) ∗ [K]α ∗ Inv〉
UseAtomic, AWeaken2, weaken postcondition to stabilise

{CapLockα(lf , s ′, 1) ∗ [K]α ∗ Inv, ∃v ∈ {0, 1} .CapLockα(lf , s ′, v)}
Abstract, weaken postcondition

v {Locked(s, lf ) ∗ Inv, true}

Figure 8.2.: Proof that unlock satisfies the CAP-style specification.

program logic [30]. The difference here is that they are conditional upon the context invariant. The

difference with the original CAP specification [36] is that the implementation of the lock operations

does not require the use of atomic blocks.

8.2. Coarse-grained vs Fine-grained Specifications for POSIX

In chapter 2, section 2.3.2, we have informally demonstrated the importance of following the POSIX

standard in specifying file-system operations in terms of multiple atomic steps by examining an ex-

ample of a concurrent email client-server interaction. Having developed our formal specification and

refinement calculus we now revisit the same example, given in in figure 8.3, and formally demonstrate

that assuming a coarse-grained, singe-step, atomic specification for POSIX operations leads to unsafe

client reasoning.

Figure 8.3 consists of an email server responsible for the delivery of an email message with identifier

42, on the right, in parallel with a simple email client testing if that message has been delivered, on

the left. Initially, the undelivered email is stored at the path /mail/tmp/42.msg. The email server

is responsible for delivering the message by moving it to the path /mail/42/msg.eml, but only if it

has been previously deemed to be virus-free by an anti-virus scanner. To scan the message before

the delivery, the email server first moves the message to the quarantine directory /mail/quarantine

by sequence of renames. If the anti-virus scanner determines the message to not contain a virus, the

server performs a final rename delivering the message.

The safety property we wish to prove is that the email client only ever reports the email message

to be delivered if it is virus free. To verify this property it suffices to establish that at the end of the
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let delivered =
stat(/mail/42/msg.eml);

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi

Figure 8.3.: Unsafe email client-server interaction.

parallel execution delivered 6∈ Errs⇒ is not virus holds in the postcondition. We attempt to verify

this property first by assuming a simple coarse-grained atomic specification for the POSIX operations

involved in section 8.2.1, and then by using the fine-grained POSIX specification developed in this

dissertation in section 8.2.2. We demonstrate that using the coarse-grained file-system specification

we can verify the email client-server interaction is safe, and that the same is not possible with the

fine-grained POSIX semantics. In section 8.2.3 we adapt figure 8.3 such that we can prove it safe with

the formal POSIX specification.

In all cases we assume the following specification for the anti-virus scanner:

run av scan() v

A

FS .
〈

fs(FS ) ∧ /mail/quarantine/msg.eml
FS7−−→ −, fs(FS ) ∗ ret ∈ B

〉
The precondition requires the path /mail/quarantine/msg.eml to exist in the file system. The post-

condition specifies that the operation non-deterministically returns a boolean without modifying the

file system. For the purposes of this example we are not interested in the details of virus scanning.

In order to keep the reasoning simple in sections 8.2.1 and 8.2.2, and focus on the safety of the

email client-server interaction, we assume that the file system is only accessed by the client and server

threads. We lift this restriction in section 8.2.3, to demonstrate reasoning about this example in

contexts where the file system is shared with the environment.

8.2.1. Behaviour with Coarse-grained Specifications

We assume the coarse-grained atomic specification in figure 8.4 for the file-system operations used

in the example. For simplicity, the specifications of stat and mkdir are given for the concrete path

arguments that we use. In the specification of stat we abstract the error cases of resolving the given

path into a single case. In mkdir and rename we ignore the error cases altogether, since they always

succeed in this example.

Assuming the coarse-grained specification, we can prove that the parallel email client-server inter-

action of figure 8.3 is a refinement of the following specification statement:{
fs(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ − ∧ ¬/mail/quarantine

FS7−−→ −,
fs(−) ∗ delivered 6∈ Errs⇒ is not virus

}

The precondition describes the initial state of the file-system where the email message of interest is
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stat(/mail/42/msg.eml) v

A

FS , ι.

〈
fs(FS ) ∧ /mail/42/msg.eml

FS7−−→ ι,

fs(FS ) ∧ /mail/42/msg.eml
FS7−−→ ι ∗ ret = ftype(FS (ι))

〉
u

A

FS .
〈

fs(FS ) ∧ ¬/mail/42/msg.eml
FS7−−→ −, fs(FS ) ∧ ¬/mail/42/msg.eml

FS7−−→ − ∗ ret ∈ Errs
〉

mkdir(/mail/42) v

A

FS , ι.
〈

fs(FS ) ∧ /mail
FS7−−→ ι ∧ 42 6∈ FS (ι), ∃ι′. fs(FS [ι 7→ FS (ι)[42 7→ ι′]][ι′ 7→ ∅]) ∧ /mail

FS7−−→ ι
〉

rename(p/a, p′/b) v

A

FS , ι.

〈
fs(FS ) ∧ p

FS7−−→ ι ∧ isfile(FS (ι)(a)) ∧ p ′
FS7−−→ ι′ ∧ b 6∈ FS (ι′),

fs(FS [ι 7→ FS (ι) \ {a}][ι′ 7→ FS (ι′)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉

u

A

FS , ι.

〈
fs(FS ) ∧ p

FS7−−→ ι ∧ isdir(FS (ι)(a)) ∧ p′
FS7−−→ ι′ ∧ ι′ 6∈ descendants(ι) ∧ b 6∈ FS (ι′),

fs(FS [ι 7→ FS (ι) \ {a}][ι′ 7→ FS (ι′)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉

Figure 8.4.: Coarse-grained specification for the operations used in figure 8.3.

undelivered. The postcondition states that if the email client reports the message to be delivered

(delivered 6∈ Errs), then the server has declared to be virus free (is not virus is true).

In order to verify that the parallel client-server interaction is indeed a refinement of the specification

above, we introduce the region type Eml. Regions of this type are parameterised by the inode of the

file storing the email message of interest. We use integers between 0 and 6 (inclusive) as abstract

states of Eml regions, with the following interpretation:

Ir(Emlα(ι, 1)) , ∃FS . fs(FS ) ∧ /mail/tmp/42.msg
FS7−−→ ι

∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ − ∧ ¬/mail/quarantine

FS7−−→ −

Ir(Emlα(ι, 2)) , ∃FS . fs(FS ) ∧ /mail/tmp/42.msg
FS7−−→ ι

∧ isfile(FS (ι)) ∧ ∃j. /mail/42
FS7−−→ j ∧ isdir(FS (j)) ∧ ¬/mail/quarantine

FS7−−→ −

Ir(Emlα(ι, 3)) , ∃FS . fs(FS ) ∧ ¬/mail/tmp/42.msg
FS7−−→ −

∧ /mail/42/unsafe.eml
FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/quarantine

FS7−−→ −

Ir(Emlα(ι, 4)) , ∃FS . fs(FS ) ∧ /mail/quarantine/unsafe.eml
FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42

FS7−−→ −

Ir(Emlα(ι, 5)) , ∃FS . fs(FS ) ∧ /mail/quarantine/msg.eml
FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42

FS7−−→ −

Ir(Emlα(ι, 6)) , ∃FS . fs(FS ) ∧ /mail/42/msg.eml
FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/quarantine

FS7−−→ −

Ir(Emlα(ι, 0)) , true

We use abstract states between 1 and 6 to denote the different states in which the email server can be

in. State 1 corresponds to the file-system state at the beginning. State 2 corresponds to the file-system

state after the mkdir performed by the email server thread and so forth. State 6 corresponds to the

file-system state where the email message has been delivered. The abstract state 0 is used to mark

the end of both the email client and email server. Once in the abstract state 0, the file system is no

longer shared between the client and server threads. We interpret this state as true, so that the file

136



system can be removed from the shared region.

We define the guards G, R, W and F for Eml regions. We define the guard algebra such that it

satisfies the equation:

F = R •W

Lastly, we define the following labelled transition system for Eml regions:

G : 1 2 G : 2 3 G : 3 4 G : 4 5 G : 5 6 F : 5 0 F : 6 0

Ownership of the G grants the capability to perform the updates of the email server. Transitioning to

the final state 0 requires ownership of the F guard.

let delivered =
stat(/mail/42/msg.eml);

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi
v by figure 8.6, figure 8.7, Parallel and HCons

(
∃n ∈ N6

1.Emlα(ι, n) ∗ [R]α
)
∗ (Emlα(ι, 1) ∗ [G]α ∗ [W]α) ,(

∃n ∈ N6
1.Emlα(ι, n) ∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6

)
∗
(
∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [W]α ∗ n = 6⇒ is not virus
)


v by HCons{
Emlα(ι, 1) ∗ [G]α ∗ [F]α , ∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus
}

v by Skip

S
e
q

{
Emlα(ι, 1) ∗ [G]α ∗ [F]α , ∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus
}

;

skip v by Primitive, AWeaken2 and HFrame{
∃n ∈ N6

5. Ir(Emlα(ι, n)) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus,
∃n ∈ N6

5. Ir(Emlα(ι, n)) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus

}
v by HCons{
∃n ∈ N6

5. Ir(Emlα(ι, n)) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus,
Ir(Emlα(ι, 0)) ∗ fs(−) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus

}
v by UseAtomic{
∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [F]α ∗ delivered 6∈ Errs⇒ is not virus,
Emlα(ι, 0) ∗ [G]α ∗ [F]α ∗ fs(−) ∗ delivered 6∈ Errs⇒ is not virus

}
v {Emlα(ι, 1) ∗ [G]α ∗ [F]α , Emlα(ι, 0) ∗ [G]α ∗ [F]α ∗ fs(−) ∗ delivered 6∈ Errs⇒ is not virus}
v by EElimHoare
{∃α.Emlα(ι, 1) ∗ [G]α ∗ [F]α , ∃α.Emlα(ι, 0) ∗ [G]α ∗ [F]α ∗ fs(−) ∗ delivered 6∈ Errs⇒ is not virus}

v by CreateRegion and HCons{
fs(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ − ∧ ¬/mail/quarantine

FS7−−→ −,
fs(−) ∗ delivered 6∈ Errs⇒ is not virus

}

Figure 8.5.: Proof of email client-server interaction using a coarse-grained file-system specification.

In figure 8.5 we prove that the parallel composition of the email client and server is a refinement of

the specification we have given at the beginning of the current subsection. We explain the refinement
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steps by starting with the specification at the bottom and going up to the implementation at the top.

The first refinement step involves creating a new Eml shared region to hold the file system such

that shared access to the file system is performed through this region. This refinement is justified by

HCons, where in the precondition we use the CreateRegion view-shift to create a new Eml shared

region in the initial abstract state 1 together with the G and F guards. At the same time we strengthen

the postcondition by introducing the region and its guards in the distinguished final abstract state 0.

Thus we have refined the specification to an update of an Eml shared region from abstract state 1 to

abstract state 0.

In the second refinement step we simply apply EElimHoare to eliminate the existential quantifi-

cation over the region identifier α. Thus in the rest of the derivation the region identifier is fixed.

The third refinement step involves refining the update to Eml into an update from abstract state

1 to abstract states 5 or 6. The latter states are the final abstract states of the server thread. This

refinement is justified by a subderivation, in which we use Seq to split the update into two steps: the

first updates 1 to either 5 or 6, and the second updates 5 and 6 to 0. This second step is refined to skip

in a further subderivation. In this subderivation, we first apply UseAtomic to refine the update on

the Eml to an update on its interpretation. Then we apply HCons strengthening the postcondition

to the interpretation of abstract states 5 or 6. We conclude the subderivation by framing everything

off with HFrame after which AWeaken2 followed by Primitive refine directly to skip.

In the next refinement step we take advantage of the second sequent refining to skip and apply Skip

to drop it. At this point we have refined the original specification to an update on the Eml shared

region from abstract state 1 to abstract states 5 or 6. Furthermore, up to this point we were able to

thread the implication delivered 6∈ Errs⇒ is not virus through the refinement in the postcondition.

We proceed by applying HCons to partition the precondition and postcondition into two disjoint

parts, such that ownership of the two parts can be split between the client and server in accordance

to the Parallel refinement law. In particular, we duplicate the Eml region, weakening the abstract

state of the client’s copy in the precondition such that it is stable with respect to the server’s updates.

Additionally, we split the F guard into the R guard, given to the client, and the W guard, given to the

server. This prevents any thread to update the region to the final 0 state by using the F guard. Note

that we also split the original implication into two parts: delivered 6∈ Errs ⇒ n = 6 established by

the client, and n = 6⇒ is not virus established by the server.

We then proceed by applying Parallel, where the refinements for the client and server threads

are given in figures 8.6 and 8.7.

stat(/mail/42/msg.eml)
v by figure 8.4, DChoiceIntro and ACons

A

FS .
〈

fs(FS ) , fs(FS ) ∗ ret 6∈ Errs⇒ /mail/42/msg.eml
FS7−−→ −

〉
v by AEElim, ACons, AFrame and OpenRegion

A

n ∈ N6
1. 〈Emlα(n) ∗ [R]α , Emlα(n) ∗ [R]α ∗ ret 6∈ Errs⇒ n = 6〉

v by AEElim and AWeaken2{
∃n ∈ N6

1.Emlα(n) ∗ [R]α , ∃n ∈ N6
1.Emlα(n) ∗ [R]α ∗ ret 6∈ Errs⇒ n = 6

}
Figure 8.6.: Email client refinement using a coarse-grained file-system specification.
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Consider the refinement for the email client in figure 8.6. We begin by using AWeaken2 to

refine the Hoare specification statement to an atomic specification statement, and AEElim to turn

the existential quantification on the region’s abstract state to a pseudo-universal quantification. In

the next step we use OpenRegion to open the Eml region, AFrame to frame-off the R guard,

ACons to simplify the file-system state assertions, and finally AEElim to eliminate the existential

quantification over the file-system graphs that we obtain from the Eml region’s interpretation. In the

final refinement step we use ACons to reach the first demonic case of stat’s specification in figure 8.4

and then DChoiceIntro to introduce the second case.

S
e
q

mkdir(/mail/42);
v by figure 8.4, ACons and AEElim〈
∃FS , j. fs(FS ) ∧ /mail

FS7−−→ j ∧ ¬/mail/42
FS7−−→ −, ∃FS , j. fs(FS ) ∧ /mail/42

FS7−−→ j
〉

v by ACons, AFrame and UseAtomic
〈Emlα(ι, 1) ∗ [G]α ∗ [W]α , Emlα(ι, 2) ∗ [G]α ∗ [W]α〉

v by AWeaken2
{Emlα(ι, 1) ∗ [G]α ∗ [W]α , Emlα(ι, 2) ∗ [G]α ∗ [W]α}

rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
v by figure 8.4, ACons, AEElim, AFrame, UseAtomic and AWeaken2
{Emlα(ι, 2) ∗ [G]α ∗ [W]α , Emlα(ι, 3) ∗ [G]α ∗ [W]α}

rename(/mail/42, /mail/quarantine);
v by figure 8.4, ACons, AEElim, AFrame, UseAtomic and AWeaken2
{Emlα(ι, 3) ∗ [G]α ∗ [W]α , Emlα(ι, 4) ∗ [G]α ∗ [W]α}

rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
v by figure 8.4, ACons, AEElim, AFrame, UseAtomic and AWeaken2
{Emlα(ι, 4) ∗ [G]α ∗ [W]α , Emlα(ι, 5) ∗ [G]α ∗ [W]α}

let is not virus = run av scan();
v by specification, AEElim, ACons, AFrame, OpenRegion and AWeaken2
{Emlα(ι, 5) ∗ [G]α ∗ [W]α , Emlα(ι, 5) ∗ [G]α ∗ [W]α ∗ is not virus ∈ B}

If
T
h
e
n
E
l
se if is not virus then

rename(/mail/quarantine, /mail/42);
v by figure 8.4, AEElim, ACons, AFrame, UseAtomic and AWeaken2
{Emlα(ι, 5) ∗ [G]α ∗ [W]α ∗ is not virus, Emlα(ι, 6) ∗ [G]α ∗ [W]α ∗ is not virus}

fi

v
{

Emlα(ι, 5) ∗ [G]α ∗ [W]α ∗ is not virus ∈ B,
∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [W]α ∗ n = 6⇒ is not virus

}
v
{
Emlα(ι, 1) ∗ [G]α ∗ [W]α , ∃n ∈ N6

5.Emlα(ι, n) ∗ [G]α ∗ [W]α ∗ n = 6⇒ is not virus
}

Figure 8.7.: Proof of email server assuming a coarse-grained specification.

Now consider the refinement for the email server in figure 8.7. Here we apply Seq over the sequence

of operations comprising the server. For the first operation, mkdir, we show that it refines an update to

the Eml from state 1 to state 2. First, we use AWeaken2 to refine the Hoare specification statement

into an atomic specification statement. Next, we use UseAtomic to refine the update on the Eml

region to an update on the file-system state, followed by AFrame to frame-off the G and W guards

and elements of the region’s interpretation we do not need for the update. Last, we use AEElim to

eliminate the existential quantification on the file-system graphs updated, and ACons to refine into
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the coarse-grained mkdir specification in figure 8.4. The refinements for the subsequent operations

follows the same pattern, and thus are given in less detail.

8.2.2. Behaviour with POSIX Specifications

In chapter 6, section 6.1, we have given a formal specification to the POSIX mkdir and rename

operations. The specification of POSIX stat, given in figure 8.8. follows the same pattern as the

specifications examined in chapter 6.

stat(path)
v let p = dirname(path);

let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then
return link stat(r , a)

else return r fi

let link stat(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = ftype(FS (ι)(a))〉
u return enotdir(ι)
u return enoent(ι, a)

Figure 8.8.: POSIX specification of stat.

Following the actual POSIX specification, we are unable to show that the email client-server in-

teraction satisfies the same specification as when we assume the simpler coarse-grained specification.

In the coarse-grained specification of figure 8.4 paths are resolved atomically and path resolution is

not subject to interference; the file-system graph does not change during path resolution. This has

allowed us to prove in the previous section that the client’s stat only succeeds after the server’s

rename(/mail/quarantine, /mail/42). However, in the actual POSIX specification path resolution is a

sequence of atomic lookups, and thus it is subject to interference; the file-system graph may change

during path resolution. As a result, we can prove that the client’s stat may also succeed after the

earlier rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml).

In fact, the actual specification that the email client-server interaction satisfies in POSIX is the

following:{
fs(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ − ∧ ¬/mail/quarantine

FS7−−→ −,
fs(−) ∗ delivered 6∈ Errs⇒ is not a virus ∈ B

}

The precondition is the same as in the coarse-grained setting. However, the postcondition is weaker.

Knowledge that the email client observes the message of interest to have been delivered (delivered 6∈
Errs), does not have any bearing on whether it has been deemed virus free or not. In fact, the

assertion delivered 6∈ Errs⇒ is not a virus ∈ B is a tautology since the consequent is always true in

this example. We use this assertion in the postcondition nonetheless to highlight the difference.

In order to show that the parallel email client-server interaction is a refinement of the specification

above, we introduce a new region type: UnsafeEml. Due to the fine-grained nature of the POSIX
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specification, this region type is necessarily more complex than Eml. In the coarse-grained setting

path resolution is not interfered with and thus we can base our reasoning on the existence or non-

existence of paths. In contrast, in the fine-grained setting path resolution is subject to interference.

Therefore, to reason about path resolution we need to track information that is not interfered with:

inodes.

Regions of type UnsafeEml are parameterised by three inodes: the inode ι of the file storing

the email of interest, the inode j of the /mail directory, and the inode k of the /mail/tmp directory.

Abstract states of UnsafeEml are pairs taken from the set (N6
2×Inodes)∪({0}×Inodes)∪{(1,⊥)}.

The first element of the pair is a natural number from 0 to 6 as in Eml, where number 1 denotes the

initial file-system state, states 2 to 6 denote the file-system states resulting from the email server’s

actions, and 0 denotes the final state where the region is no longer needed. The second element is

used to record the inode of the directory that is created with mkdir(/mail/42), where ⊥ denotes the

fact that the directory has yet to be created. The path to this directory is subject to change by the

server, and thus we use the inode to refer to it during the resolution of the path /mail/42/msg.eml.

The abstract states of UnsafeEml are given the following interpretation:

Ir(UnsafeEmlα(ι, j, k, (1,⊥))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (k)(42.msg) = ι ∧ isfile(FS (ι)) ∧ 42 6∈ FS (j)

∧ quarantine 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (2, l))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (k)(42.msg) = ι ∧ isfile(FS (ι)) ∧ FS (j)(42) = l

∧ unsafe.eml 6∈ FS (l) ∧msg.eml 6∈ FS (l) ∧ quarantine 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (3, l))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ 42.msg 6∈ FS (k) ∧ FS (j)(42) = l ∧ FS (l)(unsafe.eml) = ι

∧ isfile(FS (ι)) ∧msg.eml 6∈ FS (l) ∧ quarantine 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (4, l))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(quarantine) = l ∧ FS (l)(unsafe.eml) = ι

∧ isfile(FS (ι)) ∧msg.eml 6∈ FS (l) ∧ 42 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (5, l))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(quarantine) = l ∧ FS (l)(msg.eml) = ι

∧ isfile(FS (ι)) ∧ 42 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (6, l))) , ∃FS . fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(42) = l ∧ FS (l)(msg.eml) = ι

∧ isfile(FS (ι)) ∧ quarantine 6∈ FS (j)

Ir(UnsafeEmlα(ι, j, k, (0, l))) , true

We define the guards G, R, W and F for UnsafeEml, similarly to Eml except that the guard G is

parameterised by a permission π ∈ (0, 1]. The guard algebra is defined as follows:

F = R •W ∀π1, π2. π1 + π2 ≤ 1 ∧ G (π1 + π2) = G (π1) • G (π2)

141



The labelled transition system for UnsafeEml is defined analogously to that of Eml:

G (1) : (1,⊥) ∃ι.(2, ι) G (1) : ∀ι ∈ Inodes. (2, ι) (3, ι) G (1) : ∀ι ∈ Inodes. (3, ι) (4, ι)

G (1) : ∀ι ∈ Inodes. (4, ι) (5, ι) G (1) : ∀ι ∈ Inodes. (5, ι) (6, ι)

F : ∀ι ∈ Inodes. (5, ι) (0, ι) F : ∀ι ∈ Inodes. (6, ι) (0, ι)

We prove that according to the POSIX file-system specification the concurrent email client-server

interaction satisfies its specification in figure 8.9. The proof for the parallel composition follows

a similar pattern to that of figure 8.5 which assumes the coarse-grained file-system specification.

Reading the derivation from bottom to top, in the first refinement step we use HCons to split the

path structures in the precondition into individual links mapping filenames to inodes. In the next

step we apply EElimHoare to eliminate the existential quantification on the inodes j and k, and

then apply HCons and CreateRegion in the same manner as in figure 8.5 to refine the update

on the file system to an update on the UnsafeEml shared region. We simplify the justification of

this refinement step by omitting the subderivation used in figure 8.5. We then proceed by applying

Let D , N6
1 × ({⊥} ∪ Inodes).

let delivered =
stat(/mail/42/msg.eml);

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi
v by figure 8.10, figure 8.12, Parallel and HCons

(
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α
)

∗ (UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α) ,(
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n ≥ 5
)

∗
(
∃(n, l) ∈ N6

5 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus
)


v by HCons
UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [F]α ,
∃(n, l) ∈ N6

5 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [F]α
∗ delivered 6∈ Errs⇒ is not virus ∈ B


v by EElimHoare on α, CreateRegion and HCons similarly to figure 8.5 and EElimHoare on j, k

fs(FS ) ∧ ∃j, k.FS (ι0)(mail) = j ∧ FS (j)(tmp) = k ∧ FS (k)(42.msg) = ι ∧ isfile(FS (ι))
∧ 42 6∈ FS (j) ∧ quarantine 6∈ FS (j),
fs(−) ∗ delivered 6∈ Errs⇒ is not virus ∈ B


v by HCons{

fs(FS ) ∧ /mail/tmp/42.msg
FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42

FS7−−→ − ∧ ¬/mail/quarantine
FS7−−→ −,

fs(−) ∗ delivered 6∈ Errs⇒ is not virus ∈ B

}

Figure 8.9.: Proof of email client-server interaction using the POSIX file-system specification.

HCons to split the state into two parts which are subsequently distributed between the client and

server threads with Parallel. We then continue with refinements of the client and server threads in
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figures 8.10 and 8.12 respectively.

First, consider the refinement for the email client in figure 8.10. It is more complicated in contrast

to the refinement using the simplified coarse-grained specification in figure 8.6. Since stat is not

atomic in POSIX, we must to reason about each individual step comprising the operation, since each

step is affected by the server’s actions. Since this proof is about a specific invocation of stat, before

Let D , N6
1 × ({⊥} ∪ Inodes).

let delivered = stat(/mail/42/msg.eml)
v by FApplyElim

S
e
q

let r = resolve(/mail/42, ι0);
v by figure 8.11{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ r ∈ Inodes⇒ n ≥ 2 ∧ l = r

}

If
T
h
e
n
E
l
se

if ¬iserr(r) then return link stat(r ,msg.eml)
v by figure 8.8, FApplyElim and DChoiceIntro

A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ,
msg.eml ∈ FS (r)⇒ fs(FS ) ∗ delivered = ftype(FS (r)(msg.eml))

〉
v by AEElim, ACons, AFrame and OpenRegion

A

n ∈ N6
2.

〈
UnsafeEmlα(ι, j, k, (n, r)) ∗ [R]α ,
UnsafeEmlα(ι, j, k, (n, r)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n ≥ 5

〉
v by AEElim and AWeaken2{
∃n ∈ N6

2.UnsafeEmlα(ι, j, k, (n, r)) ∗ [R]α ,
∃n ∈ N6

2.UnsafeEmlα(ι, j, k, (n, r)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n ≥ 5

}
else return r fi

v
{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ r ∈ Inodes⇒ n ≥ 2 ∧ l = r ,
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n ≥ 5 ∧ l = r

}
v
{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n ≥ 5 ∧ l = r

}

Figure 8.10.: Derivation of the email client’s specification using the POSIX file-system specification.

we proceed with the refinement proof we use FApplyElim (at the top of the derivation) to apply the

argument of stat to its POSIX specification. Thus we get a POSIX specification for the particular

invocation of stat(/mail/42/msg.eml). We then proceed with the derivation as usual, starting with

the specification we wish to refine to the POSIX specification of stat(/mail/42/msg.eml) at the

bottom.

In the first refinement step we apply Seq over the sequence of abstract operations comprising the

specification of stat(/mail/42/msg.eml). The first operation is resolve(/mail/42, ι0). Its specifica-

tion states that if the operation succeeds (r ∈ Inodes), then the UnsafeEml is in an abstract state

(n, l), where the directory with initial path /mail/42 had been created with inode l (n ≥ 2) which also

is the returned inode (l = r). The refinement of this specification to resolve(/mail/42, ι0) is given in

figure 8.11 and will be discussed shortly. In the subsequent if -then-else, we use IfThenElse focus-

ing on the success branch, where we implicitly use the assumption [¬iserr(r)]. In the first refinement

within the success branch we use AWeaken2 to refine to an atomic update and AEElim to eliminate

the existential quantification on the region’s state. Then, we apply OpenRegion to open the region’s

interpretation, AFrame to frame-off the R guard, ACons to simplify and then AEElim to eliminate
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the existential quantification on file-system graphs. At this point we have refined the if -branch to

the success case of link stat(r ,msg.eml). Thus we apply DChoiceIntro to introduce the other

demonic cases and refine to the invocation link stat(r ,msg.eml), which by FApplyElim is refined

to link stat given in figure 8.8.

resolve(/mail/42, ι0)
v by successive FApplyElimRec

H
C
o
n
s

an
d
S
e
q

let r = link lookup(ι0,mail);
v by figure 6.2, FApplyElim, DChoiceIntro and ACons

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι0)) ∧ FS (ι0)(mail) = j,
fs(FS ) ∧ isdir(FS (ι0)) ∧ FS (ι0)(mail) = j ∗ r = j

〉
v by AEElim, ACons, AFrame and OpenRegion

A

(n, l) ∈ N6
1 ×D.

〈
UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,
UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ r = j

〉
v by AEElim and AWeaken2{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ r = j

}

If
T
h
e
n
E
l
se

an
d
H
F
r
a
m
e if iserr(r) then return r

else return link lookup(r , 42)
v by figure 6.2, FApplyElim, DChoiceIntro and ACons

A

FS . 〈fs(FS ) ∧ isdir(FS (r)) , 42 ∈ FS (r)⇒ fs(FS ) ∗ ret = FS (r)(42)〉
v by AEElim, ACons, AFrame and OpenRegion

A

(n, l) ∈ N6
1 ×D.

〈
UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α ,
UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α ∗ ret ∈ Inodes⇒ n ≥ 2 ∧ l = ret

〉
v by AEElim and AWeaken2{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α ,
∃(n, k) ∈ N6

1 ×D.UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α ∗ ret ∈ Inodes⇒ n ≥ 2 ∧ l = ret

}
fi

v


∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α ∗ r = j,
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, r , k, (n, l)) ∗ [R]α
∗ ret ∈ Inodes⇒ n ≥ 2 ∧ l = ret ∗ r = j


v
{
∃(n, l) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,
∃(n, k) ∈ N6

1 ×D.UnsafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ ret ∈ Inodes⇒ n ≥ 2 ∧ l = ret

}

Figure 8.11.: Derivation of specification for client’s resolve(/mail/42, ι0).

The refinement of the specification for resolve(/mail/42, ι0), which we used in figure 8.10, is given

in figure 8.11 and follows a similar pattern. Recall from chapter 6, section 6.1.1, that resolve is

defined recursively. Since the path argument to resolve is a known value, we successively apply

FApplyElimRec until we effectively unroll the recursion into a sequence of link lookup operations.

From there we proceed similarly to figure 8.10, applying Seq on the first link lookup and the if -

then-else containing the second link lookup that follows, on which we use IfThenElse, except that

this time we focus on the else-branch. The additional HCons and HFrame steps are taken such that

the postcondition of the first link lookup matches the precondition of the if -then-else statement

containing the second.

We now turn our attention to the refinement proof for the server thread given in figure 8.12. This

also follows a similar pattern to the proof using the coarse-grained file-system specification in figure 8.7,
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S
e
q

mkdir(/mail/42);
v by figure 8.13
{UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α , ∃l.UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α}

rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
v by figure 8.14 and EElimHoare
{∃l.UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α , ∃l.UnsafeEmlα(ι, j, k, (3, l)) ∗ [G(1)]α ∗ [W]α}

rename(/mail/42, /mail/quarantine);
v similarly to figure 8.14 and EElimHoare
{∃l.UnsafeEmlα(ι, j, k, (3, l)) ∗ [G(1)]α ∗ [W]α , ∃l.UnsafeEmlα(ι, j, k, (4, l)) ∗ [G(1)]α ∗ [W]α}

rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
v similarly to figure 8.14 and EElimHoare
{∃l.UnsafeEmlα(ι, j, k, (4, l)) ∗ [G(1)]α ∗ [W]α , ∃l.UnsafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α}

let is not virus = run av scan();
v by specification, AEElim, ACons, AFrame, OpenRegion and AWeaken2{
∃l.UnsafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α ,
∃l.UnsafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α ∗ is not virus ∈ B

}

If
T
h
e
n
E
l
se

if is not virus then
rename(/mail/quarantine, /mail/42);
v similarly to figure 8.14 and EElimHoare{
∃l.UnsafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α ∗ is not virus,
∃l.UnsafeEmlα(ι, j, k, (6, l)) ∗ [G(1)]α ∗ [W]α ∗ is not virus

}
fi

v
{
∃l.UnsafeEmlα(ι, j, (5, l)) ∗ [G(1)]α ∗ [W]α ∗ is not virus ∈ B,
∃n ∈ N6

5, l.UnsafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus

}
v
{

UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ,
∃n ∈ N6

5, l.UnsafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus

}

Figure 8.12.: Derivation of email server’s specification using the POSIX file-system specification.

except that the refinement for each operation in the sequence is more elaborate due to the non-atomic

nature of mkdir and rename in POSIX.

The refinement for the server’s mkdir(/mail/42) is given in figure 8.13. First we use FApplyElim

to apply the argument to mkdir’s specification, which we discussed in chapter 6, section 6.1.2. We

then proceed with refining the specification at the bottom of the derivation. In the first step of

this refinement we apply Seq over the sequence of abstract operations comprising mkdir(/mail/42),

where we use HCons to match the postcondition of resolve(/mail, ι0) with the precondition of the

if -then-else statement that follows. In the refinement to resolve(/mail, ι0) we successively apply

FApplyElimRec to unroll the recursion; effectively, to a single link lookup. We then proceed

similarly to the link lookup refinements in figure 8.11. Next, in the refinement to the if -then-else

statement we first use HFrame to frame-off r = j, as it is not needed further in the derivation, and

then we apply IfThenElse focusing on the if -branch. Within the if -branch we apply DChoiceIntro

to introduce the demonic error cases composed with link new dir, with the rest of the derivation

refining to link new dir(r , 42). For simplicity we assume the atomic variant of link new dir.

The refinement to the server’s rename(/mail/tmp/42.msg, /mail/42/unsafe.eml) is given in fig-

ure 8.14. Here, we apply FApplyElim to rename’s POSIX specification from chapter 6, section 6.1.1,

to obtain the sequence of statements comprising rename(/mail/tmp/42.msg, /mail/42/unsafe.eml).
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mkdir(/mail/42)
v by FApplyElim

H
C
o
n
s

a
n

d
S
e
q

let r = resolve(/mail, ι0);
v by successive FApplyElimRec

let r = link lookup(ι0,mail);
v by figure 6.2, FApplyElim, DChoiceIntro and ACons

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι0)) ∗ FS (ι0)(mail) = j,
fs(FS ) ∧ isdir(FS (ι0)) ∗ FS (ι0)(mail) = j ∗ r = j

〉
v by AEElim, ACons, AFrame, OpenRegion and AWeaken2{

UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ,
UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ∗ r = j

}

If
T
h
e
n
E
l
se

an
d
H
F
r
a
m
e

if ¬iserr(r) then

D
C
h
o
ic
e
In

t
r
o

return link new dir(r , 42)
v by section 6.1.2, FApplyElim and ACons

A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ∗ FS (ι0)(42) = r ,
∃l. fs(FS [r 7→ FS (r)[42 7→ l]] ] l 7→ ∅[“.” 7→ l][“..” 7→ r ]) ∗ ret = 0

〉
v by AEElim, ACons, AFrame, UseAtomic and AWeaken2{

UnsafeEmlα(ι, r , k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ,
∃l.UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

}
u eexist(ι, 42)
u enotdir(ι)

v
{

UnsafeEmlα(ι, r , k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ,
∃l.UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

}
else return r fi

v
{

UnsafeEmlα(ι, r , k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ∗ r = j,
∃l.UnsafeEmlα(ι, r , j, (2, l)) ∗ [G(1)]α ∗ [W]α ∗ r = j ∗ ret = 0

}
v
{

UnsafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ,
∃l.UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

}

Figure 8.13.: Derivation of server’s mkdir(/mail/42) using the POSIX file-system specification.

Note that in this invocation of rename the source path identifies and existing regular file whereas

the basename of the target path does not exist. Therefore, the refinement can focus on the success

case link move file target not exists, and discard all others, by applying DChoiceIntro. The

aspect of this proof that differs from those we have seen so far is the parallel composition of the two

path resolutions. Thus we use HCons to partition the state between the two resolves and then

apply Parallel. The refinements to resolve(/mail/tmp, ι0) and resolve(/mail/42/unsafe.eml, ι0)

are given in figures 8.15 and 8.16 respectively and follow a similar pattern to figure 8.11. Note that

each resolve requires ownership of the guard G with permission 0.5. Ownership of this guard in each

resolve is needed to maintain the stability of the region’s state. The absence of this guard would

indicate that it may be owned by the environment, allowing the environment to concurrently update

the region’s state. Ownership of this guard guarantees that the UnsafeEml region is not updated

concurrently.
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rename(/mail/tmp/42.msg, /mail/42/unsafe.eml)
v by FApplyElim and DChoiceIntro

H
C
o
n
s

a
n

d
S
e
q

let rs , rt = resolve(/mail/tmp, ι0) ‖ resolve(/mail/42, ι0);
v by figures 8.15 and 8.16 and Parallel

(UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α) ∗ (UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α) ,
(UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ rs = k)
∗ (UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ rt = l)


v by HCons
{UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α , UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ rs = k ∗ rt = l}

If
T
h
e
n
E
l
se

an
d
H
F
r
a
m
e

if ¬iserr(rs) ∧ ¬iserr(rt) then
return link move file target not exists(rs , 42.msg, rt ,unsafe.eml)
v by figure 6.5, FApplyElim and ACons

A

FS .〈fs(FS ) ∧ FS (ι0)(mail) = j ∧ FS (j)(tmp) = rs ∧ FS (rs)(42.msg) = ι
∧ isfile(FS (ι)) ∧ FS (j)(42) = rt ∧ unsafe.eml 6∈ FS (k),
fs(FS [rs 7→ FS (rs) \ {42.msg}][rt 7→ FS (rt)[unsafe.eml 7→ FS (rs)(42.msg)]]) ∗ ret = 0

〉
v by AEElim, ACons, AFrame and UseAtomic〈

UnsafeEmlα(ι, j, rs , (2, rt)) ∗ [G(1)]α ∗ [W]α ,
UnsafeEmlα(ι, j, rs , (3, rt)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

〉
v by AWeaken2{

UnsafeEmlα(ι, j, rs , (2, rt)) ∗ [G(1)]α ∗ [W]α ,
UnsafeEmlα(ι, j, rs , (3, rt)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

}
else if iserr(rs) ∧ ¬iserr(rt) then return rs

else if ¬iserr(rs) ∧ iserr(rt) then return rt

else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

v
{

UnsafeEmlα(ι, j, rs , (2, rt)) ∗ [G(1)]α ∗ [W]α ∗ rs = k ∗ rt = l,
UnsafeEmlα(ι, j, rs , (3, rt)) ∗ [G(1)]α ∗ [W]α ∗ rs = k ∗ rt = l ∗ ret = 0

}
v
{

UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α ,
UnsafeEmlα(ι, j, k, (3, l)) ∗ [G(1)]α ∗ [W]α ∗ ret = 0

}

Figure 8.14.: Derivation of server’s rename(/mail/tmp/42.msg, /mail/42/unsafe.eml) using the POSIX
file-system specification

Remarks

We have studied the behaviour of an example concurrent email client-server interaction using two

different approaches to the concurrent specification of the POSIX file-system operations: a coarse

grained approach where file-system operations are atomic, and the fine-grained concurrent specification

we develop in this dissertation. Even though fictitious, the example serves as an apt comparison

between the two approaches. Arguably, a coarse-grained specification for file-system operations is

simpler than our POSIX specification, leading to simpler client reasoning with the tradeoff of not

capturing accurately the POSIX standard. However, in reasoning about the example we demonstrate

a fatal flaw of the coarse-grained approach: it is ill-suited for client reasoning. Specifically, using

the coarse-grained approach we are able to prove a strong functional property — if the email client

observes a message delivered, then the server has declared it virus-free — that is impossible to prove

in the fine-grained approach that follows POSIX. Reasoning with a coarse-grained specification of

POSIX file-system concurrency fails to account for all the possible behaviours clients may observe,
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resolve(/mail/tmp, ι0)
v by successive FApplyElimRec

H
C
o
n
s

an
d
S
e
q

let r = link lookup(ι0,mail);
v by figure 6.2, DChoiceIntro, ACons, AEElim, AFrame,

OpenRegion and AWeaken2
{UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α , UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ r = j}

If
T
h
e
n
E
l
se

an
d
H
F
r
a
m
e if ¬iserr(r) then return r

else return link lookup(r , tmp)
v by figure 6.2, DChoiceIntro and ACons

A

FS . 〈fs(FS ) ∧ isdir(FS (r)) ∧ FS (r)(tmp) = k, fs(FS ) ∗ ret = FS (r)(tmp)〉
v by AEElim, ACons, AFrame and OpenRegion〈

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ ret = k

〉
v by AWeaken2{

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ ret = k

}
fi

v
{

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ r = j,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ r = j ∗ ret = k

}
v {UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α , UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ ret = k}

Figure 8.15.: Derivation of specification statement for resolve(/mail/tmp/42.msg, ι0) used in email
server’s rename(/mail/tmp/42.msg, /mail/42/unsafe.eml).

resolve(/mail/42, ι0)
v by successive FApplyElimRec

H
C
o
n
s

an
d
S
e
q

let r = link lookup(ι0,mail);
v by figure 6.2, DChoiceIntro, ACons, AEElim, AFrame,

OpenRegion and AWeaken2
{UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α , UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ r = j}

If
T
h
e
n
E
l
se

an
d
H
F
r
a
m
e if ¬iserr(r) then return r

else return link lookup(r , 42)
v by figure 6.2, DChoiceIntro and ACons

A

FS . 〈fs(FS ) ∧ isdir(FS (r)) ∧ FS (r)(42) = l, fs(FS ) ∗ ret = FS (r)(42)〉
v by AEElim, ACons, AFrame and OpenRegion〈

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ ret = l

〉
v by AWeaken2{

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ ret = l

}
fi

v
{

UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ r = j,
UnsafeEmlα(ι, r , k, (2, l)) ∗ [G(0.5)]α ∗ r = j ∗ ret = l

}
v {UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α , UnsafeEmlα(ι, j, k, (2, l)) ∗ [G(0.5)]α ∗ ret = l}

Figure 8.16.: Derivation of specification statement for resolve(/mail/42, ι0) used in email server’s
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml).
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leading to unsound conclusions.

8.2.3. Correcting the Email Client-Server Interaction

The flaw of the coarse-grained file-system specification is that it assumes additional synchronisation

between file-system operations that is not specified in the POSIX standard. We can thus adapt the

email client-server interaction in figure 8.3 to make it safe under the POSIX semantics by explicitly

introducing the additional synchronisation. One possible way to achieve this is by creating a coarse-

grained version of each file-system operation by wrapping each operation in a lock. However, it is not

lock(/mail/.lock);
let delivered =
stat(/mail/42/msg.eml);

unlock(/mail/.lock)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
lock(/mail/.lock);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi
unlock(/mail/.lock)

Figure 8.17.: A safe email client-server interaction.

necessary to synchronise on every operation. We can simply use a lock such that the client’s stat is

never performed in between the server’s last two renames, as in figure 8.17.

This time we will reason about this example assuming the file system is shared with the rest of

the environment via the global file-system region GFS restricted according to a context invariant. In

figure 8.17 we are using a lock file at path /mail/.lock to synchronise the client and server. Therefore,

the context invariant for this example must include LFCtx(/mail/.lock) so that the lock file behaves

as intended.

To aid in the definition of the context invariant we define the following auxiliary predicate describing

the file-system graphs of the client-server interaction:

EFS(FS , ι, j, k, (1,⊥)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k ∧ FS (k)(42.msg) = ι

∧ isfile(FS (ι)) ∧ 42 6∈ FS (j) ∧ quarantine 6∈ FS (j)

EFS(FS , ι, j, k, (2, l)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (k)(42.msg) = ι ∧ isfile(FS (ι)) ∧ FS (j)(42) = l

∧ unsafe.eml 6∈ FS (l) ∧msg.eml 6∈ FS (l) ∧ quarantine 6∈ FS (j)

EFS(FS , ι, j, k, (3, l)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ 42.msg 6∈ FS (k) ∧ FS (j)(42) = l ∧ FS (l)(unsafe.eml) = ι

∧ isfile(FS (ι)) ∧msg.eml 6∈ FS (l) ∧ quarantine 6∈ FS (j)

EFS(FS , ι, j, k, (4, l)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(quarantine) = l ∧ FS (l)(unsafe.eml) = ι

∧ isfile(FS (ι)) ∧msg.eml 6∈ FS (l) ∧ 42 6∈ FS (j)
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EFS(FS , ι, j, k, (5, l)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(quarantine) = l ∧ FS (l)(msg.eml) = ι

∧ isfile(FS (ι)) ∧ 42 6∈ FS (j)

EFS(FS , ι, j, k, (6, l)) , FS (ι0)(mail) = j ∧ FS (j)(tmp) = k

∧ FS (j)(42) = l ∧ FS (l)(msg.eml) = ι

∧ isfile(FS (ι)) ∧ quarantine 6∈ FS (j)

Note that the definition is similar to the interpretation of the UnsafeEml in section 8.2.2. The

arguments ι, j and k are the inodes of the /mail/tmp/42.msg email file, the /mail directory and the

/mail/tmp directory respectively. The argument l, when l 6= ⊥, captures the inode of the directory

created with the path /mail/42 by the server’s mkdir. Additionally, we define the following set of

possible file-system graphs:

EML(ι, j, k, l) ,
{

FS
∣∣∣ EFS(FS , ι, j, k, (1,⊥))

}
∪
{

FS
∣∣∣ n ∈ N6

2. EFS(FS , ι, j, k, (n, l))
}

We define the context invariant as follows:

EmlCtx(ι, j, k) ,

LFCtx(/mail/.lock)

∧ ∃l,FS ∈ EML(ι, j, k, l).GFS(FS )

∧ ! [E] ∈ GGFS

∧ ∀FS , l. EML(FS , ι, j, k, (1,⊥)) ∧ (FS ,FS [j 7→ FS (j)[42 7→ l]]) †GFS [E]

∧ ∀FS , l. EML(FS , ι, j, k, (2, l)) ∧ (FS ,FS [k 7→ FS (k) \ {42.msg}][l 7→ FS (l)[unsafe.eml 7→ ι]]) †GFS [E]

∧ ∀FS , l. EML(FS , ι, j, k, (3, l)) ∧ (FS ,FS [j 7→ FS (j) \ {42}][j 7→ FS (j)[quarantine 7→ l]]) †GFS [E]

∧ ∀FS , l. EML(FS , ι, j, k, (4, l)) ∧ (FS ,FS [l 7→ FS (l)[msg.eml 7→ ι]]) †GFS [E]

∧ ∀FS , l. EML(FS , ι, j, k, (5, l)) ∧ (FS ,FS [j 7→ FS (j) \ {quarantine}][j 7→ FS (j)[42 7→ l]]) †GFS [E]

∧ ∀G ∈ GGFS.G#E ∧ ∀FS ,FS ′ ∈ EML(ι, j, k).

(FS ,FS ′) ∈ TGFS(G)∗ ∧ /mail/42
FS7−−→ − ⇒ FS�/mail/42 = FS ′�/mail/42

(FS ,FS ′) ∈ TGFS(G)∗ ∧ /mail/quarantine
FS7−−→ − ⇒ FS�/mail/quarantine = FS ′�/mail/quarantine

The arguments ι, j and k are the inodes of the /mail/tmp/42.msg email file, the /mail directory

and the /mail/tmp directory respectively. The first line in the definition states that lock-file context

invariant LFCtx must hold for the path to the lock file we are using. Recall the definition of LFCtx

in chapter 6, section 6.2. LFCtx(/mail/.lock) restricts the shared file-system state such that it always

contains the /mail which in turn may contain a file named .lock: file-system graphs must be within

the set LF(/mail/.lock). The second line in the definition of EmlCtx restricts these states even further

to those within the set EML(ι, j, k, l) for some inode l. The conjunction between the two effectively

restricts the shared file-system state to the intersection LF(/mail/.lock) ∩ EML(ι, j, k, l). It is easy

to see that this intersection is non-empty. The third line in the definition of EmlCtx requires that the

indivisible guard E is defined for the global file-system region GFS. The next five lines state that

updating the email client-server state is exclusively defined for the E guard. The final part in the

definition of EmlCtx restricts all other guards defined for GFS to preserve the file-system sub-graphs

identified by the paths /mail/42 and /mail/quarantine. This guarantees that the context does not

concurrently divert these paths to a different location.
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Assuming the context invariant, we verify that the email client-server interaction in figure 8.17

satisfies the following specification:
∃FS .GFS(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ − ∗ [E] ∗ [LF(/mail/.lock)] ,

GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ delivered 6∈ Errs⇒ is not virus


Note that this differs from the specification in section 8.2.1 only in the use of the global file-system

region, the requirement that /mail.lock does not initially exist and the guards E and [LF(/mail/.lock)].

Crucially, the postcondition establishes the desired safety property: delivered 6∈ Errs⇒ is not virus.

In order to verify that the email client-server interaction in figure 8.17 is a refinement of the specifi-

cation given above, we introduce a new region type SafeEml, defined similarly to UnsafeEml from

section 8.2.2. We take the abstract states of this region from the set (N6
2× Inodes)∪ ({0}× Inodes)∪

{(1,⊥)}, as in UnsafeEml. The abstract states of SafeEml are given the following interpretation:

Ir(SafeEmlα(ι, j, k, (1,⊥))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (1,⊥)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (2, l))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (2, l)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (3, l))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (3, l)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (4, l))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (4, l)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (5, l))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (5, l)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (6, l))) , ∃FS .GFS(FS ) ∧ EFS(FS , ι, j, k, (6, l)) ∗ [E]

Ir(SafeEmlα(ι, j, k, (0, l))) , true

This differs from the interpretation of UnsafeEml in the use of the global file-system region GFS

and the additional guard G.

We define the guards G, R, W, F, L and U for SafeEml, where the guards G and U are parameterised

by a permission π ∈ (0, 1]. The guard algebra is defined as follows:

F = R •W ∀π1, π2. π1 + π2 ≤ 1 ∧ G (π1 + π2) = G (π1) • G (π2) G (1) • L = U (1)

The labelled transition system for SafeEml is defined as follows:

G (1) : (1,⊥) ∃ι.(2, ι) G (1) : ∀ι ∈ Inodes. (2, ι) (3, ι) G (1) : ∀ι ∈ Inodes. (3, ι) (4, ι)

U (1) : ∀ι ∈ Inodes. (4, ι) (5, ι) U (1) : ∀ι ∈ Inodes. (5, ι) (6, ι)

F : ∀ι ∈ Inodes. (5, ι) (0, ι) F : ∀ι ∈ Inodes. (6, ι) (0, ι)

The capability to update the region’s state from (1,⊥) to (4, ι) for some inode ι is given by the guard

G as for UnsafeEml. However, the capability to update the region’s state from (4, ι) to (6, ι) is given

by the U guard. By the guard algebra defined previously, this guard can be obtained by composing G

with L. Thus in order to perform these updates the email server must own both guards. We will use

the CAP-style specification for lock files from section 8.1 with the guard L as the resource invariant

protected by the lock. Thus the updates from state (4, ι) to (6, ι) can only be performed when the

151



lock is locked and the guard G is owned.

Let D , N6
1 × ({⊥} ∪ Inodes).

EmlCtx(ι, j, k) `

lock(/mail/.lock);
let delivered =
stat(/mail/42/msg.eml);

unlock(/mail/.lock)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

mkdir(/mail/42);
rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
rename(/mail/42, /mail/quarantine);
lock(/mail/.lock);
rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
let is not virus = run av scan();
if is not virus then
rename(/mail/quarantine, /mail/42);

fi
unlock(/mail/.lock)

v by figure 8.10, figure 8.12, Parallel and HCons
(
∃(n, l) ∈ N6

1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ isLock(s, /mail/.lock)
)

∗ (SafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α ∗ isLock(s, /mail/.lock)) ,(
∃(n, l) ∈ N6

1 ×D.SafeEmlα(ι, j, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6
)

∗
(
∃(n, l) ∈ N6

5 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus
)


v by HCons
SafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [F]α ∗ isLock(s, /mail/.lock) ,
∃(n, l) ∈ N6

5 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [F]α
∗ delivered 6∈ Errs⇒ is not virus


v by EElimHoare on α and s, CreateRegion and HCons similarly to figure 8.5

and EElimHoare on j, k
GFS(FS ) ∧ ∃j, k.FS (ι0)(mail) = j ∧ FS (j)(tmp) = k ∧ FS (k)(42.msg) = ι ∧ isfile(FS (ι))
∧ 42 6∈ FS (j) ∧ quarantine 6∈ FS (j) ∧ .lock 6∈ FS (j) ∗ [E] ∗ [LF(/mail/.lock)] ,
GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ delivered 6∈ Errs⇒ is not virus


v by HCons
∃FS .GFS(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ − ∗ [E] ∗ [LF(/mail/.lock)] ,
GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ delivered 6∈ Errs⇒ is not virus


Figure 8.18.: Proof of safe email client-server interaction assuming EmlCtx(ι, j, k).

We prove that the email client-server interaction is a refinement of the specification given previously

in figure 8.18. The proof follows a similar pattern to the unsafe email client-server proof in figure 8.9,

with the main difference being the use of the lock file.

The refinement to the email client thread is given in figure 8.19. Note that after performing

lock(/mail.lock) we obtain ownership of the L guard. Ownership of this guard together with the

absence of the G, which owned by the server, guarantees that once the lock is locked the SafeEml

cannot be in state 5: the server requires ownership of L in order to perform this update. Recall from

section 8.2.2, figure 8.10, that stat could succeed if the UnsafeEml region was in state 5. Now, stat

only succeeds if the region is in state 6; that is, only if the path /mail/42/msg.eml actually exists.

Finally, the refinement to the server thread is given in figure 8.20. Here, after the lock is locked

we obtain ownership of the L which we subsequently compose with the G guard to obtain U. Then,

ownership of U grants the capability to perform the renames between lock and unlock.
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Let D , N6
1 × ({⊥} ∪ Inodes).

EmlCtx(ι, j, k) `

S
e
q

lock(/mail/.lock);
v by section 8.1 with Inv= [L]α and HFrame

isLock(s, /mail/.lock) ∗ ∃(n, l) ∈ N6
1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,

isLock(s, /mail/.lock) ∗ Locked(s, /mail/.lock) ∗ [L]α
∗ ∃(n, l) ∈ N6

1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α


v by HCons

isLock(s, /mail/.lock) ∗ ∃(n, l) ∈ N6
1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,

isLock(s, /mail/.lock) ∗ Locked(s, /mail/.lock) ∗ [L]α
∗ ∃(n, l) ∈ N4

1 ∪ {6} × D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α


let delivered =
stat(/mail/42/msg.eml);
v similarly to figure 8.10 and HFrame{

[L]α ∗ ∃(n, l) ∈ N4
1 ∪ {6} × D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,

[L]α ∗ ∃(n, l) ∈ N4
1 ∪ {6} × D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6

}
unlock(/mail/.lock);
v by section 8.1 with Inv= [L]α, HCons and HFrame

isLock(s, /mail/.lock) ∗ Locked(s, /mail/.lock) ∗ [L]α
∗ ∃(n, l) ∈ N4

1 ∪ {6} × D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6,
isLock(s, /mail/.lock) ∗ ∃(n, l) ∈ N6

1 ×D.SafeEmlα(ι, j, k, (n, l))
∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6


v
{

isLock(s, /mail/.lock) ∗ ∃(n, l) ∈ N6
1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ,

isLock(s, /mail/.lock) ∗ ∃(n, l) ∈ N6
1 ×D.SafeEmlα(ι, j, k, (n, l)) ∗ [R]α ∗ delivered 6∈ Errs⇒ n = 6

}

Figure 8.19.: Refinement to the safe email client assuming EmlCtx(ι, j, k).

The specification we have verified for the safe email client-server interaction in figure 8.18 holds for

all contexts that maintain the EmlCtx context invariant. Consequently, it holds for the trivial context

where the email client and server are the only threads accessing the file system. In fact, we can show

that it is a refinement of a specification that owns the entire file system as follows:

EmlCtx(ι, j, k) `


∃FS .GFS(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ − ∗ [E] ∗ [LF(/mail/.lock)] ,

GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ delivered 6∈ Errs⇒ is not virus


v by definition 57 and AWeaken1
∃FS .GFS(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ − ∗ [E] ∗ [LF(/mail/.lock)] ∗ EmlCtx(ι, j, k) ,

GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ EmlCtx(ι, j, k) ∗ delivered 6∈ Errs⇒ is not virus


v by HCons
∃FS .GFS(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ − ∗ [E] ∗ [LF(/mail/.lock)] ,

GFS(−) ∗ [E] ∗ [LF(/mail/.lock)] ∗ delivered 6∈ Errs⇒ is not virus


v by CreateRegion and HCons
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
fs(FS ) ∧ /mail/tmp/42.msg

FS7−−→ ι ∧ isfile(FS (ι)) ∧ ¬/mail/42
FS7−−→ −

∧ ¬/mail/quarantine
FS7−−→ − ∧ ¬/mail/.lock

FS7−−→ −,
fs(−) ∗ delivered 6∈ Errs⇒ is not virus


Reading the derivation from the specification at the bottom up to the top specification, in the first

refinement step we use HCons with the CreateRegion view-shift to create the global file-system

region. Additional with HCons we weaken the precondition by existentially quantifying the file-

system graph FS . At this point the precondition satisfies the EmlCtx context invariant. Thus, in

the next step we apply HCons introducing EmlCtx(ι, j, k) in the precondition and postcondition (by

strengthening). Recall that from definition 57 the Hoare specification statement is just a special case

of the atomic specification statement. In the last refinement step we use the definition of the Hoare

specification statement in terms of the atomic statement and apply AWeaken1 to bring EmlCtx to

the public part. This, by definition 57 results in the Hoare specification statement invariant under

EmlCtx(ι, j, k) at the top of the derivation, which is the specification we have proven in figure 8.18.

This refinement proof serves as an example of how a context invariant can be introduced.
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EmlCtx(ι, j, k) `

H
F
r
a
m
e

,
H
C
o
n
s

an
d
S
e
q

mkdir(/mail/42);
v similarly to figure 8.13
{SafeEmlα(ι, j, k, (1,⊥)) ∗ [G(1)]α ∗ [W]α , ∃l.SafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α}

rename(/mail/tmp/42.msg, /mail/42/unsafe.eml);
v similarly to figure 8.14 and EElimHoare
{∃l.SafeEmlα(ι, j, k, (2, l)) ∗ [G(1)]α ∗ [W]α , ∃l.SafeEmlα(ι, j, k, (3, l)) ∗ [G(1)]α ∗ [W]α}

rename(/mail/42, /mail/quarantine);
v similarly to figure 8.14 and EElimHoare
{∃l.SafeEmlα(ι, j, k, (3, l)) ∗ [G(1)]α ∗ [W]α , ∃l.SafeEmlα(ι, j, k, (4, l)) ∗ [G(1)]α ∗ [W]α}

lock(/mail/.lock);
v by section 8.1 and HFrame

isLock(s, /mail/.lock) ∗ ∃l.SafeEmlα(ι, j, k, (4, l)) ∗ [G(1)]α ∗ [W]α ,
isLock(s, /mail/.lock) ∗ Locked(s, /mail/.lock) ∗ [L]α
∗ ∃l.SafeEmlα(ι, j, k, (4, l)) ∗ [G(1)]α ∗ [W]α


rename(/mail/quarantine/unsafe.eml, /mail/quarantine/msg.eml);
v similarly to figure 8.14 and EElimHoare
{∃l.SafeEmlα(ι, j, k, (4, l)) ∗ [U(1)]α ∗ [W]α , ∃l.SafeEmlα(ι, j, k, (5, l)) ∗ [U(1)]α ∗ [W]α}

let is not virus = run av scan();
v by specification, AEElim, ACons, AFrame, OpenRegion and AWeaken2{
∃l.SafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α ,
∃l.SafeEmlα(ι, j, k, (5, l)) ∗ [G(1)]α ∗ [W]α ∗ is not virus ∈ B

}

If
T
h
e
n
E
l
se

if is not virus then
rename(/mail/quarantine, /mail/42);
v similarly to figure 8.14 and EElimHoare{
∃l.SafeEmlα(ι, j, k, (5, l)) ∗ [U(1)]α ∗ [W]α ∗ is not virus,
∃l.SafeEmlα(ι, j, k, (6, l)) ∗ [U(1)]α ∗ [W]α ∗ is not virus

}
fi

v
{
∃l.SafeEmlα(ι, j, k, (5, l)) ∗ [U(1)]α ∗ [W]α ∗ is not virus ∈ B,
∃n ∈ N6

5, l.SafeEmlα(ι, j, k, (n, l)) ∗ [U(1)]α ∗ [W]α ∗ n = 6⇒ is not virus

}
unlock(/mail/.lock)
v by section 8.1 with Inv = [L]α and HFrame

isLock(s, /mail/.lock) ∗ Locked(s, /mail/.lock)
∗ ∃n ∈ N6

5, l.SafeEmlα(ι, j, k, (n, l)) ∗ [L]α ∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus,
isLock(s, /mail/.lock) ∗ ∃n ∈ N6

5, l.SafeEmlα(ι, j, k, (n, l))
∗ [G(1)]α ∗ [W]α ∗ n = 6⇒ is not virus


v


isLock(s, /mail/.lock) ∗ SafeEmlα(ι, j, k, (1,⊥)),
isLock(s, /mail/.lock) ∗ ∃n ∈ N6

5, l.SafeEmlα(ι, j, k, (n, l)) ∗ [G(1)]α ∗ [W]α
∗ n = 6⇒ is not virus


Figure 8.20.: Refinement to the safe email server assuming EmlCtx(ι, j, k).
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8.3. Case Study: Named Pipes

We now apply our reasoning and file-system specification to study named pipes. Named pipes are

specified as part of the POSIX standard and provide a widely used mechanism for inter-process

communication.

A named pipe is a special type of file. Like a regular file, a named-pipe file stores an arbitrary

sequence of bytes. However, in contrast to a regular file, the behaviour of I/O operations acting on

a named-pipe file is restricted. First, named pipes do not support random access. The current file

offset associated with a file descriptor opened on a named pipe is irrelevant, and it cannot be modified

by lseek. Second, writing and reading from a named-pipe file behaves on a first in, first out (FIFO)

basis. A write appends the user supplied sequence of bytes to the end of the named-pipe file. A read

reads the user defined number of bytes from the beginning of the named-pipe file, while simultaneously

removing them. Therefore, named pipes behave similarly to queues and are also referred to as FIFOs.

Imagine an otherwise POSIX compliant system which does not support named pipes. The named-

pipe functionality will then have to be implemented as a client module. This presents an opportunity to

demonstrate the scalability of our client reasoning, to client modules that implement a concurrent data

structure on top of the file system – in this case, a concurrent queue-like structure – and define both

atomic and non-atomic operations to access it. Instead of extending our POSIX fragment specification

to include named pipes, we develop a module that implements the named-pipe functionality via regular

file I/O. We then apply our reasoning and show that the named-pipe module implementation satisfies

its specification.

8.3.1. Specification

There can be multiple readers and writers for the named pipe, reading and writing arbitrary numbers

of bytes. We use the abstract predicate fifo(s, ι,wr , rd , y) to assert the existence of named-pipe file

with inode ι, that is opened for writing wr times and opened for reading rd times, and with contents

given by the byte sequence y . The first argument, s ∈ T3, ranges over an abstract type that captures

implementation defined invariant information.

Named pipes are constructed with the mkfifo operation, that works similarly to open, except that

it creates a new empty named pipe, instead of a regular file, with the following specification:

mkfifo(path)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then return new fifo(r , a)

else return r fi

where new fifo is defined in figure 8.21, along with other lower level abstract named-pipe operations.

According to the specification, mkfifo first resolves the path prefix p. If the resolution succeeds, it

creates a new named-pipe file and adds a link to it, named a, in the resolved directory. If a link

named a already exists, then ENOENT is returned. If p does not resolve to a directory, then ENOTDIR is

returned.
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let new fifo(ι, a) ,

∃ι′.

( A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε) ∗ ret = 0〉;
I ` [ret = 0⇒ ∃s. fifo(s, ι′, 0, 0, ε)]

)
u return eexist(ι, a)

u return enotdir(ι)

let fifo open read(ι) ,

A

wr , rd , y . 〈fifo(s, ι,wr , rd , y) , fifo(s, ι,wr , rd + 1, y) ∗ ffd(ret, r , O RDONLY)〉
u return eisdir(ι)

let fifo open write(ι) ,

A

wr , rd , y . 〈fifo(s, ι,wr , rd , y) , fifo(s, ι,wr + 1, rd , y) ∗ ffd(ret, r , O WRONLY)〉
u return eisdir(ι)

let fifo write readers(fd , ptr , sz ) ,

A

wr , rd , ys .

〈
ffd(fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ buf(ptr , yt) ∧ len(yt) = sz ,

rd > 0⇒ ffd(fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys :: yt) ∗ buf(ptr , yt) ∗ ret = sz

〉

let fifo read nowriters(fd) ,

A

wr , rd , ys .

〈
ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ,

w = 0 ∧ ys = ε⇒ ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ ret = 0

〉

let fifo read partial(fd , ptr , sz ) ,
A

wr , rd , ys .〈ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ buf(ptr , yt) ∧ len(yt) = sz ,

w > 0 ∧ len(ys) < sz ⇒ ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ε)

∗ buf(ptr , yt � ys) ∗ ret = len(ys)
〉

let fifo read complete(fd , ptr , sz ) ,

A

wr , rd , ys .〈ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ buf(ptr , yt) ∧ len(yt) = sz ,

w > 0 ∧ len(ys) >= sz ⇒ ffd(fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , skipseq(sz , ys))

∗ buf(ptr , subseq(0, sz , ys)) ∗ ret = sz
〉

Figure 8.21.: Specification of atomic named-pipe operations.

let fifo eaccess(fd ,flag) ,
〈ffd(fd , ι,flag) , ffd(fd , ι,flag) ∗ ret = EACCESS〉

let fifo epipe(fd) ,

A

wr , rd , ys .

〈
ffd(fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys) ,

rd = 0⇒ ffd(fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ ret = EPIPE

〉

Figure 8.22.: Specification of named-pipe specific error cases.
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Consider the definition of new fifo in figure 8.21. The success case consists of two steps. The

atomic statement in the first step states that if a link named a does not exist within the directory

ι, then a link named a to a new empty regular file with inode ι′ is created atomically, within that

directory, and the return variable ret is set to 0 to indicate success. The assumption statement in the

second step states that if the first step was successful (ret = 0), then at the end of this step the file

with inode ι′ is an empty named pipe.

Recall from chapter 7, section 7.6, that assumption statements are not atomic. This means that

clients of mkfifo can rely on the link to the named-pipe file to be created atomically, but not on the

creation of the named pipe itself. This reflects the fact that implementations can create a named pipes

in a sequence of steps, first creating the file for storing the named pipe and then initialising that file

to an empty named pipe. Even though the file is created atomically, the subsequent initialisation is

implementation defined and thus the specification does not impose any requirements other than the

fact that at the end we obtain an empty named pipe.

Note that the assumption statement holds under the invariant I. This invariant denotes the context

invariant of the particular implementation of the named-pipe module. The invariant comes in effect

only after the link to the named pipe has been created.

Like any other file, a named pipe must first be opened for I/O in order to read or write using a file

descriptor. For presentation simplicity, we consider separate operations for opening, reading, writing

and closing opened named pipes than the I/O operations for regular files. A named pipe can be either

opened for reading or writing, but not both, using fifo open with the following specification:

fifo open(path,mode)

v let r = resolve(path, ι0);

if ¬iserr(r) then

if mode = O RDONLY then return fifo open read(r)

else if mode = O WRONLY then return fifo open write(r)

else return EACCESS fi

else return r fi

The operation takes as arguments the path to the named pipe and the I/O mode mode, with possible

values O RDONLY and O WRONLY, indicating opening for reading or writing respectively. It first resolves

the path to the named pipe and, if successful, opens it for I/O according to the value of mode, allocating

and returning a file descriptor for the named pipe. We use the abstract predicate ffd(s, fd , ι,mode)

to assert a named-pipe file descriptor fd , for the named pipe with inode ι, opened with mode mode.

The first argument s ∈ T3, ranges over the abstract type T3 capturing the same implementation

defined invariant information as the first argument to the fifo predicate. We use a different predicate

for named-pipe file descriptors from regular file descriptors because the notions of offset and random

access are undefined for named pipes.

A named-pipe file descriptor allows us to read an arbitrary number of bytes from the named pipe

to a heap buffer, using the fifo read operation. Any bytes read are also removed from the named
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pipe. The specification of fifo read is given as follows:

fifo read(fd , ptr , sz )

v return fifo read partial(fd , ptr , sz )

u return fifo read complete(fd , ptr , sz )

u return fifo read nowriters(fd)

u return fifo eaccess(fd , O WRONLY)

In contrast to the previous operations, fifo read is atomic. We use the predicate buf(ptr , y) to

describe the heap buffer at address ptr storing the sequence of bytes y . We denote the length of a

sequence y with len(y), and ys :: yt denotes the concatenation of sequences ys and yt . There are four

demonic cases. The case of fifo read partial specifies an attempt to read a larger number of bytes

than what is stored in the named pipe. In this case, all the bytes in the named pipe are removed

from the named pipe and placed into the heap buffer with address ptr . Note that the number of bytes

read will be smaller than sz . In contrast, fifo read complete specifies the case of being able read

exactly sz bytes. The case of fifo read nowriters specifies that if there are no writers for the named

pipe, or the named pipe is empty, fifo read immediately returns 0. Finally, fifo eaccess, defined

in figure 8.22 along with other named-pipe specific error cases, specifies that if we attempt to read

from a named pipe with a named-pipe file descriptor opened for writing, then the EACCESS error code

is returned.

A named-pipe file descriptor allows us to write an arbitrary number of bytes to the named pipe

from a heap buffer, using the fifo write operation specified as follows:

fifo write(fd , ptr , sz )

v return fifo write readers(fd , ptr , sz )

u return fifo epipe(fd)

u return fifo eaccess(fd , O RDONLY)

There are three demonic cases. The case of fifo write readers specifies that the contents of the

heap buffer with address ptr are appended to the named pipe, with the proviso that the named pipe is

opened for reading rd > 0. In contrast, fifo epipe, defined in figure 8.22, specifies that if the named

pipe is not opened for reading (rd = 0), then the EPIPE error code is returned. Finally, fifo eaccess

specifies that if we use fifo write with a file descriptor for reading, then the EACCESS error code is

returned.

8.3.2. Implementation

We study an implementation of the named-pipe specification given previously, purely in terms of

regular file I/O and lock files (section 8.1). The implementation stores metadata and other information

in a header block at the file’s beginning, following the format given below:

writers readers data offset name size name

Header Block

The header block begins at file-offset 0, and stores in order: the number of writers, the number of

readers, the file-offset at which the contents of the named pipe begin, the size of the filename of the
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pipe, and the name of the pipe itself. The header block is followed by the byte contents stored in

the named pipe beginning at the data offset stored in the header. If the pipe is empty, there are no

available bytes to read and the data offset in the header has value −1.

Implementation of mkfifo

We implement the mkfifo operation as follows:

let mkfifo(path) ,

let a = basename(path);

let fd = open(path, O EXCL|O CREAT|O RDWR);

if ¬iserr(fd) then

write fifo header(fd , a);

close(fd);

return 0

else return fd fi

Initially, we attempt to create and open a new regular file at the end of path for reading and writing

with open. If open is unsuccessful, mkfifo will either return the EEXIST error if the named pipe

already exists at the end of path, or the ENOTDIR error if the path-prefix does not resolve to a directory.

Otherwise open creates a new regular file and opens it for I/O returning a file descriptor. To turn

this new file into a named-pipe, we proceed to write the initial header block of the named-pipe with

write fifo header, after which we close the file descriptor and return 0.

We implement write fifo header as follows:

let write fifo header(fd , a) ,

let h = malloc(4 ∗ sizeof(int) + len(a));

memwrite(h, i2b(0) :: i2b(0) :: i2b(−1) :: len(a) :: a);

write(fd , h, 4 ∗ sizeof(int) + len(a))

The argument fd is the file descriptor to the newly created file and a is the file’s name. We use

malloc to allocate a heap buffer that will store the bytes of the header block. Note that the size of

the header block, and thus also the heap buffer allocation size, is 4 ∗ sizeof(int) + len(a): 5 integers

(writers,readers,data offset,name size) and the number of bytes comprising the name a. Then, we use

the memcpy operation to set the contents of the heap buffer to be the bytes comprising the header

block. Since we are creating a new named-pipe, the number of writers and readers is set to 0, and

the data offset is set to -1. We write the contents of the heap buffer to the file using write, the

specification of which we discussed in chapter 6, section 6.1.3.

Implementation of fifo open

We implement the fifo open operation in figure 8.23. Depending on the value of mode, the implemen-

tation increments the number of readers or writers with fifo incr readers and fifo incr writers

respectively, before constructing and returning the named-pipe file descriptor with fifo mk desc.

Note that the increment is protected by a lock file constructed from the filename of the named-pipe
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fifo open(path,mode) ,
let a = basename(path);
let lf = /“tmp”/(a :: “.lock”);
let fd = open(path, O RDWR);
if ¬iserr(fd) then

if mode = O RDONLY then
lock(lf );
fifo incr readers(fd);
unlock(lf );
return fifo mk desc(fd , O RDONLY)

else if mode = O WRONLY then
lock(lf );
fifo incr writers(fd);
unlock(lf );
return fifo mk desc(fd , O WRONLY)

else
close(fd);
return EACCESS

fi
else return fd fi

Figure 8.23.: Implementation of fifo open.

file. This is because the increment is not atomic: we must first read the file, bringing the value of the

counter to (heap) memory, and then write the incremented value back. The fifo incr readers and

fifo incr writers operations are implemented as follows:

let fifo incr readers(fd) ,

let h = malloc(sizeof(int));

pread(fd , h, sizeof(int), sizeof(int));

let rd = memread(h, int);

memwrite(h, i2b(rd + 1));

pwrite(fd , h, sizeof(int), sizeof(int))

let fifo incr writers(fd) ,

let h = malloc(sizeof(int));

pread(fd , h, sizeof(int), 0);

let wr = memread(h, int);

memwrite(h, i2b(wr + 1));

pwrite(fd , h, sizeof(int), 0)

Both operations first allocate a heap buffer for a single integer, then read the appropriate counter

stored within the header block, increment its value in memory, and write its new value back to the

header block.

Note that here we use the pwrite and pread operations. These behave similarly to write and read,
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except that file offset at which the operations take effect is not taken from the file descriptor, but given

explicitly as an argument instead. The specifications of pread and pwrite are given in figure 8.24.

The advantage of these operations is that they allow atomic random access to the file associated with

the file descriptor. In contrast, write and read require the use of the lseek operation to change the

file offset associated with the file descriptor.

We use these operations merely for convenience: we do not have to perform an extra lseek before

each read and write. At the point where fifo incr readers and fifo incr writers are used the file

descriptor to the named-pipe file is private to the thread performing the operations. Therefore, the

current file offset associated with the file descriptor is not subject to interference from the environment.

Thus, using read and write instead of pread and pwrite, with an additional lseek before each, would

be valid, albeit more verbose.

pwrite(fd , ptr , sz , off )

v pwrite off(fd , ptr , sz , off )

u write badf(fd)

pread(fd , ptr , sz , off )

v pread norm(fd , ptr , sz , off )

u read badf(fd)

let pwrite off(fd , ptr , sz , off ) ,

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι,−,fl) ∧ iswrfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ,

fs(FS [ι 7→ FS (ι)[off ← y ]]) ∗ fd(fd , ι,−,fl) ∧ iswrfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ∗ ret = sz

〉

let pread norm(fd , ptr , sz , off ) ,

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι,−,fl) ∧ isrdfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ,

∃yt . fs(FS ) ∗ fd(fd , ι,−,fl) ∗ buf(ptr , y � yt) ∧ yt = FS (ι)[off , sz ] ∗ ret = len(yt)

〉

Figure 8.24.: Specification of POSIX pwrite and pread

Finally, fifo mk desc is implemented as follows:

let fifo mk desc(fd ,mode) ,

let h = malloc(2 ∗ sizeof(int));

memcpy(h, i2b(fd) :: i2b(mode));

return h

This simply allocates a heap buffer to store the real file descriptor to the file, which has an integer

value, and the mode under which the named pipe is opened. The address of this heap buffer then

serves the role of a “named-pipe file descriptor”, effectively hiding the real file descriptor used for I/O

on the regular file that stores the named pipe.

Implementation of fifo read

We implement fifo read in figure 8.25. The ffd argument is a pointer to the heap buffer that has
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fifo read(ffd , ptr , sz ) ,
let mode = fifo get mode(ffd);
let fd = fifo get fd(ffd);
if mode = O RDONLY then

let name = fifo get name(fd);
let lockfile = /“tmp”/(name + “.lock”);
lock(lockfile);
let writers = fifo get writers(fd);
let empty = fifo is empty(fd);
if writers = 0 ∧ empty then
unlock(lockfile);
return 0

else if empty then
unlock(lockfile);
return fifo read(fd , ptr , sz )

else
let sz ′ = fifo read contents(fd , ptr , sz );
unlock(lockfile);
return sz ′

fi
else return EACCESS fi

Figure 8.25.: Implementation of fifo read.

been previously created by fifo mk desc. From this buffer we read the mode with which the named

pipe was opened for I/O, with fifo get mode, and the file descriptor opened for the named pipe

file, with fifo get fd. If the named pipe has not been opened for reading, then we directly return

EACCESS. Otherwise, we read the name of the named pipe file with fifo get name and construct

the path of the lock file that we use in the implementation. fifo get name reads the name from the

header block. Therefore, even if the name of the named pipe file is changed by the environment, or

even if it is unlinked, we still use the same lock file path throughout the lifetime of the named pipe.

We then proceed to lock the lock file, thus preventing other named-pipe operations from modifying its

internal structure. Next, we read the number of writers and whether the named-pipe is empty from

the header block with fifo get writers and fifo is empty. If there are no writers and the named

pipe is empty, we unlock the lock and return 0 to indicate that there are no data to read. If there

are writers but the named pipe is empty, we unlock and retry. Otherwise, either there are writers

or the named pipe is not empty and we read the contents named pipe into the heap buffer ptr with

fifo read contents, unlock and return the number of bytes actually read.
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The implementations of fifo get mode, fifo get fd and fifo get name are as follows:

let fifo get mode(ffd) ,

return memread(ffd + sizeof(int), int)

let fifo get fd(ffd) ,

return memread(ffd , int)

let fifo get name(fd) ,

let hsz = malloc(sizeof(int));

pread(fd , hsz , sizeof(int), 4 ∗ sizeof(int));

let size = memread(hsz , int);

let hn = malloc(size);

pread(fd , hn, size, 5 ∗ sizeof(int));

return memread(hn, STR(size))

fifo get mode and fifo get fd simply read the from the heap buffer ffd the integer corresponding

to the I/O mode and file descriptor accordingly. In fifo get name we first read the size of the name

stored in the header block, allocate a heap buffer of that size, read the name stored in header block

to the buffer, and finally return its contents.

The implementations of fifo get writers, fifo get readers and fifo is empty are as follows:

let fifo get writers(fd) ,

let h = malloc(sizeof(int));

pread(fd , h, sizeof(int), 0);

return memread(h, int)

let fifo get readers(fd) ,

let h = malloc(sizeof(int));

pread(fd , h, sizeof(int), sizeof(int));

return memread(h, int)

let fifo is empty(fd) ,

let h = malloc(sizeof(int));

pread(fd , h, sizeof(int), 2 ∗ sizeof(int));

let next = memread(h, int);

return next = −1

The operations simply allocate a buffer for storing an integer, read the appropriate field from the

header block and return the read contents. In the case of fifo is empty if the data offset is -1, we

return true, otherwise we return false.

The implementation of fifo read contents is given as follows:

let fifo read contents(fd , ptr , sz ) ,

let hoff = malloc(sizeof(int));

pread(fd , hoff , sizeof(int), 2 ∗ sizeof(int));

let off = memread(hoff , int);

let sz ′ = pread(fd , off , ptr , sz );

if sz ′ < sz then memwrite(hoff , i2b(−1))

else memwrite(hoff , i2b(off + sz )) fi

pwrite(fd , hoff , sizeof(int), 2 ∗ sizeof(int));

return sz ′

The arguments ptr and sz are the same arguments given to fifo read: ptr is a pointer to the heap
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buffer into which we will read the contents of the named pipe, and sz is the size of the buffer. We first

allocate a buffer for a single integer into which we read the data offset from the header block using

pread. Then, we proceed to read sz number of bytes from the file starting at that the data offset. We

now need to update the header block to a new offset. The named pipe may store less bytes than the

number sz requested. If this is the case, we have read everything stored in the named pipe, and thus

we write -1 to the header field storing the data offset. Otherwise, we increment the data offset stored

in the header by the number of bytes we have read. Finally, we return the number of bytes we have

actually read from the named pipe.

Implementation of fifo write

We implement fifo write in figure 8.26. The implementation follows a similar structure to fifo read.

fifo write(ffd , ptr , sz ) ,
let fd = fifo get fd(ffd);
let mode = fifo get mode(ffd);
if mode = O WRONLY then

let name = fifo get name(fd);
let lockfile = /“tmp”/(name + “.lock”);
let readers = fifo get readers(fd);
if readers = 0 then return EPIPE

else
lock(lockfile);
let sz ′ = fifo write contents(fd , ptr , sz );
unlock(lockfile);
return sz ′

fi
else return EACCESS fi

Figure 8.26.: Implementation of fifo write.

An attempt to write to the named pipe is only performed if the named pipe has been opened in

O WRONLY mode. In that case, the lock file associated with the named pipe is locked before any

modification occurs. The actual write is performed by the auxiliary operation fifo write contents

after which the lock is unlocked. If there are no readers, the EPIPE error is returned.

let fifo write contents(fd , ptr , sz ) ,

let empty = fifo is empty(fd);

let off = lseek end(fd , 0, SEEK END});
pwrite(fd , h, sz , off );

if empty then

malloc(hoff , sizeof(int));

memwrite(hoff , i2b(off ));

pwrite(fd , hoff , sizeof(int), 2 ∗ sizeof(int));

fi

return sz

165



hdr(y , a,wr , rd , fbo) , y = i2b(wr) :: i2b(rd) :: i2b(fbo) :: i2b(len(a)) :: a

fhr(y , a, rd) , hdr(y , a,−, rd ,−)

fhw(y , a,wr) , hdr(y , a,wr ,−,−)

fhn(y , a) , hdr(y , a,−,−,−)

fhns(y , a, sz ) , hdr(y , a,−,−,−) ∧ sz = len(a)

fhfbo(y , a, fbo) , hdr(y , a,−,−, fbo)

empfifo(y , a) , ∃y ′, y ′′. y = y ′ :: y ′′ ∧ hdr(y ′, a, 0, 0,−1)

newfifo(y , a) , hdr(y , a, 0, 0,−1,−1)

fimp(y , a,wr , rd , ys) , ∃fbo, yh , yd . y = yh :: yd :: ys ∧ hdr(yh , a,wr , rd , fbo) ∧ len(yh :: yd ) = fbo

fbs(y , a, ys) , ∃wr , rd . fimp(y , a,wr , rd , ys)

ffby(y , a, fbo, ys) , ∃yh , yd . y = yh :: yd :: ys ∧ hdr(yh , a,−,−, fbo) ∧ len(yh :: yd ) = fbo

isfifo(ι, a,FS ) , fimp(FS (ι), a,−,−,−)

Figure 8.27.: Naped-pipe header and data predicates.

In the fifo write contents operations we first read if the named pipe is empty from the header

block and then we use lseek to get the offset of end of the file. Then we write the contents of the user

supplied buffer ptr at that offset, thus extending the file. If the named pipe was previously empty,

we write the offset as the new data offset to the header block. Finally, we return the number of bytes

written.

8.3.3. Verification

The correctness of our named-pipe implementation is far from obvious. We now proceed to verify that

our implementation of the named-pipe module meets its specification.

In figure 8.27 we define predicates that describe the structure of the file contents. The predicate

hdr(y , a,wr , rd , fbo) describes the header block stored in the byte sequence y , with the named-pipe

filename a, number of writers wr , number of readers rd and the first block offset fbo. The predicate

fhr(y , a, rd) states that the number of readers in the named pipe header y with name a is rd . The

predicate fhw(y , a,wr) states that the number of writers in the named pipe header y with name a

is rd . The predicate fhn(y , a) states that the name of the named pipe in the header y is a. The

predicate fhns(y , a, sz ) states the name of the named pipe a in the header y is of length sz . The

predicate fhfbo(y , a, fbo) states that the data offset in the header y of the named pipe with name a

is fbo. The predicate empfifo(y , a) states that the byte sequence y stores the header of an empty and
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unopened named pipe with name a. The predicate fimp(y , a,wr , rd , ys) states that the byte sequence

y stores a named pipe with the name a, number of writers wr , number of readers rd and contents ys .

The predicate fbs(y , a, ys) states that the byte sequence y stores a named pipe named a with contents

ys . The predicate ffby(y , a, fbo, ys) states that the byte sequence y stores a named pipe named a with

contents ys that start at data offset fbo. Finally, the predicate isfifo(ι, a,FS ) states that within the

file-system graph FS , the file with inode ι stores the named-pipe structure of our implementation,

associated with the name a.

In order to account for the fact that the named pipe is shared according to a specific protocol, we

introduce the shared region type Fifo. Regions of this type are parameterised by the inode and name

of the named-pipe file. Its abstract states are triples, (wr , rd , y), consisting of the number of writers

wr , number of readers rd , and byte sequence stored in the named pipe y . We associate this region

type with four guards: W, R, WR and RD. Additionally we will make use of the empty guard 0. The

labelled state transition system for this region type is defined as follows:

0 : ∀wr , rd , y . (wr , rd , y) (wr + 1, rd , y)

0 : ∀wr , rd , y . (wr , rd , y) (wr , rd + 1, y)

W : ∀wr , rd , y , y ′. (wr , rd , y) (wr , rd , y :: y ′)

W : ∀wr , rd , y . (wr , rd , y) (wr − 1, rd , y)

R : ∀wr , rd , y , y ′. (wr , rd , y :: y ′) (wr , rd , y ′)

R : ∀wr , rd , y . (wr , rd , y) (wr , rd − 1, y)

The empty guard 0 allows opening the named pipe for writing and reading, incrementing the number

of writers and readers respectively. The W guard allows writing to the named pipe, as well as closing

it by decrementing the number of writers. Similarly, the R guard allows reading from the named pipe

and closing it. Finally, the guards WR and RD are used to count the number of W and R instances

respectively, with the following equivalence:

WR (n) = WR (n + 1) •W RD (n) = RD (n + 1) • R

We define the following interpretation for the region:

Ir(Fifoα(ι, a,wr , rd , y)) , ∃FS .GFS(FS ) ∧ fimp(FS (ι),wr , rd , y)

The interpretation requires the file system to contain a regular file with inode ι, the contents of which

store the named pipe according to the fimp predicate.

We are using the lock-file module introduced in chapter 6 in the implementation of operations that

manipulate a named pipe, and in particular the CAP-style specification of the module we derived in

section 8.1. This means that we need the context invariant LFCtx to hold. In addition, we require

a further restriction on the context to ensure that the contents of the named-pipe file may only be

modified through the operations of the named-pipe module. Therefore, we require a new context
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invariant, FifoCtx, that combines LFCtx with the additional restrictions over the named-pipe file.

FifoCtx(ι, a) , ∃FS .GFS(FS ) ∧ LFCtx(/“tmp”/a)

∧ !F (ι) ∈ GGFS ∧ ∀FS ,FS ′. isfifo(ι, a,FS ) ∧ isfifo(ι, a,FS ′) ∧ (FS ,FS ′) ∈ †GFSF (ι)

∧ ∀FS ,FS ′.FS (ι) ∧ empfifo(FS ′(ι), a) ∧ (FS ,FS ′) ∈ †GFS0

FifoCtx(ι) requires the indivisible guard F (ι) to be defined for global file-system region, and that

atomic updates to the named-pipe file are only allowed by this guard. Furthermore, only the zero

guard grants the capability to create a new named-pipe file. We are using the guard F of the global

file system region GFS as the resource invariant protected by the lock-file module. Thus, when the

lock is locked, we get ownership of F, thus gaining the capability to update the named-pipe file. When

the lock is unlocked that capability is returned. This ensures that under the context invariant only

one thread at a time can update the named pipe.

Assuming the context restriction FifoCtx holds, we implement the abstract named-pipe predicates

as follows:

T3 , RId× T2

fifo((α, s), ι,wr , rd , y) , ∃a.Fifoα(ι, a,wr , rd , y) ∗ [WR(wr)]α ∗ [RD(rd)]α ∗ isLock(s, /“tmp”/a)

ffd((α, s),ffd , ι, O WRONLY) , ∃fd ′. buf
(
ffd , i2b(O WRONLY) :: i2b

(
fd ′
))
∗ fd
(
fd ′, ι,−, O RDWR

)
∗ [W]α

ffd((α, s),ffd , ι, O RDONLY) , ∃fd ′. buf
(
ffd , i2b(O RDONLY) :: i2b

(
fd ′
))
∗ fd
(
fd ′, ι,−, O RDWR

)
∗ [R]α

The abstract type T3 is instantiated to the region identifier for the Fifo region type, and the abstract

type T1 used by the lock-file specification. The abstract predicate fifo encapsulates the Fifo region,

the capability to open the named-pipe for reading and writing with the WR and RD guards, as well as

the capability to lock the lock-file used in the named-pipe implementation with the isLock predicate.

The abstract predicate ffd encapsulates the heap buffer containing the mode with which a named pipe

is opened with fifo open, the file descriptor used by the implementation for I/O on the named-pipe

file, as well as the guard granting the capability to perform a write or a read on the named pipe.

Verification of mkfifo

First, we derive the refinement of figure 8.28 for the implementation of mkfifo. This new specification

program abstraction is obtained by replacing the invocation of open with its specification, and using

the encoding of if -then-else and distributivity of sequential composition over angelic choice.

In figure 8.29, we show the proof that mkfifo satisfies the specification given in section 8.3.1. We

read the proof in the direction of refinement: that is, from bottom to top. In our first refinement step

we we apply HAbstractR on the assumption to open the abstract predicate fifo, and immediately

apply HCons with the CreateRegion view-shift to open the Fifo region. We also use definition 57

to open the assumption into a Hoare specification statement. In the second refinement step we apply

ACons on the atomic statement, strengthening the postcondition to introduce the file descriptor

obtained by creating the named-pipe file. Additionally, in the Hoare statement we use the context
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mkfifo(path)
v let p = dirname(path);

let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

let fd = link new file(r , a, O EXCL|O CREAT|O RDWR)
u eexist(r , a)
u enotdir(r);

if ¬iserr(fd) then
write fifo header(fd);
close(fd);
return 0

else return fd fi
else return r fi

Figure 8.28.: Intermediate refinement of mkfifo, replacing open with its specifcation.

invariant and ACons to introduce the global file system region into the precondition. We then refine

to the sequence of the link new file and the if -then-else statement.

We refine to link new file by ACons and FApplyElim to the specification given in figure 6.7. For

write fifo header we use the refinement given in figure 8.30. In the first refinement step (starting

from the bottom) we apply AEElim to eliminate the existential quantification on file-system graphs,

followed by UseAtomic using the zero guard of GFS and ACons to update the contents of GFS.

We then refine the specification to the sequence of steps comprising write fifo header. In this

refinement, we use the specifications in figure 6.9 for malloc and memwrite, and AWeaken2 to

abstract them to non-atomic operations that we coalesce with Seq. Then, by the definition of Hoare

specification statements as a special form of atomic specification statements (definition 57), we turn

the heap update of malloc and memwrite to an update on the private part of general-form atomic

specification statement. Treating the heap resource private in this manner, allows us to consider

the heap operations as stuttering steps for the write to the file. Recall that AStutter coalesces

stuttering steps on the public part of an atomic specification statement, but acts as Seq for the private

part.

The write fifo header proof in figure 8.30 demonstrates a reasoning pattern for I/O operations.

Typically, before or after an I/O operation it is necessary to manipulate the heap to setup the buffer

used by a read or write. Such operations are stuttering steps for I/O since they do not modify the

contents of a file. Furthermore, the heap buffer used in an I/O operation is typically allocated and

owned by the thread performing the operation. In such cases, these heap resources are manipulated

non-atomically in the private part of the atomic specification statement that atomically reads or writes

the file contents.

Verification of fifo open

Most of the proof effort for fifo open is in the branching on the mode argument. Again, throughout

the proof of fifo open we assume that the context invariant FifoCtx holds.
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let p = dirname(path);
let a = basename(path);
let r = resolve(p, ι0);
if ¬iserr(r) then

H
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n
s,

If
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q

let fd = link new file(r , a, O EXCL|O CREAT|O RDWR)
v by figure 6.7, FApplyElim and ACons

A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ,
a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε) ∗ fd(fd , ι′, 0, O RDWR)

〉
u eexist(r , a) u enotdir(r);

if ¬iserr(fd) then
FifoCtx(ι′, a) `

S
e
q

write fifo header(fd);
v by figure 8.30{
∃FS .GFS(FS ) ∧ FS (ι′) = ε ∗ fd(fd , ι′, 0, O RDWR) ,
∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a) ∗ fd(fd , ι′,−, O RDWR)

}
close(fd);
v by specification, AWeaken2 and HFrame{
∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a) ∗ fd(ι′,−, O RDWR) ,
∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a)

}
return 0

v
{
∃FS .GFS(FS ) ∧ FS (ι′) = ε ∗ fd(fd , ι′, 0, O RDWR) ,
∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a) ∗ ret = 0

}
else return fd fi

v



A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ,
a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε) ∗ fd(fd , ι′, 0, O RDWR)

〉
;

FifoCtx(ι′, a) `
{
∃FS .GFS(FS ),
fd 6∈ Errs⇒ ∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a) ∗ ret = 0

}


u eexist(r , a) u enotdir(r);
v by ACons

A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ,
a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε) ∗ ret = 0

〉
;

FifoCtx(ι′, a) `
{

true,
ret = 0⇒ ∃FS .GFS(FS ) ∧ empfifo(FS (ι′), a)

}


u eexist(r , a) u enotdir(r);
v by CreateRegion, HCons, HAbstractR and definition 57 A

FS .

〈
fs(FS ) ∧ isdir(FS (r)) ,
a 6∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε) ∗ ret = 0

〉
;

FifoCtx(ι′, a) ` [ret = 0⇒ ∃s. fifo(s, ι′, 0, 0, ε)]


u eexist(r , a) u enotdir(r);

else return r fi

Figure 8.29.: Proof of mkfifo satisfying its specification.
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Let fehb(a) , i2b(0) :: i2b(0) :: i2b(−1) :: i2b(−1) :: len(a) :: a

A
S
t
u
t
t
e
r

S
e
q

let h = malloc(5 ∗ sizeof(int) + len(a));
v by figure 6.9, FApplyElim
〈true, ∃y . buf(h, y) ∧ len(y) = 5 ∗ sizeof(int) + len(a)〉

v by AWeaken2
{true, ∃y . buf(h, y) ∧ len(y) = 5 ∗ sizeof(int) + len(a)}

memwrite(h, i2b(0) :: i2b(0) :: i2b(−1) :: i2b(−1) :: len(a) :: a);
v by figure 6.9, FApplyElim and ACons
〈buf(h, y) ∧ len(y) = 5 ∗ sizeof(int) + len(a) , buf(h, fehb(a))〉

v by AWeaken2, EElimHoare and HCons
{∃y . buf(h, y) ∧ len(y) = 5 ∗ sizeof(int) + len(a) , buf(h, fehb(a))}

v {true, buf(h, fehb(a))}
≡ by definition 57
〈true | true, buf(h, fehb(a)) | true〉

v by ACons, Subst1 and AFrame

A

FS .

〈
true

∣∣fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ,

buf(h, fehb(a))
∣∣fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR)

〉
write(fd , h, 4 ∗ sizeof(int) + len(a))
v by section 6.1.3, FApplyElim, ACons and DChoiceIntro

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ∗ buf(h, fehb(a)) ,
fs(FS [ι 7→ FS (ι)[0← fehb(a)]]) ∗ fd(fd , ι, 0, O RDWR) ∗ buf(h, fehb(a))

〉
v by ACons

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ∗ buf(h, fehb(a)) ,
∃y . fs(FS [ι 7→ y ]) ∧ empfifo(y , a) ∗ fd(fd , ι, 0, O RDWR) ∗ buf(h, fehb(a))

〉
v by AWeaken1

A

FS .

〈
buf(h, fehb(a))

∣∣fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ,

buf(h, fehb(a))
∣∣∃y . fs(FS [ι 7→ y ]) ∧ empfifo(y , a) ∗ fd(fd , ι, 0, O RDWR)

〉

v

A

FS .

〈
true

∣∣fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ,

true
∣∣∃y . fs(FS [ι 7→ y ]) ∧ empfifo(y , a) ∗ fd(fd , ι, 0, O RDWR)

〉
v by UseAtomic, ACons and AEElim〈
∃FS .GFS(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, 0, O RDWR) ,
∃FS .GFS(FS ) ∧ empfifo(FS (ι), a) ∗ fd(fd , ι, 0, O RDWR)

〉

Figure 8.30.: Refinement to write fifo header.
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fifo open(path,mode) v
r
e
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o
l
v
e

let p = dirname(path); let a = basename(path); let lf = /“tmp”/(a :: “.lock”);
let r = resolve(p, ι0);
if ¬iserr(r) then

r
e
s
o
l
v
e
,
if
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n
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e
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∃fd . open file(r , a, O RDWR, fd)
v by figure 6.7, ACons, AWeaken1, OpenRegion, Abstract and DChoiceElim

A

wr , rd , y . 〈true | fifo(s, r ,wr , rd , y) , fd(fd , r ,−, O RDWR) | fifo(s, r ,wr , rd , y)〉
u ∃ι.

A

FS . 〈fs(FS ) ∧ isdir(r) , a ∈ FS (r)⇒ fs(FS ) ∗ ι = FS (r)(a)〉
u enoent(r , a, fd)
u enotdir(r);
if ¬iserr(fd) then

if mode = O RDONLY then

fi
gu

re
8
.3

2 lock(lf );
fifo incr readers(fd);
unlock(lf );
return fifo mk desc(fd , O RDONLY)

A

wr , rd , y .

〈
fd(fd , r ,−, O RDWR)

∣∣fifo(s, r ,wr , rd , y) ,

true
∣∣ffd(s, ret, r , O RDONLY) ∗ fifo(s, r ,wr , rd + 1, y)

〉
else if mode = O WRONLY then

si
m

.
to

8.
32 lock(lf );

fifo incr writers(fd);
unlock(lf );
return fifo mk desc(fd , O WRONLY)

A
wr , rd , y .

〈
fd(fd , r ,−, O RDWR)

∣∣fifo(s, r ,wr , rd , y) ,

true
∣∣ffd(s, ret, r , O RDONLY) ∗ fifo(s, r ,wr + 1, rd , y)

〉
else
close(fd); return EACCESS

v by specification, AFrame, AWeaken1

A

wr , rd , y .

〈
fd(fd , r ,−, O RDWR)

∣∣fifo(s, r ,wr , rd , y) ,

true
∣∣fifo(s, r ,wr , rd , y) ∗ ret = EACCESS

〉
fi

else return fd fi
v ∃r ′. resolve(a, r , r ′);

if ¬iserr(r) then
if mode = O RDONLY then return fifo open read(r ′)
else if mode = O WRONLY then return fifo open write(r ′)
else return EACCESS fi

else return r ′ fi
else return r fi

v let r = resolve(path, ι0);
if ¬iserr(r) then

if mode = O RDONLY then return fifo open read(r)
else if mode = O WRONLY then return fifo open write(r)
else return EACCESS fi

else return r fi

Figure 8.31.: Proof of fifo open satisfying its specification.
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lock(lf );
v by figure 8.1, HFrame, ACons and invariant{
∃(wr , rd , y).Fifoα(r , a, (wr , rd , y)) ∗ α Z⇒ �,
∃(wr , rd , y).Fifoα(r , a, (wr , rd , y)) ∗ α Z⇒ � ∗ Locked(s ′, lf ) ∗ [F(r)]

}
fifo incr readers(fd);
v by figure 8.33, AFrame and invariant

A

FS ,wr , rd , y .

〈
GFS(FS ) ∧ fimp(FS (r), a,wr , rd , y) ∗ [F(r)] ,
∃yi .GFS(FS [r 7→ yi ]) ∧ fimp(yi , a,wr , rd + 1, y) ∗ [F(r)]

〉
v by ACons, AEElim, UpdateRegion, AFrame

A

wr , rd , y .

〈Fifoα(r , a,wr , rd , y) ∗ α Z⇒ � ∗ Locked(s, lf ) ∗ [F(r)] ,
Fifoα(r , a,wr , rd + 1, y) ∗ α Z⇒ ((wr , rd , y), (wr , rd + 1, y)) ∗ Locked(s ′, lf ) ∗ [F(r)]〉

A

v by AWeaken2 and HCons{
∃wr , rd , y .Fifoα(r , a,wr , rd , y) ∗ α Z⇒ � ∗ Locked(s ′, lf ) ∗ [F(r)] ,
∃wr , rd , y . α Z⇒ ((wr , rd , y), (wr , rd + 1, y)) ∗ Locked(s ′, lf ) ∗ [F(r)]

}A
unlock(lf ); return fifo mk desc(fd , O RDONLY)
v by figure 8.2, figure 8.34, HFrame and Seq{
∃wr , rd , y . α Z⇒ ((wr , rd , y), (wr , rd + 1, y)) ∗ Locked(s ′, lf ) ∗ [F(r)] ,
∃wr , rd , y . buf(ret, i2b(O RDONLY) :: i2b(fd)) ∗ α Z⇒ ((wr , rd , y), (wr , rd + 1, y))

}A
v

fd(fd , r ,−, O RDWR) ∗ isLock(s ′, lf ) `{
∃(wr , rd , y).Fifoα(r , a,wr , rd , y) ∗ α Z⇒ �,
∃(wr , rd , y). buf(ret, i2b(O RDONLY) :: i2b(fd)) ∗ α Z⇒ ((wr , rd , y), (wr , rd + 1, y))

}A
v by MakeAtomic, AFrame and ACons

A

(wr , rd , y) .

〈true | Fifoα(r , a, (wr , rd , y)) ∗ [RD(rd)]α ∗ fd(fd , r ,−, O RDWR) ∗ isLock(s ′, lf ) ,
buf(ret, i2b(O RDONLY) :: i2b(fd)) | Fifoα(r , a, (wr , rd + 1, y)) ∗ [RD(rd + 1)]α ∗ [R]α
∗ fd(fd , r ,−, O RDWR) ∗ isLock(s ′, lf )

〉
v by AWeaken1, AAbstractL and AAbstractR

A

wr , rd , y .

〈
fd(fd , r ,−, O RDWR)

∣∣fifo(s, r ,wr , rd , y) ,

true
∣∣ffd(s, ret, r , O RDONLY) ∗ fifo(s, r ,wr , rd + 1, y)

〉

Figure 8.32.: Proof sketch of the O RDONLY branch of fifo open.

In figure 8.31 we show that our implementation of fifo open refines its specification. Similarly

to the proof of mkfifo our first step is to replace the invocation of open with its specification, as

pertaining to the O RDWR argument. Note that we derive a demonic specification for the invocation

of open file with two cases. This first specifies open file to allocate the file descriptor for the

named-pipe file. The second specifies open file to perform a lookup of the link named a – the name

of the link to the named-pipe file – with the directory resolved by the path prefix p. We use the first

specification as a stuttering step for each branch on mode. Both branches are refined similarly to

their implementation. The only difference is that the number of writers is incremented instated of the

number of readers. In the subsequent discussion we will focus only on the O RDONLY branch.

In figure 8.32 we abstract the implementation of the O RDONLY branch into a single atomic spec-

ification statement, which allocates a new named-pipe file descriptor and increments the number of

readers for the named pipe that is being opened for I/O. Note that the atomic specification statement
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we derive exhibits ownership transfer from the private precondition to the public postcondition. The

private part of the precondition requires ownership of the file descriptor for the named-file that we

previously obtain by open. Ownership of this file descriptor is transferred to the implementation of

the abstract named-pipe file descriptor predicate ffd in the public part of the postcondition. During

the proof in figure 8.32 we are relying on the CAP-style lock-file module specification derived in sec-

tion 8.1. We take the F guard of the global file system region to be the resource invariant that the

lock-file specification protects. Therefore, when the lock is locked, we obtain the exclusive capability

to update the named-pipe file.

In the first refinement step (at the bottom) in figure 8.32 we apply AAbstractL and AABstractR

to open the ffd and fifo abstract predicates and then use AWeaken1 to move the file descriptor from

the private part of the precondition to the public part. In the next step we use ACons at the

postcondition to coalesce the R with RD, which we then frame-off using AFRame. We then apply

MakeAtomic. Note that the file descriptor and the isLock predicate are placed in the invariant of

the refined Hoare specification statement: every step of the implementation maintains this invariant.

In the next refinement step we use Seq to refine the Hoare specification statement to the sequence of

operations comprising the O RDONLYbranch of fifo open. Note that since every operation maintains

the invariant of the Hoare specification statement, we do not restate the invariant in the refinement

to each individual operation to save space. We use this invariant whenever necessary in subsequent

refinements. For example, in the refinement to lock we apply ACons such that we can use the isLock

predicate from the invariant. The main steps in the refinement to fifo incr readers involve using

AWeaken2 to refine the Hoare statement to an atomic statement and then using UpdateRegion

to justify the update to the Fifo by an update to its interpretation that uses the global file-system

region GFS. From there we use the refinement shown in figure 8.33. Subsequently, in the refinement to

unlock we relinquish ownership of the F guard and for fifo mk desc we use the refinement established

in figure 8.34.

The refinement to fifo incr readers in figure 8.33 is a straightforward use of MakeAtomic. The

actual step that commits the atomic increment to the number of reads in the header of the named-pipe

file is the last pwrite which we justify by using UpdateRegion. All other steps either operate on

resource that is private to the thread, such the heap buffer allocated by the malloc at the beginning,

or does not modify the named-pipe file such as the pread.

The refinement to fifo mk desc shown in figure 8.34 is straightforward as the operation only oper-

ates on non-shared private resources. The refinement involves simple sequential reasoning using the

refinement laws for Hoare specification statements.
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let h = malloc(sizeof(int));
v by figure 6.9 and FApplyElim

〈true, ∃y ′. buf(h, y ′) ∧ len(y ′) = sizeof(int)〉A

v by AWeaken1 and AFrame
∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ � `
{true, ∃y ′. buf(h, y ′) ∧ len(y ′) = sizeof(int)}A

pread(fd , h, sizeof(int), sizeof(int));
v by figure 8.24, FApplyElim, Subst1, ACons and DChoiceIntro

A

FS ,wr , rd , y .〈∃y ′. fs(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ buf(h, y ′) ∧ len(y ′) = sizeof(int),
∃yi . fs(FS [ι 7→ yi ]) ∧ fimp(FS (ι), a,wr , rd , y) ∗ buf(h, i2b(rd)) 〉A

v by OpenRegion, AEElim, AWeaken1, AFrame and invariant
∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ � `
{∃y ′. buf(h, y ′) ∧ len(y ′) = sizeof(int), buf(h, i2b(rd))}A

let rd = memread(h, int);
v by figure 6.9, FApplyElim and ACons
〈buf(h, i2b(rd)) , buf(h, i2b(rd))〉

v by AWeaken1 and AFrame

∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ � ` {buf(h, i2b(rd)) , buf(h, i2b(rd))}A
memwrite(h, i2b(rd + 1));
v by figure 6.9, FApplyElim and ACons

〈buf(h, i2b(rd)) , buf(h, i2b(rd + 1))〉A
v by AWeaken1 and AFrame
∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ � `
{buf(h, i2b(rd)) , buf(h, i2b(rd + 1))}A

pwrite(fd , h, sizeof(int), sizeof(int))
v by figure 8.24, FApplyElim, Subst1, ACons and DChoiceIntro

A

FS ,wr , rd , y .

〈
fs(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ buf(h, i2b(rd + 1)) ,
∃yi . fs(FS [ι 7→ yi ]) ∧ fimp(yi , a,wr , rd + 1, y) ∗ buf(h, i2b(rd + 1))

〉
v by UpdateRegion, AWeaken1 and ACons{
∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ � ∗ buf(h, i2b(rd + 1)) ,
∃FS ,wr , rd , y , yi . 0 Z⇒ (FS ,FS [ι 7→ yi ]) ∧ fimp(FS (ι), a,wr , rd , y) ∧ fimp(yi , a,wr , rd + 1, y)

}A
v

fd(fd , ι,−, O RDWR) `{
∃FS ,wr , rd , y .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ 0 Z⇒ �,
∃FS ,wr , rd , y , yi . 0 Z⇒ (FS ,FS [ι 7→ yi ]) ∧ fimp(FS (ι), a,wr , rd , y) ∧ fimp(yi , a,wr , rd + 1, y)

}A
v by MakeAtomic

fd(fd , ι,−, O RDWR) ∗ [F(ι)] `

A

FS ,wr , rd , y .
〈GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y)n, ∃yi .GFS(FS [ι 7→ yi ]) ∧ fimp(FS (ι), a,wr , rd + 1, y)〉

Figure 8.33.: Proof of fifo incr readers abstraction.
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let h = malloc(2 ∗ sizeof(int));
v by figure 6.9 and FApplyElim
〈true, ∃y . buf(h, y) ∧ len(y) = 2 ∗ sizeof(int)〉

v by AWeaken2
{true, ∃y . buf(h, y) ∧ len(y) = 2 ∗ sizeof(int)}

memwrite(h, i2b(fd) :: i2b(mode));
v by figure 6.9, FApplyElim and ACons
〈∃y . buf(h, y) ∧ len(y) = 2 ∗ sizeof(int), buf(h, i2b(fd) :: i2b(mode))〉

v by AWeaken2
{∃y . buf(h, y) ∧ len(y) = 2 ∗ sizeof(int), buf(h, i2b(fd) :: i2b(mode))}

v {true, buf(h, i2b(fd) :: i2b(mode))}
v by HFrame
{true, buf(h, i2b(fd) :: i2b(mode))}

return h
≡ by definition 60 and definition 57
{true, ret = h}

v by HFrame, HCons
{buf(h, i2b(fd) :: i2b(mode)) , buf(h, i2b(fd) :: i2b(mode)) ∗ ret = h}

v {true, buf(ret, i2b(fd) :: i2b(mode)) ∗ ret = h}

Figure 8.34.: Proof of fifo mk desc abstraction.
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Verification of fifo read

The specification of fifo read defined in section 8.3.1 consists of five demonic cases. This makes

fifo read the most complex named-pipe operation we verify. Fortunately, we do not have show that

fifo read is a refinement of all the demonic cases simultaneously. By the DChoiceElim refinement

law it is sufficient to prove each individual demonic case separately.

First, in figure 8.35 we show that fifo read(ffd , ptr , sz ) v fifo read nowriters(ffd). Note that

this case applies when in the implementation the condition writers = 0 ∧ empty is true. The im-

plementation uses several lower level operations of the named-pipe implementation. For the cur-

rent case we are verifying, we only need to consider fifo get mode, fifo get fd, fifo get name,

fifo get writers and fifo is empty. We derive a specification for each, in terms of single atomic

specification statement, in figures 8.36, 8.37, 8.38 and 8.39 respectively, which we then use during the

proof in figure 8.35.

The first refinement step (at the bottom) in figure 8.35 uses AAbstractL and AAbstractR to

open the abstract predicates and then AFrame to frame-off resources that are not required in this

proof. Note that we have written the refined specification using an invariant. This is so that we do not

have to repeat the assertions in both the precondition and postcondition. This invariant holds at every

step of the implementation, but we do not restate it during the refinement of individual operations

in the implementation. The next refinement step uses AStutter on the sequence of operations that

comprise the implementation of fifo read. Since we are considering the case of fifo read nowriters

the named pipe is not modified in any step. For fifo get mode and fifo get fd we use the specifica-

tions derived in figure 8.36 to extract the file descriptor and mode for the named-pipe file respectively.

Since the two steps only read the ffd buffer, we use AStutter and coalesce them into a single atomic

specification statement. The precondition of this statement corresponds to the implementation of the

ffd abstract predicate pertaining to the current case. Note that since each step operates on different

section of the buffer ffd , we use ACons to split the buffer into two sub-buffers, buf(ffd , i2b(fd)) used

by fifo get fd and buf(ffd + sizeof(int), i2b(O RDONLY)) used by fifo get mode. Furthermore, we

apply AFrame to frame off the sub-buffer and the RD guard, since they are not used.

In the next step, we use the specification of fifo get name to obtain the name of the named pipe

used to construct the lock-file path. We refine to the specification given in figure 8.37 by applying

OpenRegion twice: the first time to open the Fifo into its interpretation in terms of the global

file-system region GFS, and the second time to open GFS into its interpretation in terms of the file

system. Along the way we use AFrame to frame-off unused resources, and AEElim to eliminate

the existentially quantified variables in the interpretation of Fifo to pseudo universally quantified

variables.

We proceed to lock, where we use the CAP-style specification to obtain the guard F that allows us

to modify the contents of the named-pipe file. To refine the atomic specification statement for lock

which includes the named-pipe implementation, we first apply AFrame to frame off the Fifo region.

Then, we use definition 57 to turn the atomic statement to a Hoare statement. Updating the lock file

resources in the private part, allow us to coalesce this step with that of unlock, effectively eliding the

updates on the lock altogether. By the context invariant, the F guard is non-duplicable and it is the

only guard that allows an update of the named-pipe file contents. Therefore, for the duration the lock

is locked we are guaranteed that the named-pipe file does not change.
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let mode = fifo get mode(ffd);
let fd = fifo get fd(ffd);
v by figure 8.36, AFrame, ACons, AStutter and invariant
〈[R]α , mode = O RDONLY ∗ [R]α〉

if mode = O RDONLY then
let a = fifo get name(fd);
v by figure 8.37, ACons, AFrame, 2×OpenRegion, AEElim and invariant

A

wr , rd , ys . 〈Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α , Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α〉
let lf = /“tmp”/(a + “.lock”);
lock(lf );
v by figure 8.1 with Inv = [F(ι)], ACons and invariant
{true, Locked(s, lf ) ∗ [F(ι)]}

v by definition 57 and AFrame

A

wr , rd , ys .

〈
true

∣∣Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ,

Locked(s, lf ) ∗ [F(ι)]
∣∣Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α

〉
let writers = fifo get writers(fd);
v by figure 8.38, ACons, AFrame, 2 × OpenRegion, AEElim and invariant

A

wr , rd , ys .

〈
Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ∗ [F(ι)] ,
Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ∗ [F(ι)] ∗ writers = wr

〉
let empty = fifo is empty(fd);
v similarly to figure 8.38, AFrame, 2 × OpenRegion, AEElim and invariant

A
wr , rd , ys .

〈
Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ∗ [F(ι)] ,
Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ∗ [F(ι)] ∗ writers = wr ∗ empty = (ys = ε)

〉
if writers = 0 ∧ empty then
unlock(lockfile); return 0
v by figure 8.2, Inv = [F(ι)] and Seq
{Locked(s, lf ) ∗ [F(ι)] , ret = 0}

v by definition 57 and AFrame
〈Locked(s, lf ) ∗ [F(ι)] | writers = 0 ∧ empty , true | writers = 0 ∧ empty ∗ ret = 0〉

else if empty then
unlock(lockfile); return fifo read(fd , ptr , sz )

else
let sz ′ = fifo read contents(fd , ptr , sz ); unlock(lockfile); return sz ′

fi
else return EACCESS fi

v isLock(s ′, /tmp/(a + .lock)) ∗ buf(ffd , i2b(O RDONLY) :: i2b(fd)) ∗ fd(fd , ι,−, O RDWR) `

A

wr , rd , ys .
〈Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α , wr = 0 ∧ ys = ε⇒ (Fifoα(ι, a, (wr , rd , ys)) ∗ [R]α ∗ ret = 0)〉

v by AFrame, AAbstractL, AAbstractR with s = (α, s ′)

A

wr , rd , ys .

〈
ffd(s, fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ,
wr = 0 ∧ ys = ε⇒ ffd(s, fd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ ret = 0

〉

Figure 8.35.: Proof of fifo read in the case of fifo read nowriters.
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return memread(ffd + sizeof(int), int)
v by figure 6.9, FApplyElim, DChoiceIntro and ACons
〈buf(ffd + sizeof(int), i2b(mode)) , buf(ffd + sizeof(int), i2b(mode)) ∗ ret = mode〉

return memread(ffd), int
v by figure 6.9, FApplyElim, DChoiceIntro and ACons
〈buf(ffd , i2b(fd)) , buf(ffd , i2b(fd)) ∗ ret = fd〉

v by AFrame and ACons
〈buf(ffd , i2b(fd)) ∗ fd(fd , ι, o, O RDWR) , buf(ffd , i2b(fd)) ∗ fd(ret, ι, o, O RDWR) ∗ ret = fd〉

Figure 8.36.: Proof of fifo get mode and fifo get fd abstractions.
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let hsz = malloc(sizeof(int));
v by figure 6.9, FApplyElim and DChoiceIntro
〈true, ∃y . buf(hsz , y) ∧ len(y) = sizeof(int)〉

v by AFrame and AWeaken1

A

FS .

〈
true

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ,

∃y . buf(hsz , y) ∧ len(y) = sizeof(int)
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a)

〉
pread(fd , hsz , sizeof(int), 4 ∗ sizeof(int));
v by definition, FApplyElim, ACons and DChoiceIntro

A

FS .

〈
∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a)) ∗ buf(hsz , y) ∧ len(y) = sizeof(int),
∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a)) ∗ buf(hsz , i2b(len(a)))

〉
v by AWeaken1

A

FS .

〈
buf(hsz , y) ∧ len(y) = sizeof(int)

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a)) ,

E

a.buf(hsz , i2b(len(a)))
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a))

〉
let size = memread(hsz , int);
v by figure 6.9, FApplyElim, DChoiceIntro and ACons
〈buf(hsz , i2b(len(a))) , buf(hsz , i2b(len(a))) ∗ size = len(a)〉

v by AFrame and AWeaken1

A

FS .

〈
buf(hsz , i2b(len(a)))

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a)) ,

true
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhns(yh , a, len(a)) ∗ size = len(a)

〉
let hn = malloc(size);
v by figure 6.9, FApplyElim, AFrame and AWeaken1

A

FS .

〈
true

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ∗ size = len(a) ,

∃y . buf(hsz , y) ∧ len(y) = size
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ∗ size = len(a)

〉
pread(fd , hn, size, 4 ∗ sizeof(int));
v by definition, FApplyElim, ACons, DChoiceIntro and AWeaken1

A

FS .

〈
∃y . buf(hn, y) ∧ len(y) = size

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ∗ size = len(a) ,

E

a.buf(hn, a)
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ∗ size = len(a)

〉
return memread(hn, STR(size))

v fd(fd , ι,−, O RDWR) `

A

FS .
〈∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) , ∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhn(yh , a) ∗ ret = a〉

Figure 8.37.: Proof of fifo get name abstraction.
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let h = malloc(sizeof(int));
v by figure 6.9, FApplyElim
〈true, ∃y . buf(h, y) ∧ len(y) = sizeof(int)〉

v by AFrame and AWeaken1

A

FS ,wr .

〈
true

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) ,

∃y . buf(h, y) ∧ len(y) = sizeof(int)
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr)

〉
pread(fd , h, sizeof(int), 0);
v by definition, FApplyElim, ACons, DChoiceIntro and AWeaken1

A

FSwr .

〈
∃y . buf(h, y) ∧ len(y) = sizeof(int)

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) ,

buf(h, i2b(wr))
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr)

〉
return memread(h, int)
v by figure 6.9, FApplyElim, ACons and DChoiceIntro
〈buf(h, i2b(wr)) , buf(h, i2b(wr)) ∗ ret = wr〉

v by AFrame, AWeaken1 and ACons

A

FS ,wr .

〈
buf(h, i2b(wr))

∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) ,

true
∣∣∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) ∗ ret = wr

〉
v fd(fd , ι,−, O RDWR) `

A

FS ,wr .
〈∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) , ∃yh . fs(FS [ι 7→ yh ::−]) ∧ fhw(yh , a,wr) ∗ ret = wr〉

Figure 8.38.: Proof of fifo get writers abstraction.
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let h = malloc(sizeof(int));
v by figure 6.9 and FApplyElim

A

x ∈ X. 〈true, ∃y . buf(h, y) ∧ len(y) = sizeof(int)〉
v by AFrame and AWeaken1

A

FS .

〈
true

∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ,

∃y . buf(h, y) ∧ len(y) = sizeof(int)
∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo)

〉
pread(fd , h, sizeof(int), 2 ∗ sizeof(int));
v by figure 8.24, FApplyElim, ACons, DChoiceIntro, AWeaken1 and invariant

A

FS .

〈
∃y . buf(h, y) ∧ len(y) = sizeof(int)

∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ,

buf(h, i2b(fbo))
∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo)

〉
let next = memread(h, int); return next = −1
v by figure 6.9, FApplyElim, ACons and DChoiceIntro
〈buf(h, i2b(fbo)) , buf(h, i2b(fbo)) ∗ next = fbo〉

v by AFRame, AWeaken1 and ACons

A

FS .

〈
buf(h, i2b(fbo))

∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ∗ next = fbo ,

true
∣∣∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ∗ ret = (fbo = −1)

〉

v
fd(fd , ι,−, O RDWR) `

A

FS .〈
∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ,
∃yh , fbo. fs(FS [ι 7→ yh ::−]) ∧ fhfbo(yh , a, fbo) ∗ ret = (fbo = −1)

〉

Figure 8.39.: Derivation of specification for fifo is empty.
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We then proceed to fifo get writers and fifo is empty. To refine to the specifications in fig-

ures 8.38 and 8.39 respectively, we apply OpenRegion twice as in the case of fifo get name previ-

ously.

Finally, we perform the unlock in the writers = 0 ∧ empty branch where, similarly to lock earlier,

we derive a specification in which the lock resource is updated in the private part of an atomic

statement. To conclude the proof we remove the branches not applicable to the fifo read nowriters

case. For this we use the demonic interpretation of if -then-else, abstract each unused branch to

abort via MinMax and then retain only the relevant branches by applying DChoiceId. This results

in a sequence of atomic specification statements none of which update the named pipe. Then, it is a

simple matter of using AFrame and AWeaken1 to frame on resource and the private part not used

in some steps and then applying AStutter to coalesce all the steps into the atomic specification at

the bottom.

Now let us consider the fifo read partial case. In contrast to fifo read nowriters, the named

pipe is updated this time. We give a proof sketch of fifo read(ffd , ptr , sz ) v fifo read partial(ffd , ptr , sz )

in figure 8.40. The proof is similar to the fifo read nowriters case in figure 8.35, except that the

relevant branch in this case is the one using fifo read contents. This is the only operation that

performs an update to the named pipe. All other operations are stuttering steps, and thus by using

UseAtomic, to abstract fifo read contents to an update on the Fifo region, and AFrame to frame

on the additional resources for all the stuttering steps, and then applying AStutter, we coalesce all

the steps into a single atomic specification statement from which we derive fifo read partial.

We refine the specification of fifo read contents in figure 8.41. The proof is straightforward. The

only operation that updates the named pipe is the pwrite that updates the data offset in the header

of the named-pipe file. All other operations are stuttering steps.

Next, consider fifo read(ffd , ptr , sz ) v fifo read complete(ffd , ptr , sz ). The proof of this case

follows exactly the same refinement steps to that of fifo read partial in figure 8.40. The only

difference is in the established postcondition.

Finally, consider the case of fifo read(ffd , ptr , sz ) v fifo eaccess(fd , O WRONLY). This case is

trivial to prove: there is no access to the named pipe at all.
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let mode = fifo get mode(ffd);
let fd = fifo get fd(ffd);
if mode = O RDONLY then

let a = fifo get name(fd);
let lf = /“tmp”/(a + “.lock”);
lock(lf );
v by figure 8.1 and Inv = [F(ι)]
{isLock(s, lf ) , isLock(s, lf ) ∗ Locked(s, lf ) ∗ [F(ι)]}

v by definition 57
v 〈isLock(s, lf ) | true, isLock(s, lf ) ∗ Locked(s, lf ) ∗ [F(ι)] | true〉

let writers = fifo get writers(fd);
let empty = fifo is empty(fd);
if writers = 0 ∧ empty then
unlock(lf );
return 0

else if empty then
unlock(lf );
return fifo read(fd , ptr , sz )

else
let sz ′ = fifo read contents(fd , ptr , sz );
v by figure 8.41

fd(fd , ι,−, O RDWR) ∗ [F(ι)] ∗ [R]α `
A

wr , rd , y .〈
Fifoα(ι, a, (wr , rd , y)) ∗ buf(ptr , yt) ∧ len(yt) = sz ,
len(y) < sz ⇒ Fifoα(ι, a, (wr , rd , ε)) ∗ buf(ptr , yt � y) ∗ sz ′ = len(y)

〉
unlock(lf );
v by figure 8.2 and Inv = [F(ι)]
{Locked(s, lf ) ∗ [F(ι)] , true}

v by definition 57 and AFrame
〈isLock(s, lf ) ∗ Locked(s, lf ) ∗ [F(ι)] | true, isLock(s, lf ) | true〉

return sz ′

fi
else return EACCESS fi

v
isLock(s ′, lf ) buf(ffd , i2b(O RDONLY) :: i2b(fd)) ∗ fd(fd , ι,−, O RDWR) ∗ [R]α `

A

wr , rd , y .〈
Fifoα(ι, a, (wr , rd , y)) ∗ buf(ptr , yt) ∧ len(yt) = sz ,
wr > 0 ∧ len(y) < sz ⇒ ∗Fifoα(ι, a, (wr , rd , ε)) ∗ buf(ptr , yt � ys) ∗ ret = len(y)

〉
v by AFrame and Abstract and s = (α, s ′)

A

wr , rd , ys .

〈ffd(s,ffd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , y) ∗ buf(ptr , yt) ∧ len(yt) = sz ,
wr > 0 ∧ len(ys) < sz ⇒ ffd(s,ffd , ι, O RDONLY) ∗ fifo(s, ι,wr , rd , ε)

∗ buf(ptr , yt � y) ∗ ret = len(y)

〉

Figure 8.40.: Proof of fifo read in the case of fifo read partial.
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let h = malloc(sz );
v by figure 6.9, FApplyElim, AWeaken2
{true, ∃y ′. buf(h, y ′) ∧ len(y ′) = sz}

let hoff = malloc(sizeof(int));
v by figure 6.9, FApplyElim, AWeaken2
{true, ∃y ′′. buf(hoff , y ′′) ∧ len(y ′′) = sizeof(int)}

pread(fd , hoff , sizeof(int), 2 ∗ sizeof(int));
v by specification, FApplyElim, ACons, AWeaken1 and invariant
∃FS , y , fbo.GFS(FS ) ∧ ffby(FS (ι), a, fbo, y) ∗ buf(ptr , yt) ∧ len(yt) = sz `
{∃y ′′. buf(hoff , y ′′) ∧ len(y ′′) = sizeof(int), buf(hoff , i2b(fbo))}

let off = memread(hoff , int);
v by figure 6.9, FApplyElim, AWeaken2 and HCons
{buf(hoff , i2b(fbo)) , off = fbo}

let sz ′ = pread(fd , h, sz , off );
v by specification, FApplyElim, ACons, AEElim, OpenRegion and invariant
∃FS , y .GFS(FS ) ∧ ffby(FS (ι), a, off , y) ∗ buf(ptr , yt) ∧ len(yt) = sz `
{∃y ′. buf(h, y ′) ∧ len(y ′) = sz , len(y) < sz ⇒ buf(h, y ′ � y) ∗ sz ′ = len(y)}

if sz ′ < sz then
memwrite(hoff , i2b(−1));

else memwrite(hoff , i2b(off + sz )) fi
v by figure 6.9, FApplyElim, ACons, AWeaken1 and IfThenElse
∃FS , y .GFS(FS ) ∧ ffby(FS (ι), a, off , y) ∗ buf(ptr , yt) ∧ len(yt) = sz `{

buf(hoff , i2b(off )) ∗ len(y) < sz ⇒ buf(h, y ′ � y) ∗ sz ′ = len(y) ,
len(y) < sz ⇒ buf(h, y ′ � y) ∗ buf(hoff , i2b(−1)) ∗ sz ′ = len(y)

}
pwrite(fd , hoff , sizeof(int), 2 ∗ sizeof(int));
v by specification, FApplyElim, ACons, AEElim, AWeaken1, UseAtomic and invariant

buf(ptr , yt) ∧ len(yt) = sz `

A

y .〈
buf(hoff , i2b(−))

∣∣∃FS .GFS(FS ) ∧ ffby(FS (ι), a, off , y) ,

len(y) < sz ⇒ buf(hoff , i2b(−1))
∣∣len(y) < sz ⇒ ∃FS .GFS(FS ) ∧ empfifo(FS (ι), a)

〉
memcpy(ptr , h, sz − sz ′);
v by figure 6.9, FApplyElim, AFrame, AWeaken1 and ACons
∃FS .GFS(FS ) ∧ empfifo(FS (ι), a) `〈

len(y) < sz ⇒ buf(h, y ′ � y) ∧ len(y) = sz ′
∣∣buf(ptr , yt) ∧ len(yt) = sz ,

true
∣∣buf(ptr , yt � y)

〉
return sz ′

v

A

y .

〈
∃FS .GFS(FS ) ∧ fimp(FS (ι), a,wr , rd , y) ∗ buf(ptr , yt) ∧ len(yt) = sz ∧ len(y) < sz ,
len(y) < sz ⇒ ∃FS .GFS(FS ) ∧ empfifo(FS (ι), a) ∗ buf(ptr , yt � y) ∗ ret = len(y)

〉
v by ACons and UseAtomic

fd(fd , ι,−, O RDWR) ∗ [F(ι)] ∗ [R]α `

A

wr , rd , y .〈
Fifoα(ι, a, (wr , rd , y)) ∗ buf(ptr , yt) ∧ len(yt) = sz ,
len(y) < sz ⇒ Fifoα(ι, a, (wr , rd , ε)) ∗ buf(ptr , yt � y) ∗ ret = len(y)

〉

Figure 8.41.: Proof of fifo read contents abstraction in the case of a partial read.
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Verification of fifo write

The specification of fifo write given in section 8.3.1 is slightly simpler than that of fifo read as

it has only three demonic cases: fifo write readers, fifo epipe and fifo eaccess. Out of these

fifo epipe is proven similarly to the fifo read nowriters case of fifo read, the only difference

being returning the EPIPE error code if the number of readers is 0, instead of returning 0 if there are

no writers and the named pipe is empty. The case of fifo eaccess is trivial to prove. Therefore, here

we focus only on proving that fifo write(fd , ptr , sz ) v fifo write readers(fd , ptr , sz ).

We establish this refinement in figure 8.42. Again, we assume that the context invariant FifoCtx

holds at every step. The refinement proofs follows a similar pattern to that of fifo read partial

in figure 8.40. The only operation that updates the named pipe is fifo write contents. All other

operations are stuttering steps.

In the first refinement step (at the bottom) in figure 8.42 we open the abstract predicates ffd and

ffd and frame off the resources not required, such as the RD and WR guards. Note that the refined

specification uses an invariant for the resources used, but not modified in the implementation. In

the next step we apply AStutter to refine the specification to the sequence of operations com-

prising the implementation of fifo write. The refinements to lock and unlock are established in

the same manner as in the case of fifo read partial, discussed previously. For the refinement to

fifo write contents we use the specification derived in figure 8.43.

The first refinement step in figure 8.43 (at the bottom) uses UseAtomic to refine the update on

the Fifo region to an update on its interpretation in terms of the global file-system region GFS.

From there we apply AStutter to refine the specification to the sequence of operations comprising

fifo write contents. Which of the two pwrites updates the named pipe depends on whether the

named pipe is initially empty. If the named pipe is empty then the first pwrite is a stuttering step

for the second pwrite, within the if -branch, which updates the data offset field in the header of the

named-pipe file. Otherwise, the first pwrite updates the named pipe with the second pwrite not

occurring at all.
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let fd = fifo get fd(ffd);
let mode = fifo get mode(ffd);
if mode = O WRONLY then

let name = fifo get name(fd);
let lf = /“tmp”/(a + “.lock”);
lock(lf );
v by figure 8.1 and Inv = [F(ι)]
{isLock(s ′, lf ) , isLock(s ′, lf ) ∗ Locked(s ′, lf ) ∗ [F(ι)]}

v by AFrame and definition 57
∃wr , rd , ys .Fifoα(ι, a, (wr , rd , ys)) ` {isLock(s ′, lf ) , isLock(s ′, lf ) ∗ Locked(s ′, lf ) ∗ [F(ι)]}

let readers = fifo get readers(fd);
v by figure 8.38 (similarly), ACons, AFrame, AEElim, 2 × OpenRegion and invariant
∃wr , rd , ys .Fifoα(ι, a, (wr , rd , ys)) ∗ [F(ι)] ` 〈true, readers = rd〉

if readers = 0 then return EPIPE

else
let sz ′ = fifo write contents(fd , ptr , sz );
v by figure 8.43, AFrame, AWeaken1 and invariant

A

FS ,wr , rd , ys .

〈
Locked(s ′, lf ) ∗ [F(ι)]

∣∣Fifoα(ι, a, (wr , rd , ys)) ,

Locked(s ′, lf ) ∗ [F(ι)]
∣∣Fifoα(ι, a, (wr , rd , ys :: yt)) ∗ sz ′ = len(yt)

〉
unlock(lockfile);
v by figure 8.2 and Inv = [F(ι)]
{Locked(s ′, lf ) ∗ [F(ι)] , true}

v by definition 57 and AFrame
∃wr , rd , ys .Fifoα(ι, a, (wr , rd , ys :: yt)) ` {isLock(s ′, lf ) ∗ Locked(s ′, lf ) ∗ [F(ι)] , isLock(s ′, lf )}

return sz ′

fi
else return EACCESS fi

v
buf(ffd , i2b(O WRONLY) :: i2b(fd)) ∗ fd(fd , ι,−, O RDWR) ∗ [W]α ∗ isLock(s, lf )

∗ buf(ptr , yt) ∧ len(yt) = sz `

A

wr , rd , ys .
〈Fifoα(ι, a, (wr , rd , ys)), rd > 0⇒ Fifoα(ι, a,wr , rd , (ys :: yt))〉

v by AFrame, Abstract and s = (α, s ′)

A

wr , rd , ys .

〈
ffd(s, fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys) ∗ buf(ptr , yt) ∧ len(yt) = sz ,
rd > 0⇒ ffd(s, fd , ι, O WRONLY) ∗ fifo(s, ι,wr , rd , ys :: yt) ∗ buf(ptr , yt) ∗ ret = sz

〉

Figure 8.42.: Proof of fifo write in the case of available readers.
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let empty = fifo is empty(fd);
v similarly to figure 8.37, ACons, AEElim, OpenRegion and invariant
∃FS , ys .GFS(FS ) ∧ fbs(FS (ι), a, ys) ∧ fhfbo(FS (ι), a, fbo) ∗ buf(ptr , yt) ∧ len(yt) = sz `
〈true, empty ⇒ fbo = −1 ∧ ys = ε〉

let off = lseek end(fd , 0, SEEK END});
v by specification, FApplyElim, ACons, AEElim, DChoiceIntro, OpenRegion and invariant
∃FS , ys .GFS(FS ) ∧ fbs(FS (ι), a, ys) ∧ fhfbo(FS (ι), a, fbo) ∗ buf(ptr , yt) ∧ len(yt) = sz `
〈true, off = len(FS (ι))〉

pwrite(fd , h, sz , off );
v by specification, FApplyElim, ACons, AEElim, DChoiceIntro, UpdateRegion and invariant

buf(ptr , yt) ∧ len(yt) = sz `

A

FS , yi , ys .〈
GFS(FS [ι 7→ yi ]) ∧ fbs(yi , a, ys) ∗ off = yi ,
GFS(FS [ι 7→ yi :: yt ]) ∧ (¬empty ⇒ fbs(yi :: yt , a, ys :: yt)) ∧ (empty ⇒ fbs(yi :: yt , a, ε))

〉
if empty then
malloc(hoff , sizeof(int));
memwrite(hoff , i2b(off ));
v by figure 6.9, FApplyElim, AWeaken2 and Seq
{true, buf(hoff , i2b(off ))}

pwrite(fd , hoff , sizeof(int), 2 ∗ sizeof(int)); return sz
v by specification, FApplyElim, ACons, AEElim, UseAtomic and invariant

buf(ptr , yt) ∧ len(yt) = sz `

A

FS , yi .〈
true

∣∣GFS(FS [ι 7→ yi :: yt ]) ∧ fbs(yi :: yt , a, ε) ,

buf(hoff , i2b(off ))
∣∣GFS(FS [ι 7→ yi :: yt ]) ∧ fbs(yi :: yt , a, yt)

〉
fi

v buf(ptr , yt) ∧ sz = len(yt) ∗ fd(fd , ι,−, O RDWR) ∗ [F(ι)] `

A

FS , ys .
〈GFS(FS ) ∧ fbs(FS (ι), a, ys) , GFS(FS ) ∧ fbs(FS (ι), a, ys :: yt)〉

v by ACons, AEElim, AFrame and UseAtomic
buf(ptr , yt) ∧ sz = len(yt) ∗ fd(fd , ι,−, O RDWR) ∗ [W]α ∗ [F(ι)] `

A

wr , rd , ys .
〈Fifoα(ι, a, (wr , rd , ys)), Fifoα(ι, a, (wr , rd , ys :: yt))〉

Figure 8.43.: Proof of fifo write contents abstraction.
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8.4. Conclusions

Formal specifications of POSIX file-system operations are valuable only if they are useful. In this

dissertation we demonstrate their usefulness in reasoning about client applications, something less

explored in the literature than reasoning about implementations. We first discussed client reasoning

with our specifications in chapter 6. In this chapter we have further explored the merits of our approach

by examining further examples of client programs. We revisited the lock-file module deriving a CAP-

style specification from the atomic specification first seen in chapter 6, giving a first demonstration of

building up layers of abstractions over module specifications. We reused the CAP-style specification

in our case-study of named pipes demonstrating the modularity and compositionality of our approach.

This case study also demonstrates the scalability of our approach to non-trivial clients that implement

data structures over the file systems. Additionally, this example demonstrates that we can derive

formal specifications for parts of the POSIX standard, such as named pipes, from smaller formally

specified fragments of POSIX. Finally, by formally examining an example of a concurrent email client

and server interaction we have demonstrated the significance of staying faithful to the complexity of

the POSIX standard regarding concurrency. Assuming simpler behaviours in a formal specification,

for example by ignoring the non-atomicity of path resolution, leads to proving false facts about client

programs.
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9. Fault Tolerance

The primary purpose of file systems is the persistence of data. File systems play such a crucial role

within operating systems that they generally strive to behave sensibly, avoiding data corruptions,

even if all else goes wrong. It is then no surprise that POSIX specifies file-systems operations to

maintain a valid file system under normal circumstances. Even though POSIX remains silent on what

implementations should do in the exceptional case where a host failure, such as power failure or a

system wide crash, interrupts the execution of file-system operations, most implementations provide

the same guarantee; they maintain a valid file system. Many file-system implementations also provide

stronger guarantees where not only a valid file system is maintained, but no data loss occurs as well.

The file system specifications and reasoning developed in chapters 6 and 7 ignores such faults or

crashes. Our specification language and refinement calculus for atomicity assumes that such events

never happen. This is reasonable for formally specifying the POSIX file-system interface, since POSIX

remains silent on the issue of fault-tolerance. Yet reasoning about faults and fault-recovery is clearly

desirable for file-system implementations as well as client applications that provide fault-tolerance

guarantees such as database systems. The fundamental problem is that separation-logic based rea-

soning, on which this dissertation builds upon, is inherently fault-avoiding. Therefore, we go back to

the basics of resource reasoning, as introduced by separation logic [81, 76], and extend it to programs

that experience faults and potentially recover from such events.

We begin in section 9.1 by giving an overview of faults and how we extend resource reasoning to

reason about them. In section 9.2 we present the fundamental concepts of approach through the

“hello world” example of fault tolerant systems: the bank account transfer. We then discuss how our

approach can be applied to file-system specifications in section 9.3. As our focus now is on reasoning

about fault tolerance, we keep this discussion in a simpler setting, not aiming at POSIX faithfulness

as we did earlier in chapter 6. Our fault-tolerant resource reasoning is a generalised extension of

separation-logic based reasoning and in chapter 9.4 we present FTCSL, a particular instance where

we extend concurrent separation logic [76] with faults. In section 9.5 we discuss faults in the presence

of concurrency by revisiting the bank account transfer example in the concurrent setting. We then

proceed to discuss the semantics and soundness of our approach in section 9.6 the bedrock of which

is fault-tolerant extension of the Views framework [35]. In section 9.7 we apply our reasoning to the

ARIES recovery algorithm as a case-study. Finally, in section 9.8 we discuss related work on fault

tolerance and program logics.

9.1. Faults and Resource Reasoning

There are many ways that software can fail: either software itself can be the cause of the failure

(e.g. memory overflow or null pointer dereferencing); or the failure can arise independently of the

software. These unpredictable failures are either transient faults, such as when a bit is flipped by
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cosmic radiation, or host failures (also referred to as crashes). Host failures can be classified into soft,

such as those arising from power loss which can be fixed by rebooting the host, and hard, such as

permanent hardware failure.

Consider a simple transfer operation that moves money between bank accounts. Assuming that

bank accounts can have overdrafts, the transfer can be regarded as a sequence of two steps: first,

subtract the money from one bank account; and then add the money to the other account. In the

absence of host failures, the operation should succeed. However, if a host failure occurs in the middle

of the transfer, money is lost. Programmers employ various techniques to recover some consistency

after a crash, such as write-ahead logging (WAL) and associated recovery code. In this dissertation,

we develop the reasoning to verify programs that can recover from host failures, assuming hard failures

do not happen.

Resource reasoning, as introduced by separation logic [81], is a method for verifying that programs

do not fail. A triple {P}C {Q} is given a fault avoiding, partial correctness interpretation. This

means that, assuming the precondition P holds then, if program C terminates, it must be the case

that P does not fail and has all the resource necessary to yield a result which satisfies postcondition

Q. Such reasoning guarantees the correct behaviour of the program, ensuring that the software does

not crash itself due to bugs, e.g. invalid memory access. However, it assumes that there are no other

failures of any form. To reason about programs that can recover from host failures, we must change

the underlying assumptions of resource reasoning.

We swap the traditional resource models with one that distinguishes between volatile and durable

resource: the volatile resource (e.g. in RAM) does not survive crashes; whereas the durable resource

(e.g. on the hard drive) does. Recovery operations use the durable state to repair any corruptions

caused by the host failure. We introduce fault-tolerant resource reasoning to reason about programs

in the presence of host failures and their associated recovery operations. We introduce a new fault-

tolerant Hoare triple judgement of the form:

S ` {PV | PD}C {QV | QD}

which has a partial-correctness, resource fault-avoiding and host failing interpretation. From the

standard resource fault avoiding interpretation: assuming the precondition PV | PD holds, where the

volatile state satisfies PV and the durable PD, then if C terminates and there is no host failure, the

volatile and durable resource will satisfy QV and QD respectively. From the host-failing interpretation:

when there is a host failure, the volatile state is lost and after potential recovery operations, the

remaining durable state will satisfy the fault-condition S.

We extend the Views framework [35], which provides a general account of concurrent resource

reasoning, with these fault-tolerant triples to provide a general framework for fault-tolerant resource

reasoning. We instantiate our framework to give a fault-tolerant extension of concurrent separation

logic [76] as an illustrative example. We use this instantiation to verify the correctness of programs that

make use of recovery protocols to guarantee different levels of fault tolerance. In particular, we study

a simple bank transaction using write-ahead logging and a simplified ARIES recovery algorithm [69],

widely used in database systems.
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9.2. Motivating Examples

We introduce fault-tolerant resource reasoning by showing how a simple bank transfer can be imple-

mented and verified to be robust against host failures.

9.2.1. Naive Bank Transfer

Consider a simple transfer operation that moves money between bank accounts. Using a separation

logic [81] triple, we can specify the transfer operation as:{
Account(from, v) ∗ Account(to, w)

}
transfer(from, to, amount){

Account(from, v − amount) ∗ Account(to, w + amount)
}

The internal structure of the account is abstracted using the abstract predicate [77], Account(x, v),

which states that there is an account x with balance v. The specification says that, with access to

the accounts from and to, the transfer will not fault. It will decrease the balance of account from

by amount and increase the balance of account to by the same value. We can implement the transfer

operation as follows:

function transfer(from, to, amount) {
widthdraw(from, amount);

deposit(to, amount);

}

Using separation logic, it is possible to prove that this implementation satisfies the specification,

assuming no host failures. This implementation gives no guarantees in the presence of host failures.

However, for this example, it is clearly desirable for the implementation to be aware that host failures

occur. In addition, the implementation should guarantee that in the event of a host failure the

operation is atomic: either it happened as a whole, or nothing happened. Note that the word atomic

is also used in concurrency literature to describe an operation that takes effect at a single, discrete

instant in time. In section 9.4 we combine concurrency atomicity of concurrent separation logic with

host failure atomicity: if an operation is concurrently atomic then it is also host-failure atomic.

9.2.2. Fault-tolerant Bank Transfer: Implementation

We want an implementation of transfer to be robust against host failures and guarantee atomicity.

One way to achieve this is to use write-ahead logging (WAL) combined with a recovery operation. We

assume a simplified file-system module which provides standard operations to atomically create and

delete files, test their existence, and write to and read from files. Since file systems are critical, their

operations have associated internal recovery operations in the event of a host failure.

Given an arbitrary program C, we use [C] to identify that the program is associated with a recovery.

We can now rewrite the transfer operation, making use of the file-system operations to implement
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a stylised WAL protocol as follows:

function transfer(from, to, amount) {
fromAmount := getAmount(from);

toAmount := getAmount(to);

[create(log)] ;

[write(log, (from, to, fromAmount, toAmount))] ;

setAmount(from, fromAmount− amount);

setAmount(to, toAmount + amount);

[delete(log)] ;

}

The operation works by first reading the amounts stored in each account. It then creates a log file,

log, where it stores the amounts for each account. It then updates each account, and finally deletes

the log file. If a host failure occurs the log provides enough information to implement a recovery

operation. In particular, its absence from the durable state means the transfer either happened or

not, while its presence indicates the operation has not completed. In the latter case, we restore the

initial balance by reading the log. An example of a recovery operation is the following:

function transferRecovery() {
b := [exists(log)] ;

if (b) {
(from, to, fromAmount, toAmount) := [read(log)] ;

if (from 6= nil && to 6= nil) {
setAmount(from, fromAmount); setAmount(to, toAmount);

}
[delete(log)] ;

}
}

The operation tests if the log file exists. If it does not, the recovery completes immediately since the

balance is already consistent. Otherwise, the values of the accounts are reset to those stored in the

log file which correspond to the initial balance. While the recovery operation is running, a host failure

may occur, which means that upon reboot the recovery operation will run again. Eventually the

recovery operation completes, at which point the transfer either occurred or did not. This guarantees

that transfer is atomic with respect to host failures.

9.2.3. Fault-tolerant Bank Transfer: Verification

We introduce the following new Hoare triple for specifying programs that run in a machine where host

failures can occur:

S ` {PV | PD}C {QV | QD}

where PV , PD, QV , QD and S are assertions in the style of intuitionistic separation logic and C is a

program. PV and QV describe the volatile resource, and PD and QD describe the durable resource.
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nofile(name) ∨ file(name, []) ` {true | nofile(name)} [create(name)] {true | file(name, [])}
nofile(name) ∨ file(name, xs) ` {true | file(name, xs)} [delete(name)] {true | nofile(name)}

nofile(name) ` {true | nofile(name)} [exists(name)] {ret = false | nofile(name)}
file(name, xs) ` {true | file(name, xs)} [exists(name)] {ret = true | file(name, xs)}

file(name, xs) ∨ file(name, xs++ [x]) `

{
true | file(name, xs)

}
[write(name, x)]{

true | file(name, xs++ [x])
}

file(name, []) ` {true | file(name, [])} [read(name)] {ret = null | file(name, [])}
file(name, [x] ++ xs) ` {true | file(name, [x] ++ xs)} [read(name)] {ret = x | file(name, [x] ++ xs)}

Figure 9.1.: Specification of a simplified journaling file system.

The judgement is read as a normal Hoare triple when there are no host failures. The interpretation

of the triples is partial resource fault avoiding and host failing. Given an initial PV | PD, it is safe to

execute C without causing a resource fault. If no host failure occurs, and C terminates, the resulting

state will satisfy QV | QD. On the other hand if a host failure occurs, then the durable state will

satisfy the fault-condition S.

Given the new judgement, we can describe the resulting state after a host failure. Protocols designed

to make programs robust against host failures make use of the durable resource to return to a consistent

state after reboot. We must be able to describe programs that have a recovery operation running after

reboot. We introduce the following triple:

R ` {PV | PD} [C] {QV | QD}

The notation [C] is used to identify a program with an associated recovery. The assertion R describes

the durable resource after the recovery takes place.

We can now use the new judgements to verify the write-ahead logging transfer and its recovery.

We use a simplified journaling file system as the durable resource in their implementation with the

operations specified in figure 9.1. In this setting we specify the write-ahead logging transfer with

the following triple:

S `

{
from = f ∧ to = t ∧ amount = a

Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
transfer(from, to, amount){

from = f ∧ to = t ∧ amount = a

Account(f, v − a) ∗ Account(t, w + a) ∗ nofile(log)

}

where the fault-condition S describes all the possible durable states if a host failure occurs:

S = (Account(f, v) ∗ Account(t, w) ∗ nofile(log))

∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, []))

∨ (Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))

∨ (Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)]))

∨ (Account(f, v − a) ∗ Account(t, w + a) ∗ file(log, [(f, t, v, w)]))

∨ (Account(f, v − a) ∗ Account(t, w + a) ∗ nofile(log))
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S `{
from = f ∧ to = t ∧ amount = a

Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
fromAmount := getAmount(from);
toAmount := getAmount(to);{

from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w

Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
[create(log)] ;{

from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w

Account(f, v) ∗ Account(t, w) ∗ file(log, [])

}
[write(log, (from, to, fromAmount, toAmount))] ;{

from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w

Account(f, v) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}
setAmount(from, fromAmount− amount);{

from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w

Account(f, v − a) ∗ Account(t, w) ∗ file(log, [(f, t, v, w)])

}
setAmount(to, toAmount + amount);{

from = f ∧ to = t ∧ amount = a ∧ fromAmount = v ∧ toAmount = w

Account(f, v − a) ∗ Account(t, w − a) ∗ file(log, [(f, t, v, w)])

}
[delete(log)] ;{

from = f ∧ to = t ∧ amount = a

Account(f, v − a) ∗ Account(t, w + a) ∗ nofile(log)

}

Figure 9.2.: Proof of transfer operation using write-ahead logging.

The proof that the implementation satisfies the specification is shown in figure 9.2. If there is a host

failure, the current specification of transfer only guarantees that the durable resource satisfies S.

This includes the case where money is lost. This is undesirable. What we want is a guarantee that the

operation is atomic. In order to add this guarantee, we must combine reasoning about the operation

with reasoning about its recovery to establish that undesirable states are fixed after recovery. We

formalise the combination of an operation and its recovery in order to provide robustness guarantees

against host failures in the recovery abstraction rule:

CR recovers C S ` {PV | PD}C {QV | QD} S ` {true | S}CR {true | R}

R ` {PV | PD} [C] {QV | QD}

When implementing a new operation, we use the recovery abstraction rule to establish the fault-

condition R we wish to expose to the client. In the second premiss, we must first derive what the

durable resource S will be immediately after a host-failure. In the third premiss, we establish that

given S, the associated recovery operation will change the durable resource to the desired R. Note

that because the recovery CR runs immediately after the host failure, there is no volatile resource in

the precondition. Furthermore, we require the fault-condition of the recovery to be the same as the

resource that is being recovered, since the recovery operation itself may fail due to a host-failure; i.e.

recovery operations must be able to recover themselves.

We allow recovery abstraction to derive any fault-condition that is established by the recovery

operation. If that fault-condition is a disjunction between the durable pre- and postconditions, PD ∨
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QD, then the operation [C] appears to be atomic with respect to host failures. Either the operation’s

(durable) resource updates completely, or not at all. No intermediate states are visible to the client.

In order for transfer to be atomic, according to the recovery abstraction rule, transferRecovery

must satisfy the following specification:

S `

{
true

S

}
transferRecovery(){

true

(Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a)) ∗ nofile(log)

}

The proof that the implementation satisfies this specification is given in figure 9.3. By applying the

abstraction recovery rule we get the following specification for transfer which guarantees atomicity

in case of a host-failure:

R `

{
from = f ∧ to = t ∧ amount = a

Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
[transfer(from, to, amount)]{

from = f ∧ to = t ∧ amount = a

Account(f, v − a) ∗ Account(t, w + a) ∗ nofile(log)

}

where the fault-condition R describes the recovered durable state:

R = (Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a)) ∗ nofile(log)

With this example, we have seen how to guarantee atomicity by logging the information required to

undo operations. Advanced WAL protocols also store information allowing to redo operations and use

concurrency control. We do not go into depth on how to enforce concurrency control in our examples

other than the example shown in section 9.5. It follows the common techniques used in concurrent

separation logic.1 However, in section 9.7 we show ARIES, an advanced algorithm that uses write-

ahead logging. A different style of write-ahead logging is used by file systems called journaling [79],

which we discuss in section 9.3.

1For an introduction to concurrent separation logic see [32].
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S `{
true

S

}
b := [exists(log)] ;

b = b

S ∧ (b⇒ file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)
∧ (¬b⇒ (Account(f, v) ∗ Account(t, w)) ∨ (Account(f, v − a) ∗ Account(t, w + a)) ∗ nofile(log))


if (b) {{

b = b

S ∧ (file(log, []) ∗ true ∨ file(log, [(f, t, v, w)]) ∗ true)

}
(from, to, fromAmount, toAmount) := [read(log)] ;
if (from 6= nil && to 6= nil) {{

b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w

S ∧ (file(log, [(f, t, v, w)]) ∗ true)

}
setAmount(from, fromAmount); setAmount(to, toAmount);

b = b ∧ from = f ∧ to = t ∧ fromAmount = v ∧ toAmount = w

S ∧ (file(log, [(f, t, v, w)]) ∗ true)
∧ (Account(f, v) ∗ Account(t, w) ∗ true)


}

b = b

S ∧ ((file(log, []) ∗ true) ∨ (file(log, [(f, t, v, w)]) ∗ true))
∧ (Account(f, v) ∗ Account(t, w) ∗ true)


[delete(log)] ;{

b = b

Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
}{

b = b

(Account(f, v) ∗ Account(t, w) ∨ Account(f, v − a) ∗ Account(t, w + a)) ∗ nofile(log)

}

Figure 9.3.: Proof that the transfer recovery operation guarantees atomicity.

195



9.3. Journaling File Systems

Note that the recovery abstraction rule, introduced in section 9.2.3, does not constrain the fault

condition established by the recovery. In the fault-tolerant bank transfer example, we have used this

rule to show that transferRecovery guarantees atomicity. We could have limited recovery abstraction

to just this atomic case. However, this is not the general case for fault tolerance guarantees.

Journaling file systems [79] are a prime example. Such file systems employ write ahead logging tech-

niques so that file system consistency may be recovered if an operation is interrupted by a host failure.

For example, consider the operation of appending data to a file, and its specification as given [72],

where we simplify slightly by removing the size argument and assuming the write is appending to the

file.

{fd(fd, ι) ∗ buf(buf, y) | file(ι, b)} write(fd, buf) {fd(fd, ι) ∗ buf(buf, y) | file(ι, b⊗ y)}

The specification says that we extend the file with inode ι, associated with the file descriptor fd,

with the contents of the supplied memory buffer y. For the purposes of this discussion we distinguish

between durable (the file contents) and volatile (file descriptor and memory buffer) resources.

The implementation of this operation typically involves: i) updating the inode’s metadata with the

new file size, ii) allocating new space, and iii) writing the appended contents. Journaling file systems

make different choices regarding how much information to log and consequently the fault tolerance

guarantees. One choice is to log all steps, referred to as physical journaling, in which case the operation

is atomic with respect to host failures and we can extend its specification to the following:

file(ι, b) ∨ file(ι, b⊗ y) `

{
fd(fd, ι) ∗ buf(buf, y) | file(ι, b)

}
[write(fd, buf)]{

fd(fd, ι) ∗ buf(buf, y) | file(ι, b⊗ y)
}

However, physical journaling has a significant performance overhead since every update must be

committed twice. Alternatively, file system perform logical journaling, where only metadata changes

are logged. In our example, this means the third step is not logged. The specification in this case is

the following:

file(ι, b) ∨ ∃z. sizeof(y) = sizeof(z) ∧ file(ι, b⊗ z) `

{
fd(fd, ι) ∗ buf(buf, y) | file(ι, b)

}
[write(fd, buf)]{

fd(fd, ι) ∗ buf(buf, y) | file(ι, b⊗ y)
}

As the first and second steps are logged, in the fault-condition we know that file may be extended to

the correct size, but if it is, the new data is effectively garbage. If we restricted recovery abstraction

to the atomic case, we would not be able to derive useful specifications for such strategies.

9.4. FTCSL Program Logic

Until now, we have only seen how to reason about sequential programs. For concurrent programs, we

use resource invariants, in the style of concurrent separation logic [76], that are updated by primitive
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atomic operations. Here primitive atomic is used to mean that the operation takes effect at a single,

discrete instant in time, and that it is atomic with respect to host failures.

The general judgement that enables us to reason about host failing concurrent programs is:

JV | JD ;S ` {PV | PD}C {QV | QD}

Here, PV | PD and QV | QD are pre- and postconditions as usual and describe the volatile and durable

resource. S is a durable assertion, which we refer to as the fault-condition, describing the durable

resource of the program C after a host failure and possible recovery. The interpretation of these

triples is partial resource fault avoiding and host failing. Starting from an initial state satisfying the

precondition PV | PD, it is safe to execute C without causing a resource fault. If no host failure occurs

and C terminates, the resulting state will satisfy the postcondition QV | QD. The shared resource

invariant JV | JD is maintained throughout the execution of C. If a host failure occurs, all volatile

resource is lost and the durable state will (after possible recoveries) satisfy S ∗ JD.

We give an overview of the key proof rules of Fault-tolerant Concurrent Separation Logic (FTCSL)

in figure 9.4. Here we do not formally define the syntax of our assertions, although we describe the

semantics in section 9.6. In general, volatile and durable assertions can be parameterised by any

separation algebra.

The sequence rule allows us to combine two programs in sequence as long as they have the same

fault-condition and resource invariant. Typically, when the fault-conditions differ, we can weaken them

using the consequence rule, which adds fault-condition weakening to the standard consequence rule of

Hoare logic. The frame rule, as in separation logic, allows us to extend the pre- and postconditions

with the same unmodified resource RV ∗ RD. However, here the durable part, RD, is also added to

the fault-condition.

The atomic rule allows us to use the resource invariant JV | JD using a primitive atomic operation.

Since the operation executes in a single, discrete, moment in time, we can think of the operation

temporarily owning the resources JV | JD. However, they must be reestablished at the end. This

guarantees that every primitive atomic operation maintains the resource invariant. Note that the rule

enforces atomicity with respect to host failures. The share rule allows us to use local resources to

extend the shared resource invariant.

The parallel rule, in terms of pre- and postconditions is as in concurrent separation logic. However,

the fault-condition describes the possible durable resources that may result from a host failure while

running C1 and C2 in parallel. In particular, a host-failure may occur while both C1 and C2 are

running, in which case the fault-condition is S1 ∗ S2, or when either one of C1, C2 has finished, in

which case the fault-condition is S1 ∗QD2 and S2 ∗QD1 respectively.

Finally, the recovery abstraction rule allows us to prove that a recovery operation CR establishes

the fault-condition R we wish to expose to the client. The first premiss requires operation CR to be

the recovery of C, i.e. it is executed on reboot after a host failure during execution of C. The second

premiss guarantees that in such case, the durable resources satisfy S and the shared resource invariant

satisfies JD, while the volatile state is lost after a host failure. The third premiss, takes the resource

after the reboot and runs the recovery operation in order to establish R. Note that JD is an invariant,

as there can be potentially parallel recovery operations accessing it using primitive atomic operations.

While the recovery operation CR is running, there can be any number of host failures, which restart
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FTCSLSeq

JV | JD ;S ` {PV | PD}C1 {RV | RD}
JV | JD ;S ` {RV | RD}C2 {QV | QD}

JV | JD ;S ` {PV | PD}C1;C2 {QV | QD}

FTCSLCons

JV | JD ;S′ `
{
P ′V | P ′D

}
C
{
Q′V | Q′D

}
PV | PD ⇒ P ′V | P ′D Q′V | Q′D ⇒ QV | QD S′ ⇒ S

JV | JD ;S ` {PV | PD}C {QV | QD}

FTCSLFrame

JV | JD ;S ` {PV | PD}C {QV | QD}
JV | JD ;S ∗RD ` {PV ∗RV | PD ∗RD}C {QV ∗RV | QD ∗RD}

FTCSLAtomic

true | true ;PD ∗ JD ∨QD ∗ JD ` {PV ∗ JV | PD ∗ JD}C {QV ∗ JV | QD ∗ JD}
JV | JD ;PD ∨QD ` {PV | PD} 〈C〉 {QV | QD}

FTCSLShare

JV ∗RV | JD ∗RD ;S ` {PV | PD}C {QV | QD}
JV | JD ;S ∗RD ` {PV ∗RV | PD ∗RD}C {QV ∗RV | QD ∗RD}

FTCSLParallel

JV | JD ;S1 ` {PV 1 | PD1}C1 {QV 1 | QD1}
JV | JD ;S2 ` {PV 2 | PD2}C2 {QV 2 | QD2}

JV | JD ; (S1 ∗ S2) ∨ (S1 ∗QD2) ∨ (QD1 ∗ S2) `

{
PV 1 ∗ PV 2 | PD1 ∗ PD2

}
C1 ‖ C2{

QV 1 ∗QV 2 | QD1 ∗QD2

}
FTCSLRecoveryAbstract

CR recovers C
JV | JD ;S ` {PV | PD}C {QV | QD}
true | JD ;S ` {true | S}CR {true | R}
JV | JD ;R ` {PV | PD} [C] {QV | QD}

Figure 9.4.: Selected proof rules of FTCSL.
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the recovery. This means that the recovery operation must be able to recover from itself. We allow

recovery abstraction to derive any fault-condition that is established by the recovery operation. If

the fault-condition is a disjunction between the durable pre- and post-conditions, PV ∨QD, then the

operation [C] appears to be atomic with respect to host failures.

9.4.1. Unsound Rules

We have explored including a rule for deriving a FTCSL triple from a standard CSL triple. This gives

rise to two questions: how do we distinguish volatile and durable resource, and what will the added

fault-condition be? Consider the following candidate rule:

{PV ∗ PD}α {QV ∗QD}

PD ∨QD ` {PV | QD} [α] {QV | QD}

where we assume that α is a primitive operation (the premiss is an axiom). Such a rule would be useful

to easily import existing specifications, e.g. those given with separation logics for file systems [47, 72],

into FTCSL.

There two issues. First, even though the fault-condition is sensible, it is overly restrictive for the

same reasons discussed previously on file appends in journaling file systems. Second, the choice of

what ∗-junct to assign to durable resource seems arbitrary. The solution is to require the CSL of

the premiss to logically distinguish between volatile and durable resources, yet this introduces extra

requirements typically not being met. Even though such a rule would be sound, we do not include it

in FTCSL for the aforementioned reasons.

Assume a CSL which does distinguish between volatile and durable resource, and consider the

following tempting, albeit unsound, rule:

{PV | true}C {QV | true}

true ` {PV | true}C {QV | true}

The intuition of this rule is that if we know a program does not use durable resources, then we can infer

its fault-condition to be empty. However, the fact that the pre- and post-condition durable resource

is empty does not mean the program uses no durable resource at all. For example, C can allocate

and subsequently deallocate something durable, in which case the fault-condition should reflect this.

This is an instance of the ABA problem. The bottom line is that an empty fault-condition does not

generally mean durable resource is not used.

9.5. Example: Concurrent Bank Transfer

Consider two threads that both perform a transfer operation from account f to account t as shown in

section 9.2. The parallel rule requires that each operation acts on disjoint resources in the precondition.

Since both threads update the same accounts, we synchronise their use with the atomic blocks denoted
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by 〈 〉. A possible specification for the program is the following:

true | true ;∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log) `{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
〈[transfer(from, to, amount)]〉; ‖ 〈[transfer(from, to, amount2)]〉;{

from = f ∧ to = t ∧ amount = a ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}

A sketch proof of this specification is given in figure 9.5. We first move the shared resources of the two

transfer operations to the shared invariant (share rule). We then prove each thread independently by

making use of the atomic rule to gain temporary access to the shared invariant within the atomic block,

and reuse the specification given in section 9.2.3. It is possible to get stronger postconditions, that

maintain exact information about the amounts of each bank account, using complementary approaches

such as Owicki-Gries [75] or other forms of resource ownership [32]. The sequential examples in this

dissertation can be adapted to concurrent applications using these techniques.
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true | true ; (∃v, w.Account(f, v) ∗ Account(t, w)) ∗ nofile(log) `{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
sh

ar
e

true | ∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log) ; true `{
from = f ∧ to = t ∧ amount = a ∧ amount2 = b

true

}

co
n

se
q

u
en

ce
;

p
ar

al
le

l

true | ∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log) ; true `{
from = f ∧ to = t ∧ amount = a

true

}

at
om

ic

true | true ; (∃v, w.Account(f, v) ∗ Account(t, w)) ∗ nofile(log) `{
from = f ∧ to = t ∧ amount = a

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
[transfer(from, to, amount)] ;{

from = f ∧ to = t ∧ amount = a

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
{

from = f ∧ to = t ∧ amount = a

true

}
{

from = f ∧ to = t ∧ amount2 = b

true

}

at
om

ic

true | true ; (∃v, w.Account(f, v) ∗ Account(t, w)) ∗ nofile(log) `{
from = f ∧ to = t ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
[transfer(from, to, amount2)] ;{

from = f ∧ to = t ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}
{

from = f ∧ to = t ∧ amount2 = b

true

}
{

from = f ∧ to = t ∧ amount = a ∧ amount2 = b

true

}
{

from = f ∧ to = t ∧ amount = a ∧ amount2 = b

∃v, w.Account(f, v) ∗ Account(t, w) ∗ nofile(log)

}

Figure 9.5.: Sketch proof of two concurrent transfers over the same accounts.
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9.6. Semantics and Soundness

We give a brief overview of the semantics of our reasoning and the intuitions behind its soundness. A

detailed account is given in appendix C.

9.6.1. Fault-tolerant Views

We define a general fault-tolerant reasoning framework using Hoare triples with fault-conditions in

the style of the Views framework [35]. Pre- and postcondition assertions are modelled as pairs of

volatile and durable views (commutative monoids). Fault-condition assertions are modelled as durable

views 2. Volatile and durable views provide partial knowledge reified to concrete volatile and durable

program states respectively. Concrete volatile states include the distinguished host-failed state  . The

semantic interpretation of a primitive operation is given as a state transformer function from concrete

states to sets of concrete states.

To prove soundness, we encode our Fault-tolerant Views (FTV) framework into Views [35]. A

judgement3 s ` {(pv, pd)}C {(qv, qd)}, where s, pd, qd are durable views and pv, qv are volatile views is

encoded as the Views judgement: {(pv, qd)}C
{

(qv, qd) ∨ (  , s)
}

, where volatile views are extended to

include  and ∨ is disjunction of views. For the general abstraction recovery rule we encode [C] as a

program which can test for host failures, beginning with C and followed by as many iterations of the

recovery CR as required in case of a host failure.

We require the following properties for a sound instance of the framework:

Host failure: For each primitive operation, its interpretation function must transform non host-failed

states to states including a host-failed state. This guarantees that each operation can be abruptly

interrupted by a host failure.

Host failure propagation: For each primitive operation, its interpretation function must leave all

host-failed states intact. That is, when the state says there is a host failure, it stays a host failure.

Axiom soundness: The axiom soundness property (property [G] of Views [35]).

The first two are required to justify the general FTV rules, while the final property establishes

soundness of the Views encoding itself. When all the parameters are instantiated and the above

properties established then the instantiation of the framework is sound.

9.6.2. Fault-tolerant Concurrent Separation Logic

We justify the soundness of FTCSL by an encoding into the Fault-tolerant Views framework discussed

earlier. The encoding is similar to the concurrent separation logic encoding into Views. We instantiate

volatile and durable views as pairs of local views and shared invariants.

The FTCSL judgement (jv, jd) ; s ` {(pv, pd)}C {(qv, qd)} is encoded as:

s ` {((pv, jv), (pd, jd))}C {((qv, jv), (qd, jd))}

The proof rules in figure 9.4 are justified by soundness of the encoding and simple application of FTV

2 We use “Views” to refer to the Views framework of Dinsdale-Young et al. [35], and “views” to refer to the monoid
structures used within it.

3 Note that judgements, such as those in figure 9.4, using assertions (capital P,Q, S) are equivalent to judgements using
views (models of assertions, little p, q, s).
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proof rules. Soundness of the encoding is established by proving the properties stated in section 9.6.1.

Theorem 6 (FTCSL Soundness). If the judgement JV | JD ;S ` {PV | PD}C {QV | QD} is deriv-

able in the program logic, then if we run the program C from state satisfying PV ∗ JV | PD ∗ JD, then

C will either not terminate, or terminate in state satisfying QV ∗ JV | QD ∗ JD, or a host failure

will occur destroying any volatile state and the remaining durable state (after potential recoveries) will

satisfy S ∗ JD. The resource invariant JV | JD holds throughout the execution of C.

9.7. Case Study: ARIES

In section 9.2 we saw an example of a very simple transaction and its associated recovery opera-

tion employing write-ahead logging. Relational databases support concurrent execution of complex

transactions following the established ACID (Atomicity, Consistency, Isolation and Durability) set of

properties. ARIES (Algorithms for Recovery and Isolation Exploiting Semantics) [69], is a collection

of algorithms involving, concurrent execution, write-ahead-logging and failure recovery of transactions,

that is widely-used to establish ACID properties.

It is beyond the scope of this dissertation to verify that the full set of ARIES algorithms guarantees

ACID properties. Instead, we focus on a stylised version of the recovery algorithm of ARIES proving

that: a) it is idempotent with respect to host failures, b) after recovery, all transactions recorded in

the write-ahead log have either been completed, or were rolled-back.

Transactions update database records stored in durable memory, which for the purposes of this

discussion we assume to be a single file in a file system. To increase performance, the database file

is divided into fixed-size blocks, called pages, containing multiple records. Thus input/output to

the database file, instead of records, is in terms of pages, which are also typically cached in volatile

memory. A single transaction may update multiple pages. In the event of a host failure, there may

be transactions that have not yet completed, or have completed but their updated pages have not yet

been written back to the database file.

ARIES employs write-ahead logging for page updates performed by transactions. The log is stored

on a durable fault-tolerant medium. The recovery uses the logged information in a sequence of

three phases. First, the analysis phase, scans the log to determine the (volatile) state, of any active

transactions (committed or not), at the point of host failure. Next, the redo phase, scans the log and

redos each logged page update, unless the associated page in the database file is already updated.

Finally, the undo phase, scans the log and undos each page update for each uncommitted transaction.

To cope with a possible host failure during the ARIES recovery, each undo action is logged beforehand.

Thus, in the event of a host failure the undo actions will be retried as part of the redo phase.

In figure 9.6, we define the log and database model and describe the predicates we use in our

specifications and proofs. We model the database state, db, as a set of pages, where each page comprises

the page identifier, the log sequence number (defined later) of the last update performed on the page,

and the page data. The log, lg , is structured as a sequence of log records, ordered by a log sequence

number, lsn ∈ N, each of which records a particular action performed by a transaction. The ordering

follows the order in which transaction actions are performed on the database. The logged action,

U [tid , pid , op], records that the transaction identifier tid , performs the update op : Data → Data

on the page identified by pid . We use op−1 to denote the operation undoing the update op. B[tid ],
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records the start of a new transaction with identifier tid , and C[tid ], records that the transaction

with id tid is committed. The information from the above actions is used to construct two auxiliary

structures used by the recovery to determine the state of transactions and pages at the point of a

host failure. The transaction table (TT), records the status of all active transactions (e.g. updating,

committed) and the latest log sequence number associated with the transaction. The dirty page table

(DPT), records which pages are modified but yet unwritten to the database together with the first log

sequence number of the action that caused the first modification to each page. To avoid the cost of

scanning the entire log, implementations regularly log snapshots of the TT and DPT in checkpoints,

CHK [tt , dpt ]. For simplicity, we assume the log contains exactly one checkpoint.

Let lsn, tid , pid ∈ N, where we use lsn for log sequence numbers, tid for transaction identifiers, pid
for page identifiers, d for page data and op for page-update operations. Let ∅ be an empty list.

Model:

Database state db ⊆ N× N×Data, triples of pid , lsn, d
Logged actions act ::= U [tid , pid , op] | B[tid ] | C[tid ] | CHK [tt , dpt ]
Log state lg ::= ∅ | (lsn, act) | lg ⊗ lg
Transaction table tt ⊆ N× N× {C,U} , triples of lsn, pid and transaction status
Dirty page table dpt ⊆ N× N, tuples of pid , lsn

Predicates:

log(lg) the state of the log is given by lg (abstract predicate)
db state(db) the state of the database is given by db (abstract predicate)
set(x, s) the set s identified by program variable x (abstract predicate)
log tt(lg , tt) log lg produces the TT entries in tt
log dpt(lg , dpt) log lg produces the DPT entries in dpt
log rl(lg , dpt , ops) given log lg and DPT dpt the list of redo updates is ops
ul undo(lg , tt , ops) given log lg and TT tt the list of undo updates is ops
log undos(ops, lg) given list of undos ops the additional log records are lg
db acts(db, ops, db ′) given the list of updates ops, the database db is updated to db ′

recovery log(lg , lg ′) given log lg log records added by recovery are lg ′

recovery db(db, lg , db ′) given database db and log lg the recovered database state is db′

Axioms:
log
(
lg ⊗ lg ′

)
⇐⇒ log bseg(lg)⊗ log fseg

(
lg ′
)

Figure 9.6.: Abstract model of the database and ARIES log, and predicates.

function aries recovery() {
//ANALYSIS PHASE: restore dirty page table, transaction table

//and undo list at point of host failure.

tt, dpt := aries analyse();
//REDO PHASE: repeat actions to restore database state at host failure.

aries redo(dpt);
//UNDO PHASE: Undo actions of uncommitted transactions.

aries undo(tt);
}

Figure 9.7.: ARIES recovery: high level structure.
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Predicate definitions

We give the following definitions for the concrete predicates of figure 9.6:

log tt(lg , tt) ,

(lg = ∅ ∧ tt = ∅)

∨


∃lsn, act , a, tid , lg ′, tt ′. (lg = (lsn, act)⊗ lg ′)

∧


(

((act = U [tid ,−] ∧ a = U) ∨ (act = C[tid ] ∧ a = C))

∧ tt = (tid , lsn, a)⊕ tt ′

)
∨ ((act = CHK [−] ∨ act = B[−]) ∧ tt ′ = tt)


∧ log tt(lg ′, tt ′)


log dpt(lg , dpt) ,

(lg = ∅ ∧ dpt = ∅)

∨

 ∃lsn, pid , lg ′, dpt ′. (lg = (lsn, U [−, pid ])⊗ lg ′)

∧

( (
pid 6∈ dpt↓1 ∧ dpt = {(pid , lsn)} ∪ dpt ∧ log dpt(lg ′, dpt ′)

)
∨
(
pid ∈ dpt↓1 ∧ log dpt(lg ′, dpt)

) ) 
∨

(
∃act , lg ′. (lg = (−, act)⊗ lg ′) ∧ log dpt(lg ′, dpt)

∧ (act = CHK [−] ∨ act = C[−] ∨ act = B[−])

)

log rl(lg , dpt , ops) ,

(lg = ∅ ∧ ops = ∅)

∨


∃lsn, lsn ′, tid , pid , lg ′, op, ops ′. (lg = (lsn, U [tid , pid ], op)⊗ lg ′)

∧

(
(pid , lsn ′) ∈ dpt ∧ lsn ≥ lsn ′ ∧ (ops = (tid , pid , op)⊗ ops ′)

∧ log rl(lg ′, dpt , ops ′)

)
∨
(

(pid) 6∈ dpt↓1 ∧ log rl(lg ′, dpt , ops)
)


∨

(
∃act , lg ′. (act = CHK [−] ∨ act = C[−] ∨ act = B[−])

∧ (lg = (−, act)⊗ lg ′) ∧ log rl(lg ′, dpt , ops)

)

ul undo(lg , tt , ops) ,

(lg = ∅ ∧ ul = ∅)

∨


∃lg ′, lsn, tid , pid , op, ops ′. (lg = lg ′ ⊗ (lsn, U [tid , pid , op]))

∧

( (
(tid ,−, U) ∈ tt ∧

(
ops = (tid , pid , op−1)⊗ ops ′

)
∧ ul undo(lg ′, tt , ops ′)

)
∨ ((tid ,−, U) 6∈ tt ∧ ul undo(lg ′, tt , ops))

) 
∨

(
∃lg ′, act . (act = CHK [−] ∨ act = C[−] ∨ act = B[−])

∧ (lg = lg ′ ⊗ (−, act)) ∧ ul undo(lg ′, tt , ops)

)

log undos(ops, lg) ,

(ops = ∅ ∧ rl = ∅)

∨

(
∃lsn, tid , pid , ops ′, lg ′. ops = (tid , pid , op)⊗ ops ′

∧ lg = (lsn, U [tid , pid , op])⊗ lg ′ ∧ log undos(ops ′, lg ′)

)

db acts(db, ops, db′) ,

(ops = ∅ ∧ db = db′)

∨

 ∃lsn, tid , pid , ops ′. ops = (tid , pid , op)⊗ ops ′

∧ ((lsn, pid , d) ∈ db ∧ db′ = db \ {(lsn, pid , d)} ∪ {lsn, pid , op(d)})
∨ ((lsn, pid , d) 6∈ db ∧ db acts(db, ops ′, db′))


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recovery log(lg , lg ′) ,

∃ops, lg ′′, lsn, act , tt , tt ′, tt ′′, dpt , dpt ′, dpt ′′.

log undos(ops, lg ′) ∧ ul undo(lg ′′ ⊗ (lsn, act), tt , ops)

∧ (lg = lg ′′ ⊗ (lsn, act)⊗−) ∧ lsn = max(tt ↓2)

∧ (tt = tt ′ ⊕ tt ′′) ∧ (dpt = dpt ′ ] dpt ′′)

∧ (lg = −⊗ (−,CHK [tt ′, dpt ′])⊗ lgc)

∧ log tt(lgc , tt
′′) ∧ log dpt(lgc , dpt ′′)

recovery db(db, lg , db′) ,

∃ops, ops ′, ops ′′, lsn≤, act≤, lsn≥, act≥, dpt ′, dpt ′′, tt ′, tt ′′, lgc , lgb , lg
′.

ops = ops ′ ⊗ ops ′′ ∧ log rl((lsn≤, act≤)⊗ lg ′, dpt , ops ′)

∧ lsn≤ = min(dpt ↓2) ∧ (lg = −⊗ (lsn≤, act)⊗ lg ′)

∧ dpt = dpt ′ ] dpt ′′ ∧ tt = tt ′ ⊕ tt ′′

∧ (lg = −⊗ (−,CHK [tt ′, dpt ′])⊗ lgc) ∧ log dpt(lgc , dpt ′′)

∧ log tt(lgc , tt
′′) ∧ ul undo(lgb ⊗ (lsn≥, act≥), tt , ops ′′)

∧ (lg = lgb ⊗ (lsn≥, act≥)⊗−) ∧ lsn≥ = max(tt ↓2)

∧db acts(db, ops, db′)

Log and Database Specifications

We assume simple log and database file modules with the following specification.

log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc ) `{
true | log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc )

}
init from log(){

ret = (lsn, tt, dpt) ∧ set(tt, tt) ∗ set(dpt, dpt) | log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgc )
}

log((lsn, act)⊗ lg) `{
lsn = lsn ∧ true | log((lsn, act)⊗ lg)

}
log mk f iter(lsn){

fiter(ret, lg) ∧ lsn = lsn | log((lsn, act)⊗ lg)
}

true `{
fiter(i, (lsn, act)⊗ lg) | true

}
log f next(i){

ret = (lsn, act) ∧ fiter(i, lg) | true
}

true `{
fiter(i,∅) | true

}
log f next(i){

ret = (nil, nil)fiter(i,∅) | true
}
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true `{
fiter(i, lg) | true

}
log close fiter(i){

true | true
}

true `{
act = act | true

}
action get type(act)

ret = U⇒ act = U [−]

∧ ret = B⇒ act = B[−]

∧ ret = C⇒ act = C[−]

∧ ret = CHK ⇒ act = CHK [−]

∧ act = act ∧ true

true


true `{

act = act ∧ true | true
}

action get tid(act){
true ∧ act = act ∧ ret = tid ∧ act = U [tid ,−,−] ∨ act = B[tid ] ∨ act = C[tid ] | true

}
true `{

act = U [tid , pid , op] ∧ true | true
}

action get pid(act){
act = U [tid , pid , op] ∧ ret = pid ∧ true | true

}
db state(db) `{

true | db state(db) ∧ (pid, lsn,−) ∈ db
}

db get page lsn(pid){
ret = lsn ∧ true | db state(db) ∧ (pid, lsn,−) ∈ db

}
db state(db ∪ {(pid , lsn ′, d)}) ∨ db state(db ∪ {(pid , lsn, op(d))}) `{

pid = pid ∧ lsn = lsn ∧ op = op ∧ true | db state(db ∪ {(pid , lsn ′, d)})
}

[db update page(pid, lsn, op)]{
pid = pid ∧ lsn = lsn ∧ op = op ∧ true | db state(db ∪ {(pid , lsn, op(d))})

}
true `{

set(tt, tt) ∧ (tid,−) 6∈ tt | true
}

tt insert(tt, tid, (lsn, a)){
set(tt, tt ∪ {(tid, (lsn, a))}) | true

}
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true `{
set(tt, tt ∪ {(tid, (lsn ′, a ′))}) | true

}
tt insert(tt, tid, (lsn, a)){

set(tt, tt ∪ {(tid, (lsn, a))}) | true
}

true `{
set(dpt, dpt) ∧ (pid,−) 6∈ dpt | true

}
dpt insert(dpt, (pid, lsn)){

set(dpt, dpt ∪ {(pid, lsn)}) | true
}

true `{
set(dpt, dpt ∪ {(pid, lsn ′)}) | true

}
dpt insert(dpt, (pid, lsn)){

set(dpt, dpt ∪ {(pid, lsn)}) | true
}

true `{
set(dpt, dpt ∪ {(pid, lsn)}) | true

}
dpt search(dpt, pid){

ret = (pid, lsn) ∧ set(dpt, dpt ∪ {(pid, lsn)}) | true
}

The high level overview of the recovery algorithm in terms of its analysis, redo and undo phases

is given in figure 9.7. The analysis phase first finds the checkpoint and restores the TT and DPT.

Then, it proceeds to scan the log forwards from the checkpoint, updating the TT and DPT. Any new

transaction is added to the TT. For any commit log record we update the TT to record that the

transaction is committed. For any update log record, we add an entry for the associated page to the

DPT, also recording the log sequence number, unless an entry for the same page is already in it. We

give the following specification for the analysis phase:

log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc ) `{
true

log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc )

}
tt, dpt := aries analyse(){

∃tt ′, dpt ′. log tt(lgc , tt
′) ∧ log dpt(lgc , dpt ′) ∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log(lgi ⊗ (−,CHK [tt, dpt])⊗ lgc )

}

The specification states that given the database log, the TT and DPT in the log’s checkpoint are

restored and updated according to the log records following the checkpoint. The analysis does not

modify any durable state.

The redo phase, follows analysis and repeats the logged updates. Specifically, redo scans the log

forward from the record with the lowest sequence number in the DPT. This is the very first update

that is logged, but (potentially) not yet written to the database. The updates are redone unless the

recorded page associated with that update is not present in the DPT, or a more recent update has
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modified it. We give the following specification to redo:

∃ops, ops ′, ops ′′. (ops = ops ′ ⊗ ops ′′) ∧ db acts(db, ops ′, db′′)

∧ log fseg((lsn, act)⊗ lg) ∗ db state(db′′) `{
set(dpt, dpt) ∧ lsn = min(dpt↓2)

log fseg((lsn, act)⊗ lg) ∗ db state(db)

}
aries redo(dpt)

set(dpt, dpt) ∧ lsn = min(dpt↓2)

log fseg((lsn, act)⊗ lg) ∗ db state(db′) ∧ db acts(db, ops, db′)

∧ log rl((lsn, act)⊗ lg , dpt , ops)


The specification states that the database is updated according to the logged update records following

the smallest log sequence number in the DPT. The fault-condition specifies that after a host failure,

all, some or none of the redos have happened. Since redo does not log anything, the log is not affected.

The last phase is undo, which reverts the updates of any transaction that is not committed. In

particular, undo scans the log backwards from the log record with the largest log sequence number in

the TT. This is the log sequence number of the very last update. For each update record scanned, if

the transaction exists in the TT and is not marked as committed, the update is reversed. However,

each reverting update is logged beforehand. This ensures, that undos will happen even in case of

host failure, since they will be re-done in the redo phase of the subsequent recovery run. We give the

following specification for the undo phase:

∃lg ′, lg ′′, lg ′′′, ops, ops ′, ops ′′. lg ′ = lg ′′ ⊗ lg ′′′ ∧ ops = ops ′ ⊗ ops ′′

∧ db acts(db, ops ′, db′′) ∧ log bseg(lg ⊗ (lsn, act)⊗ lg ′′) ∗ db state(db′′) `{
set(tt, tt) ∧ lsn = max(tt↓2)

log bseg(lg ⊗ (lsn, act)) ∗ db state(db)

}
aries undo(tt)

set(tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo(tt , lg ⊗ (lsn, act), ops)

log bseg(lg ⊗ (lsn, act)⊗ lg ′) ∧ log undos(ops, lg ′)

∗ db state(db′) ∧ db acts(db, ops, db′)


The specification states that the database is updated with actions reverting previous updates as

obtained from the log. These undo actions are themselves logged. In the event of a host failure the

fault-condition specifies that all, some, or none of the operations are undone and logged.

Using the specification for each phase and using our logic we can derive the following specification

for this ARIES recovery algorithm:

∃lg ′, lg ′′, db′. log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′) ∗ db state(db) `{
true

log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′) ∗ db state(db)

}
aries recovery()

true

log(lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′ ⊗ lg ′′)

∧ recovery log(lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′, lg ′′)

∗ db state(db′) ∧ recovery db(db, lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′, db′)


The proof that the high level structure of the ARIES algorithm satisfies this specification is given

in figure 9.8. The key property of the ARIES recovery specification is that the durable precondition

is the same as the fault-condition. This guarantees that the recovery is idempotent with respect to
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host failures. This is crucial for any recovery operation, as witnessed in the recovery abstraction rule,

guaranteeing that the recovery itself is robust against crashes. Furthermore, the specification states

that any transaction logged as committed at the time of host failure, is committed after recovery.

Otherwise transactions are rolled back.

Phase implementations and proofs

The implementation of the analysis phase together with the proof that it meets the specification given

in §9.7 is given in figure 9.9. The implementation and proof of the redo phase is given in figure 9.10.

In figure 9.11 we give the implementation of the undo phase together with the proof it meets the

specification we have given in §9.7.
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∃lg ′, lg ′, db, rl ′. log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′) ∗ db state(db) `{
true | log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′) ∗ db state(db)

}
se

q
u

en
ce

fr
am

e

//ANALYSIS PHASE

log(lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′) `{
true | log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′)

}
tt, dpt := aries analyse();
∃tt ′, dpt ′. log tt(lg ′, tt ′) ∧ log dpt(lg ′, dpt , dpt ′)
∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log(lg ⊗ (−,CHK [tt, dpt])⊗ lg ′)


∃tt ′, dpt ′. log tt(lg ′, tt ′) ∧ log dpt(lg ′, dpt , dpt ′)
∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log(lg ⊗ (−,CHK [tt, dpt])⊗ lg ′) ∗ db state(db)


//REDO PHASE: repeat actions to restore database state at host failure.

co
n

se
q

u
en

ce

∃lgi , lgc , lg , lg
′, db, db ′, db ′′, lsn≤, act , ops ′, ops ′′. (ops = ops ′ ⊗ ops ′′) ∧

log bseg(lgi) ∗ log fseg((lsn≤, act)⊗ lgc) ∗ db state(db ′′) ∧ db acts(db, ops ′, db′′)
`

∃tt ′, dpt ′. lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′ = lgi ⊗ (lsn≤, act)⊗ lgc

∧ lsn≤ = min((dpt ] dpt ′)↓2) ∧ log tt(lg ′, tt ′) ∧ log dpt(lg ′, dpt , dpt ′)
∧ log ul(lg ′, ul) ∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log bseg(lgi) ∗ log fseg((lsn≤, act)⊗ lgc) ∗ db state(db)



fr
am

e

∃db ′′, ops ′, ops ′′. (ops = ops ′ ⊗ ops ′′)
∧ log fseg((lsn≤, act)⊗ lg) ∗ db state(db′′) ∧ db acts(db, ops ′, db ′′)

`{
set(dpt, dptu) ∧ lsn≤ = min((dptu)↓2)

log fseg((lsn≤, act)⊗ lgc) ∗ db state(db)

}
aries redo(dpt);

set(dpt, dptu) ∧ lsn≤ = min((dptu)↓2)

log fseg((lsn≤, act)⊗ lgc) ∗ db state(db ′)
∧ db acts(db, ops, db ′) ∧ log rl((lsn≤, act)⊗ lgc , dptu , ops)


lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′ = lgi ⊗ (lsn≤, act)⊗ lgc

∧ lsn≤ = min((dpt ] dpt ′)↓2) ∧ log tt(lg ′, tt ′) ∧ log dpt(lg ′, dpt , dpt ′)
∧ log ul(lg ′, ul) ∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′) ∗ ulist(ul, ul)

log bseg(lgi) ∗ log fseg((lsn≤, act)⊗ lgc)
∗ db state(db′) ∧ log rl((lsn≤, act)⊗ lgc , dptu , ops)


∃lgc , lsn≤. lg

′ = −⊗ (lsn≤, act)⊗ lgc ∧ lsn≤ = min((dpt ] dpt ′)↓2)
∧ log tt(lg ′, tt ′) ∧ log dpt(lg ′, dpt , dpt ′) ∧ log ul(lg ′, ul)

∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log(lg ⊗ (lsn,CHK [tt, dpt])⊗ lg ′) ∗ db state(db′)
∧ db acts(db, ops, db ′) ∧ log rl((lsn≤, act)⊗ lgc , dpt ] dpt ′, rl ′)



co
n

se
q

u
en

ce
,f

ra
m

e

//UNDO PHASE: Undo actions of uncommitted transactions.

∃lg ′, lg ′′, lg ′′′, ops, ops ′, ops ′′. lg ′ = lg ′′ ⊗ lg ′′′ ∧ ops = ops ′ ⊗ ops ′′

∧ db acts(dbr , ops ′, db′′r ) ∧ log bseg(lg ⊗ (lsn, act)⊗ lg ′′) ∗ db state(db ′′r )
`{

set(tt, tt) ∧ lsn≥ = max(tt↓2) | log bseg(lg ⊗ (lsn, act)) ∗ db state(dbr )
}

aries undo(tt, dpt, ul);
set(tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo(tt , lg ⊗ (lsn, act), ops)

log bseg(lg ⊗ (lsn, act)⊗ lg ′) ∧ log undos(ops, lg ′)
∗ db state(db ′r ) ∧ db acts(dbr , ops, db ′r )


true

log(lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′ ⊗ lg ′′)
∧ recovery log(lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′, lg ′′)

∗ db state(db′) ∧ recovery db(db, lg ⊗ (lsn,CHK [tt , dpt ])⊗ lg ′, db ′)


Figure 9.8.: Proof of the high level structure of ARIES recovery.
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log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc ) `{
true | log(lgi ⊗ (lsn,CHK [tt, dpt])⊗ lgc )

}
chkLsn, tt, dpt := init from log();{

set(tt, tt) ∗ set(dpt, dpt)

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgc )

}
i := log mk f iter(chkLsn);{

log out chk(lgi) ∧ set(tt, tt) ∗ set(dpt, dpt) ∗ fiter(i, lgc)

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgc )

}
lsn, act := log f next(i);

∃lgp , lgu , lgr , tt
′, dpt ′. log out chk(lgi)

∧
((

lsn 6= nil ∧ (lgc = lgp ⊗ (lsn, act)⊗ lgr ) ∧ lgu = lgp

)
∨ (lsn = nil ∧ lgr = ∅ ∧ lgu = lgc)

)
∧ log tt(lgu , tt

′) ∧ log dpt(lgu , dpt ] dpt ′) ∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)
∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgc )


while (lsn 6= nil) {

∃lgp , lgr , tt
′, dpt ′. log tt(lgp , tt

′) ∧ log dpt(lgp , dpt ] dpt ′)
∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′) ∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgp ⊗ (lsn, act)⊗ lgr )


at := action get type(act);
tid := action get tid(act);
if (at = U) {

∃lgp , lgr , tt
′, dpt ′, tid , pid , op. at = U ∧ log tt(lgp , tt

′) ∧ log dpt(lgp , dpt ] dpt ′)
∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′) ∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgp ⊗ (lsn, U [tid , pid , op])⊗ lgr )


pid := action get pid(act);
tt insert(tt, tid, (lsn, U));
∃lgp , lgr , tt

′, dpt ′, tid , pid , op. at = U ∧ log tt(lgp , tt
′) ∧ log dpt(lgp , dpt ] dpt ′)

∧ set(tt, tt ⊕ tt ′ ⊕ {(tid , lsn, U)}) ∗ set(dpt, dpt ] dpt ′) ∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgp ⊗ (lsn, U [tid , pid , op])⊗ lgr )


pid′, := dpt search(dpt, pid);
if (pid′ 6= nil) {
dpt insert(dpt, pid, lsn);

∃lgp , lgr , tt
′, dpt ′, tid , pid , op. at = U ∧ log tt(lgp , tt

′) ∧ log dpt(lgp , dpt ] dpt ′)
∧ set(tt, tt ⊕ tt ′ ⊕ {(tid , lsn, U)}) ∗ set(dpt, dpt ] dpt ′ ] {(pid , lsn)}) ∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgp ⊗ (lsn, U [tid , pid , op])⊗ lgr )


}
} else if (at = C) {
tt insert(tt, tid, (lsn, C));
∃lgp , lgr , tt

′, dpt ′, tid , pid , op. at = C ∧ log tt(lgp , tt
′) ∧ log dpt(lgp , dpt ] dpt ′)

∧ set(tt, tt ⊕ tt ′ ⊕ {(tid , lsn, C)}) ∗ set(dpt, dpt ] dpt ′) ∗ fiter(i, lgr )

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgp ⊗ (lsn, U [tid , pid , op])⊗ lgr )


}
lsn, act := log f next(i);
}

∃tt ′, dpt ′. log tt(lgc , tt
′) ∧ log dpt(lgc , dpt ] dpt ′)

∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′) ∗ fiter(i,∅)

log(lgi ⊗ (chkLsn,CHK [tt, dpt])⊗ lgc )


log close f iter(i);
return tt, dtp, ut;{
∃tt ′, dpt ′. log tt(lgc , tt

′) ∧ log dpt(lgc , dpt ′) ∧ set(tt, tt ⊕ tt ′) ∗ set(dpt, dpt ] dpt ′)

log(lgi ⊗ (−,CHK [tt, dpt])⊗ lgc )

}

Figure 9.9.: Implementation and proof of the ARIES analysis phase.
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∃rl ′, rl ′′, rl ′′′. (rl ′ = rl ′′ ⊗ rl ′′′) ∧ log fseg((lsn, act)⊗ lg) ∗ db state(rl ⊗ rl ′′) `{
set(dpt, dpt) ∧ lsn = min(dpt↓2)

log fseg((lsn, act)⊗ lg) ∗ db state(rl)

}
lsn := dpt get least lsn(dpt);
∃dpt ′. log dpt(lgc , dpt , dpt ′) ∧ lsn = min((dpt ] dpt ′)↓2)

∧ set(dpt, dpt ] dpt ′)

true


∃lgm . log dpt(lgc , dpt , dpt ′)

∧ lsn = min((dpt ] dpt ′)↓2) ∧ set(dpt, dpt ] dpt ′)

log(lgi ⊗ (−,CHK [tt, dpt])⊗−⊗ (lsn,−)⊗ lgm)


i := log mk f iter(lsn);
lsn, act := log f next(i);

∃tt ′, dpt ′, lsn≤, lgm , lgp , lgu . log dpt(lgc , dpt , dpt ′)

∧
((

lsn 6= nil ∧ (lgm = lgp ⊗ (lsn, act)⊗ lgr ) ∧ lgu = lgp

)
∨
(
lsn = nil ∧ lgr = ∅ ∧ lgu = lgm

) )
∧ log rl(lgu , dpt ] dpt ′, rl ′) ∧ set(dpt, dpt ] dpt ′) ∗ fiter(i, lgr )

log(lgi ⊗ (−,CHK [tt, dpt])⊗−⊗ (lsn≤,−)⊗ lgm) ∗ db state(rl ⊗ rl ′)


while (lsn 6= nil) {
at := action get type(act);
if (at = U) {
tid := action get tid(act);
pid := action get pid(act);
pid′, lsn′ := dpt search(dpt, pid);
if (pid′ 6= nil ∧ lsn ≥ lsn′) {
db update(U[tid, pid]);
}
}
lsn, act := log f next(i);
}

∃tt ′, dpt ′, lsn≤, lgm . log dpt(lgc , dpt , dpt ′)
∧ log rl(lgm , dpt ] dpt ′, rl) ∧ set(dpt, dpt ] dpt ′) ∗ fiter(i,∅)

log(lgi ⊗ (−,CHK [tt, dpt])⊗−⊗ (lsn≤,−)⊗ lgm) ∗ db state(rl ⊗ rl ′)


log close f iter(i);{

set(dpt, dpt) ∧ lsn = min(dpt↓2)

log fseg((lsn, act)⊗ lg) ∗ db state(rl ⊗ rl ′) ∧ log rl((lsn, act)⊗ lg , dpt , rl ′)

}

Figure 9.10.: Implementation and proof of the ARIES redo phase.
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∃lg ′, lg ′′, lg ′′′, rl ′, ul ′, ul ′′. lg ′ = lg ′′ ⊗ lg ′′′ ∧ ul = ul ′ ⊗ ul ′′

∧ log bseg(lg ⊗ (lsn, act)⊗ lg ′′) ∗ db state(rl ⊗ ul ′)
`{

set(tt, tt) ∧ lsn = max(tt↓2)

log bseg(lg ⊗ (lsn, act)) ∗ db state(rl)

}
ul := ul new();
lsn := tt get max lsn(tt);
i := log mk b iter(lsn);
lsn, act := log b next(i);
tid := action get tid(act);
tid, , st := tt search(tt, tid);
while (lsn 6= nil ∧ tid 6= nil) {
at := action get type(act);
if (at = U ∧ st = U) {
pid := action get pid(act);
ul add(ul, (tid, pid));

}
lsn, act := log b next(i);
tid := action get tid(act);
tid, , st := tt search(tt, tid);
}
log close b iter(i);

x = (lsn≤,−) ∧ lsn≤ = max(tt↓2) ∧ log tids(lgc ⊗ x ) ⊆ tt↓1
∧ ul undo(tt , lgc ⊗ x , ul ′) ∧ set(tt, tt) ∗ ulist(ul, ul ⊗ ul ′)

log(−⊗ (−,CHK [−])⊗ lgc ⊗ x ⊗−) ∗ db state(rl)


i := ul mk iter(ul);

x = (lsn≤,−) ∧ lsn≤ = max(tt↓2) ∧ log tids(lgc ⊗ x ) ⊆ tt↓1
∧ ul undo(tt , lgc ⊗ x , ul ′) ∧ set(tt, tt) ∗ ulist(ul, ul ⊗ ul ′) ∗ uliter(i, ul ⊗ ul ′)

log(−⊗ (−,CHK [−])⊗ lgc ⊗ x ⊗−) ∗ db state(rl)


lsn, tid, pid := ul next(i);

∃ulr . lg = −⊗ (−,CHK [−])⊗ lgc ⊗ x ⊗−
∧ ul ⊗ ul ′ = ulp ⊗ ulr ∧ ((lsn 6= nil) ∨ (lsn = nil ∧ ulr = ∅))
∧ log undos(ulp , lg

′) ∧ db undos(ulp , rl ′) ∧ x = (lsn≤,−)
∧ lsn≤ = max(tt↓2) ∧ log tids(lgc ⊗ x ) ⊆ tt↓1 ∧ ul undo(tt , lgc ⊗ x , ul ′)

∧ set(tt, tt) ∗ ulist(ul, ul ⊗ ul ′) ∗ uliter(i, ulr )

log(lg ⊗ lg ′) ∗ db state(rl ⊗ rl ′)


while (lsn 6= nil) {
lsn′ := log mk lsn();
log append(lsn′, R[tid, pid]);
db update(R[tid, pid]);
lsn, tid, pid := ul next(i);
}

lsn = nil ∧ lg = −⊗ (−,CHK [−])⊗ lgc ⊗ x ⊗−
∧ log undos(ul ⊗ ul ′, lg ′) ∧ db undos(ul ⊗ ul ′, rl ′) ∧ x = (lsn≤,−)

∧ lsn≤ = max(tt↓2) ∧ log tids(lgc ⊗ x ) ⊆ tt↓1
∧ ul undo(tt , lgc ⊗ x , ul ′) ∧ set(tt, tt) ∗ ulist(ul, ul ⊗ ul ′) ∗ uliter(i,∅)

log(lg ⊗ lg ′) ∗ db state(rl ⊗ rl ′)


ul close iter(i);
ul free(ul);{

set(tt, tt) ∧ lsn = max(tt↓2) ∧ ul undo(tt , lg ⊗ (lsn, act), ul)

log bseg(lg ⊗ (lsn, act)⊗ lg ′) ∧ log undos(ul , lg ′) ∗ db state(rl ⊗ ul)

}

Figure 9.11.: Implementation and proof of the ARIES undo phase.
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9.8. Related Work

There has been a significant amount of work in critical systems, such as file systems and databases,

to develop defensive methods against the types of failures covered in this chapter [79, 84, 15, 69]. The

verification of these techniques has mainly been through testing [78, 64] and model checking [100].

However, these techniques have been based on building models that are specific to the particular

application and recovery strategy, and are difficult to reuse.

Program logics based on separation logic have been successful in reasoning about file systems [47,

72] and concurrent indexes [29] on which database and file systems depend. However, as is typical

with Hoare logics, their specifications avoid host failures, assuming that if a precondition holds then

associated operations will not fail. An exception to this is early work by Schlichting and Schneider [85],

where they propose a methodology based on Hoare logic proof outlines to reason about fault-tolerance

properties of programs. However, Hoare logic itself is not fundamentally modified. In contrast, our

reasoning is based on a fundamental re-interpretation of Hoare triples and dedicated inference rules.

Faulty Logic [68] by Meola and Walker is another exception to the standard fault-avoiding program

logics. Faulty logic is designed to reason about transient faults, such as random bit flips due to

background radiation, which are different in nature from host failure.

Zengin and Vafeiadis propose a purely functional programming language with an operational se-

mantics providing tolerance against processor failures in parallel programs [102]. Computations are

check-pointed to durable storage before execution and, upon detection of a failure, the failed com-

putations are restarted. In general, this approach does not work for concurrent imperative programs

which mutate the durable store.

In independent work, Chen et al. introduced Crash Hoare Logic (CHL) to reason about host failures

and applied it to a substantial sequential journaling file system (FSCQ) written in Coq [27, 26].

CHL extends Hoare triples with fault-conditions and provides highly automated reasoning about host

failures. FSCQ performs physical journaling, meaning it uses a write-ahead log for both data and

metadata, so that the recovery can guarantee atomicity with respect to host failures. The authors use

CHL to prove that this property is indeed true. The resource stored in the disk is treated as durable.

Since FSCQ is implemented in the functional language of Coq, which lacks the traditional process

heap, the volatile state is stored in immutable variables.

The aim of FSCQ and CHL is to provide a verified implementation of a sequential file system which

tolerates host failures. In contrast, our aim is to provide a general methodology for fault-tolerant

resource reasoning about concurrent programs. We extend the Views framework [35] to provide a

general concurrent framework for reasoning about host failure and recovery. Like CHL, we extend

Hoare triples with fault-conditions. We instantiate our framework to concurrent separation logic, and

demonstrate that an ARIES recovery algorithm uses the write-ahead log correctly to guarantee the

atomicity of transactions.

As we are defining a framework, our reasoning of the durable and volatile state (given by arbi-

trary view monoids) is general. In contrast, CHL reasoning is specific to the durable state on the

disk and the volatile state in the immutable variable store. CHL is able to reason modularly about

different layers of abstraction of a file-system implementation, using logical address spaces which give

a systematic pattern of use for standard predicates. We do not explore modular reasoning about

layers of abstractions in this chapter, since it is orthogonal to reasoning about host failures, and
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examples have already been studied in instances of the Views framework and other separation logic

literature [77, 36, 30, 88, 32].

We can certainly benefit from the practical CHL approach to mechanisation and proof automation.

We also believe that future work on CHL, especially on extending the reasoning to heap-manipulating

concurrent programs, can benefit from our general approach.

9.9. Conclusions

We have developed an extension of resource reasoning for fault tolerance by extending the Views

framework [35] to reason about programs that experience host failures. The fault-tolerant Views

framework is a generic framework for constructing sound fault-tolerant concurrent program logics.

The details of the framework and its soundness result are given in appendix C. We have demonstrated

our approach with a particular instantiation of this framework, FTCSL; a fault-tolerant extension of

concurrent separation logic. Many other program logics that have been shown to be instances of the

Views framework can be similarly extended, such as CAP [36] and Rely-Guarantee [60].

We have discussed our approach can be used to specify journaling file systems. Our framework is

directly applicable to program logics used for sequential fragments of POSIX file systems, such as

structural separation logic [47] and fusion logic [72]. It is not directly applicable to the concurrent

specification developed in this dissertation, since the Views framework does not handle atomicity and

contextual refinement. Extending reasoning about fault tolerance to the specification language and

refinement calculus developed in chapter 7 is a matter of future work. The work presented in this

chapter is the first step towards that direction.

216



10. Conclusions

In this dissertation we have tackled the subject of reasoning about POSIX file systems with a primary

focus on their concurrent behaviour. We have identified two main challenges in the style of concurrency

exhibited by POSIX file systems: file-system operations perform complex sequences of atomic steps,

and POSIX file systems are a public namespace.

We addressed the first challenge by developing a specification language capable of specifying opera-

tions in terms of multiple atomic steps. Our specification language is the combination of two concepts

from prior work on reasoning about fine-grained concurrency: specifications of abstract atomicity from

the program logic TaDA [30], and the specification language and contextual refinement reasoning by

Turon and Wand [94]. We have given a formal specification of a core fragment of the POSIX file-system

interface, capturing the complex concurrent behaviour specified informally in the POSIX standard.

To the best of our knowledge, this is the first formal specification of file-system concurrency to achieve

this. However, we do not claim that our formalisation is complete or even definitive. By focusing on

concurrency we have only covered a fragment of the POSIX file-system interface, and ambiguities as

well as possible errors in the POSIX standard prevents us from making such a claim. However, we

have demonstrated that our specification approach is flexible and amenable to extensions and revisions

in line with future revisions of the standard.

We developed a refinement calculus for reasoning about client applications using the file system. We

applied our method to the examples of lock files and an implementation of named pipes to demonstrate

the scalability of our reasoning. To address the second challenge, the fact that file systems are a

public namespace, we introduced client specifications conditional on context invariants to restrict the

interference on file-system operations.

Additionally, we have developed a general framework, through an extension of the Views frame-

work [35], for reasoning about concurrent programs in the presence of host failures. To account for

host failures, we distinguish between volatile resource, that is lost in the event of a host failure, and

durable resource, that persists between host failures. To reason about fault-tolerance properties, we

introduce a rule for abstracting the behaviour of recovery procedures. With an eye towards file sys-

tems, we do not limit the verification of fault tolerance to just atomicity with respect to host failures.

We have presented a particular instance of this framework, a fault-tolerant concurrent separation logic.

We have demonstrated our reasoning by studying an ARIES recovery algorithm, showing that it is

idempotent and that it guarantees atomicity of database transactions in the event of a host failure.

10.1. Future Work

Our research on the specification of POSIX file systems and reasoning about fault tolerance is far from

over. Both strands of work present several avenues for future work. The overarching goal is for both

strands of work to eventually converge into a unified reasoning theory. Our vision is that the work
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developed in this dissertation will form the basis of theories and tools that will assist the development

and improvement of future revisions of the POSIX file-system specification as well as assist developers

in implementation conformance.

10.1.1. Mechanisation and Automation

Our file-system specifications, refinement calculus for atomicity, reasoning framework for fault toler-

ance, as well as their soundness proofs in this dissertation have all been done by hand. In future we

plan to mechanise our reasoning systems and specifications in an interactive theorem prover such as

Coq or HOL. Ideally, we would like to extract an executable version of our specification from this

mechanisation. All other future directions discussed subsequently will stand to benefit from a mech-

anisation of the content presented in this dissertation. Additionally, we plan to develop automated

verification tools. For automating the verification of fault-tolerance properties, one plausible direction

is to extend existing separation-logic based automated tools such as Infer [23]. However, automating

the verification of file-system clients will require the development of new tooling, as automated tools

for verifying abstract atomicity have yet to be developed.

10.1.2. Total Correctness

Both our file-system reasoning and fault-tolerance reasoning is done from the point of partial correct-

ness. Our specifications do not require implementations to terminate nor can we prove termination.

This is in line with POSIX which purposefully does not mandate termination properties. However,

total correctness is desirable for reasoning about particular file-system implementations. Extending

our specification to a total correctness interpretation will require modifications to our semantics of con-

textual refinement and atomicity. We plan to use the recent of extension of TaDA to total correctness

by da Rocha Pinto et al. [32] as a starting point.

Extending our reasoning for fault tolerance to total correctness is more challenging. If we assume

there are no host failures, total correctness should work as in other concurrent separation logics.

However, in the presence of host failures, the termination or non-termination of a program becomes

much more subtle, and actually depends whether the program is associated with a recovery. Assume

a program that is not associated with a recovery. Then, even if the program does not terminate on

its own accord, it is guaranteed to be eventually terminated by a host failure. On the other hand, if

the program is associated with a recovery, the recovery will execute after a host failure. However, in

the event of a host failure, there is no way to guarantee that the recovery operation will terminate.

The recovery operation itself may be terminated by a host failure, at which point it will restart and

this process may continue indefinitely.

10.1.3. Helping and Speculation

Our refinement calculus for atomicity limits the verification of atomicity to operations that do not

employ helping or speculation [10] in their implementation. Helping occurs when the linearisation

point for the current thread is performed by different thread. Speculation occurs when the linearisation

point for the current thread can only be determined after the operation returns and the environment

subsequently performs some other action. We inherit these limitations from the semantics and proof
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system of TaDA. In future, we plan to extend our semantics and refinement calculus to support

atomicity verification of operations employing helping and speculation. Future extensions of TaDA

will also benefit from this work.

10.1.4. File-System Implementation and Testing

In this dissertation we justify our POSIX file-system specification by appealing to the standard as

well as the Austin Group mailing list. In future, we plan to justify our specification with respect

to implementations. One approach is to justify the specification against real-world implementations

by generating tests and using the specification as a test oracle, similarly to the approach of Ridge et

al [83]. Another approach, following the laws of our refinement calculus, is to refine the specification

to a fine-grained concurrent reference implementation. Both approaches will require a mechanised

version of our POSIX specification.

10.1.5. Fault-tolerance of File Systems

Our POSIX file-system specification does not specify any fault-tolerance properties of the file-system

operations. The POSIX standard does not specify what implementations should do in this case.

However, most popular file-system implementations strive to provide some guarantees in the case of

host failures. At the very least, all major file-system implementations preserve the integrity of the

overall file-system structure, i.e. the file system remains a file system even if the implementation

allows for some data loss. We plan to extend our file-system specifications with the fault-tolerance

guarantees provided by a range of file-system implementations. However, our reasoning framework

for fault tolerance does not support reasoning about operations that are sequences of atomic steps, as

are file-system operations in POSIX. Therefore, we will have to extend our specification language and

refinement calculus for atomicity to account for host failure.

10.1.6. Atomicity? Which Atomicity?

In this dissertation we have used the term “atomicity” in two different contexts: concurrency and

host failures. The meaning of the term is subtly different but also related between the two contexts

in which it is used. In the context of concurrency, an operation is atomic if it appears to take effect

at a single, discrete point in time. In the context of host failures, an operation is atomic if we always

observe it happening completely or not at all, even if it is interrupted by a host failure. The rules of

fault-tolerant concurrent separation logic we have developed in chapter 9, require an operation that is

atomic in the context of concurrency to also be atomic with respect to host failures. On the one hand

this is sensible: if the operation is not atomic with respect to host failures, after recovery we may

observe an intermediate state, which would violate it being atomic in the sense of concurrency. On the

other hand, in several file-system implementations the write operation is atomic in the concurrency

sense, but it is not guaranteed to be atomic with respect to host failures. We can also ask the

question: if an operation is atomic with respect to host-failures, does it have to be atomic in the sense

of concurrency? In transactions systems that adhere to ACID properties this certainly is the case.

The exact relationship between these two notions of atomicity remains an open question.
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A. POSIX Fragment Formalisation

For the POSIX specifications in this dissertation, we extend the set of values to include paths and error

codes, file-system graphs, inodes, filenames, bytes, file data, file descriptor flags, bounded integers, the

special values int denoting the use of bounded integers in heap memory operations, and the special

value STR(n) denoting the use of string of size n in heap memory operations.

FileFlags , {O CREAT, O EXCL, O RDONLY, O WRONLY, O RDWR}

Val , . . . ∪Paths ∪Errs ∪ FS ∪ Inodes ∪ FNames ∪ {“.”, “..”} ∪Bytes ∪ FileData

∪ FileFlags ∪ Int ∪ {int} ∪ {STR(n) | n ∈ N+}

We extend expressions to include pathname concatenation, head, tail, basename and directory path

expressions.

e, e′ ::= . . . | e/e′ | head(e) | tail(e) | basename(e) | dirname(e)

q
e/e′

yρ
, JeKρ /

q
e′

yρ
if JeKρ ∈ Paths and

q
e′

yρ ∈ Paths and JeKρ /
q
e′

yρ ∈ Paths

Jhead(e)Kρ , null if JeKρ ∈ {∅p,∅p/∅p}

Jhead(e)Kρ , a if JeKρ ∈ {a, a/p,∅p/a,∅p/a/p}

Jtail(e)Kρ , null if JeKρ ∈ {∅p,∅p/∅p, a, a/∅p,∅p/a,∅p/a/∅p}

Jtail(e)Kρ , p if JeKρ ∈ {a/p,∅p/a/p} and p 6= ∅p

Jbasename(e)Kρ , null if JeKρ ∈ {∅p,∅p/∅p}

Jbasename(e)Kρ , a if JeKρ ∈ {a, a/∅p, p/a, p/a/∅p}

Jdirname(e)Kρ , null if JeKρ ∈ {∅p,∅p/∅p,∅p/a,∅p/a/∅p, a, a/∅p}

Jdirname(e)Kρ , p if JeKρ ∈ {p/a, p/vara/∅p} and p 6= ∅p

Next, we extend expressions to include file-descriptor flag expressions.

e ::= . . . | fdflags(e)

Jfdflags(e)Kρ , JeKρ \ {O CREAT, O EXCL} if JeKρ ∈ FileFlags

Furthermore, we extend expression to include the following expressions on byte sequences (in the
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sense of FileData).

e, e′, e′′ ::= . . .

| len(e) length of byte sequence e

| seqn(e, e′) byte sequence of es of length e′

| skipseq(e, e′) byte sequence which skips e′ number of bytes from byte sequence e

| seqtake(e, e′) byte sequence which keeps e′ number of bytes from byte sequence e

| subseq(e, e′, e′′) sub-sequence of e, starting from e′, of length e′′

| zeroise(e) byte sequence in which every ∅ element is replaced with 0

| e � e′ overwriting of sequence e with e′

| e[e′ ← e′′] update of file data e, at offset e′ with byte sequence e′′

| e[e′, e′′] read file data e, from offset e′ of at most length e′′

The denotations of the byte-sequence expressions are defined as follows:

Jlen(ε)Kρ = 0

Jlen(y : e)Kρ = 1 + Jlen(e)Kρ if JeKρ ∈ FileData

Jseqn(y , e)Kρ = ε if y ∈ Bytes ∧ JeKρ = 0

Jseqn(y , e)Kρ = y : Jseqn(y , e− 1)Kρ if y ∈ Bytes ∧ JeKρ > 0
q

skipseq
(
e, e′

)yρ
= JeKρ if JeKρ ∈ FileData ∧

q
e′

yρ
= 0

q
skipseq

(
y : e, e′

)yρ
=

q
skipseq(e) , e′ − 1

yρ
if JeKρ ∈ FileData ∧

q
e′

yρ
> 0

q
seqtake

(
e, e′

)yρ
= ε if JeKρ ∈ FileData ∧

q
e′

yρ
= 0

q
seqtake

(
y : e, e′

)yρ
= y :

q
seqtake(e) , e′ − 1

yρ
if JeKρ ∈ FileData ∧

q
e′

yρ
> 0

q
subseq

(
e, e′, e′′

)yρ
=

q
seqtake

(
skipseq

(
e, e′

)
, e′′
)yρ

Jzeroise(ε)Kρ = ε

Jzeroise(y : e)Kρ = 0 : Jzeroise(e)Kρ if y = ∅ ∧ JeKρ ∈ FileData

Jzeroise(y : e)Kρ = y : Jzeroise(e)Kρ if y 6= ∅ ∧ JeKρ ∈ FileData
q
e � e′

yρ
=

q
e′

yρ
::

q
subseq

(
e, len

(
e′
)
, len(e)− len

(
e′
))yρ

if JeKρ ,
q
e′

yρ ∈ FileData
q
e[e′ ← e′′]

yρ
=

q
subseq

(
e, 0, e′

)yρ
::

q
e′′

yρ
if JeKρ ,

q
e′′

yρ ∈ FileData ∧
q
e′

yρ ∈ N

∧
q
e′ ≤ len(e)

yρ
q
e[e′ ← e′′]

yρ
= JeKρ ::

q
seqn

(
∅, e′ − len(e)

)yρ
::

q
e′′

yρ
if JeKρ ,

q
e′

yρ ∈ FileData ∧
q
e′

yρ ∈ N

∧
q
e′ > len(e)

yρ
q
e[e′, e′′]

yρ
=

q
zeroise

(
subseq

(
e, e′, e′′

))yρ
if JeKρ ∈ FileData ∧

q
e′

yρ
,
q
e′′

yρ ∈ N

∧
q
e′ + e′′ ≤ len(e)

yρ
q
e[e′, e′′]

yρ
=

q
zeroise

(
subseq

(
e, e′, len(e)− e′

))yρ
if JeKρ ∈ FileData ∧

q
e′

yρ
,
q
e′′

yρ ∈ N

∧
q
e′ + e′′ > len(e)

yρ

Additionally, we extend Val with sets of values. We extend expressions and their evaluation with

set operations in the standard manner.
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A.1. Path Resolution

letrec resolve(path, ι) ,

if path = null then return ι else

let a = head(path);

let p = tail(path);

let r = link lookup(ι, a);

if iserr(r) then return r

else return resolve(p, r) fi

fi

The link lookup operations is defined in section A.2.

A.2. Operations on Links

stat(path)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link stat(r , a)

else return r fi

link(source, target)

v let ps = dirname(source);

let a = basename(source);

let pt = dirname(target);

let b = basename(target);

let rs , rt = resolve(ps , ι0) ‖ resolve(pt , ι0);

if ¬iserr(rs) ∧ ¬iserr(rt) then

return link insert(rs , a, rt , b)

t link insert notdir(rs , a)

else if iserr(rs) ∧ ¬iserr(rt) then return rs

else if ¬iserr(rs) ∧ iserr(rt) then return rt

else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

unlink(path)

v

let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link delete(r , a)

t link delete notdir(r , a)

else return r fi
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rename(source, target)

v let ps = dirname(source);

let a = basename(source);

let pt = dirname(target);

let b = basename(target);

let rs , rt = resolve(ps , ι0) ‖ resolve(pt , ι0);

if ¬iserr(rs) ∧ ¬iserr(rt) then

return //Success cases

link move noop(rs , a, rt , b)

u link move file target not exists(rs , a, rt , b)

u link move file target exists(rs , a, rt , b)

u link move dir target not exists(rs , a, rt , b)

u link move dir target exists(rs , a, rt , b)

//Error cases

u enoent(rs , a)

u enotdir(rs)

u enotdir(rt)

u err source isfile target isdir(rs , a, rt , b)

u err source isdir target isfile(rs , a, rt , b)

u err target notempty(rt , b)

u err target isdescendant(rs , a, rt , b)

else if iserr(rs) ∧ ¬iserr(rt) then return rs

else if ¬iserr(rs) ∧ iserr(rt) then return rt

else if iserr(rs) ∧ iserr(rt) then return rs t return rt fi

let link lookup(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = FS (ι)(a)〉
u return enoent(ι, a)

u return enotdir(ι)

link stat(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = ftype(FS (FS (ι)(a)))〉
ureturn enotdir(ι) u return enoent(ι, a)

let link delete(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a)

u return enotdir(ι)
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let link delete notdir(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isfile(FS (FS (ι)(a)))⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
u return enoent(ι, a)

u return enotdir(ι)

u return err nodir hlinks(ι, a)

let link insert(ι, a, j, b) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ∧ isdir(FS (j)) ,

a ∈ FS (ι) ∧ b 6∈ FS (j)⇒ fs(FS [j 7→ FS (j)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a)

u return eexist(j, b)

u return enotdir(ι)

u return enotdir(j)

let link insert notdir(ι, a, j, b) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ∧ isdir(FS (j)) ,

isfile(FS (FS (ι)(a))) ∧ b 6∈ FS (j)⇒ fs(FS [j 7→ FS (j)[b 7→ FS (ι)(a)]]) ∗ ret = 0

〉
u return enoent(ι, a)

u return eexist(j, b)

u return enotdir(ι)

u return enotdir(j)

u return err nodir hlinks(ι, a)

let link move noop(ιs, a, ιt, b) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) , FS (ιs)(a) = FS (ιt)(b)⇒ fs(FS ) ∗ ret = 0〉

let link move file target not exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isfile(FS (FS (ιs)(a))) ∧ b 6∈ FS (ιt)

⇒ fs(FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]) ∗ ret = 0
〉

let link move file target exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isfile(FS (FS (ιs)(a))) ∧ isfile(FS (FS (ιt)(b)))

⇒ fs(FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]) ∗ ret = 0
〉
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let link move dir target not exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isdir(FS (FS (ιs)(a))) ∧ ιt 6∈ descendants(FS , ιs) ∧ b 6∈ FS (ιt)

⇒ ∃FS ′.FS ′ = FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]

∧ (FS ′(ιt)(b)(“..”) 6= ιs ⇒ fs(FS ′))

∧ (FS ′(ιt)(b)(“..”) = ιs ⇒ fs(FS ′[FS ′(ιt)(b) 7→ FS ′(ιt)(b)[“..” 7→ ιt]]))

∗ ret = 0

〉
let link move dir target exists(ιs, a, ιt, b) ,

A

FS .〈fs(FS ) ∧ isdir(FS (ιs)) ∧ isdir(FS (ιt)) ,

isdir(FS (FS (ιs)(a))) ∧ ιt 6∈ descendants(FS , ιs) ∧ isempdir(FS (FS (ιt)(b)))

⇒ ∃FS ′.FS ′ = FS [ιs 7→ FS (ιs) \ {a}][ιt 7→ FS (ιt)[b 7→ FS (ιs)(a)]]

∧ (FS ′(ιt)(b)(“..”) 6= ιs ⇒ fs(FS ′))

∧ (FS ′(ιt)(b)(“..”) = ιs ⇒ fs(FS ′[FS ′(ιt)(b) 7→ FS ′(ιt)(b)[“..” 7→ ιt]]))

∗ ret = 0

〉
let enoent(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a 6∈ FS (ι)⇒ fs(FS ) ∗ ret = ENOENT〉

let enotdir(ι) ,

A

FS . 〈fs(FS ) ∧ ¬isdir(FS (ι)) , fs(FS ) ∗ ret = ENOTDIR〉

let eexist(ι, a) ,
A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , a ∈ FS (ι)⇒ fs(FS ) ∗ ret = EEXIST〉

let err nodir hlinks(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isdir(FS (FS (ι)(a)))⇒ fs(FS ) ∗ ret = EPERM〉

let err source isfile target isdir(ιs, a, ιt, b) ,

A

FS .

〈
fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS ,

isfile(FS (FS (ιs)(a))) ∧ isdir(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret = EISDIR

〉

let err source isdir target isfile(ιs, a, ιt, b) ,

A

FS .

〈
fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS ,

isdir(FS (FS (ιs)(a))) ∧ isfile(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret = ENOTDIR

〉

let err target notempty(ιt, b) ,

A

FS . 〈fs(FS ) ∧ ιt ∈ FS , isempdir(FS (FS (ιt)(b)))⇒ fs(FS ) ∗ ret ∈ {EEXIST, ENOTEMPTY}〉

let err target isdescendant(ιs, a, ιt, b) ,

A

FS . 〈fs(FS ) ∧ ιs ∈ FS ∧ ιt ∈ FS , ιt ∈ descendants(FS ,FS (ιs)(a))⇒ fs(FS ) ∗ ret = EINVAL〉
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A.3. Operations on Directories

mkdir(path)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link new dir(r , a)

u eexist(ι, a)

u enotdir(ι)

else return r fi

rmdir(path)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

return link del dir(r , a)

u enoent(ι, a)

u enotdir(ι)

else return r fi

let link new dir(ι, a) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)) ,

a 6∈ FS (ι)⇒ ∃ι′. fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ∅[“.” 7→ ι′][“..” 7→ ι]) ∗ ret = 0

〉

let link del dir(ι, a) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isdir(FS (FS (ι)(a)))⇒ fs(FS [ι 7→ FS (ι) \ {a}]) ∗ ret = 0〉
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A.4. I/O Operations on Regular Files

open(path,flags)

v let p = dirname(path);

let a = basename(path);

let r = resolve(p, ι0);

if ¬iserr(r) then

if O CREAT ∈ flags ∧ O EXCL ∈ flags then

return link new file(r , a,flags)

u eexist(r , a)

else if O CREAT ∈ flags ∧ O EXCL 6∈ flags then

return link new file(r , a,flags)

u open file(r , a,flags)

else

return open file(r , a,flags)

u enoent(r , a)

fi

u return enotdir(r)

else return r fi

close(fd) v 〈fd(fd ,−,−,−) , true〉

write(fd , ptr , sz ) v return write off(fd , ptr , sz )

u write badf(fd)

read(fd , ptr , sz ) v return read norm(fd , ptr , sz )

u read badf(fd)

lseek(fd , off ,whence)

v if whence = SEEK SET then

return lseek set(fd , off )

else if whence = SEEK CUR then

return lseek cur(fd , off )

else if whence = SEEK END then

return lseek end(fd , off )

fi

pwrite(fd , ptr , sz , off )

v pwrite off(fd , ptr , sz , off )

u write badf(fd)

pread(fd , ptr , sz , off )

v pread norm(fd , ptr , sz , off )

u read badf(fd)

let link new file(ι, a,flags) ,

A

FS .

〈
fs(FS ) ∧ isdir(FS (ι)), a 6∈ FS (ι)⇒

∃ι′. fs(FS [ι 7→ FS (ι)[a 7→ ι′]] ] ι′ 7→ ε)

∗ fd(ret, ι′, 0, fdflags(flags))

〉
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let open file(ι, a,flags) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , isfile(FS (FS (ι)(a)))⇒ fs(FS ) ∗ fd(ret,FS (ι)(a), 0, fdflags(flags))〉

let write off(fd , ptr , sz ) ,

A

FS , o ∈ N.

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, o,fl) ∧ iswrfd(fl) ∗ buf

(
ptr , b

)
∧ len

(
b
)

= sz ,

fs
(
FS [ι 7→ FS (ι)[o ← b]]

)
∗ fd(fd , ι, o + sz ,fl) ∗ buf

(
ptr , b

)
∗ ret = sz

〉

let write badf(fd) ,

A

o ∈ N. 〈fd(fd , ι, o,fl) ∧ O RDONLY ∈ fl , fd(fd , ι, o,fl) ∗ ret = EBADF〉

let read norm(fd , ptr , sz ) ,

A

FS , o ∈ N.

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι, o,fl) ∗ buf

(
ptr , bs

)
∧ len

(
bs

)
= sz ,

∃bt . fs(FS ) ∗ fd(fd , ι, o + ret,fl) ∗ buf
(
ptr , bs � bt

)
∧ bt = FS (ι)[o, sz ] ∗ ret = len

(
bt

)〉

let read badf(fd) ,

A

o ∈ N. 〈fd(fd , ι, o,fl) ∧ testflag(fl , O WRONLY) , fd(fd , ι, o,fl) ∗ ret = EBADF〉

let lseek set(fd , off ) ,

〈fd(fd , ι,−,fl) , fd(fd , ι, off ,fl) ∗ ret = off 〉

let lseek cur(fd , off ) ,

A

o ∈ N. 〈fd(fd , ι, o,fl) , fd(fd , ι, ret,fl) ∗ ret = o + off 〉

let lseek end(fd , off ) ,

A

FS . 〈fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι,−,fl) , fs(FS ) ∗ fd(fd , ι, ret,fl) ∗ ret = len(FS (ι)) + off 〉

let pwrite off(fd , ptr , sz , off ) ,

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι,−,fl) ∧ iswrfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ,

fs(FS [ι 7→ FS (ι)[off ← y ]]) ∗ fd(fd , ι,−,fl) ∧ iswrfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ∗ ret = sz

〉

let pread norm(fd , ptr , sz , off ) ,

A

FS .

〈
fs(FS ) ∧ isfile(FS (ι)) ∗ fd(fd , ι,−,fl) ∧ isrdfd(fl) ∗ buf(ptr , y) ∧ len(y) = sz ,

∃yt . fs(FS ) ∗ fd(fd , ι,−,fl) ∗ buf(ptr , y � yt) ∧ yt = FS (ι)[off , sz ] ∗ ret = len(yt)

〉

A.5. I/O Operations on Directories

We specify readdir capturing the high non-determinism allowed by the POSIX standard. If the

directory contents are being changed while the directory is being opened with opendir, readdir may

or may not see the changes, with the proviso that a filename is not returned more than once. To

specify this, we define the directory stream to hold a look-ahead set of the filenames in the directory,

of non-deterministic size. The specification of readdir non-deterministically chooses to either fill the

look-ahead set and then return some filename from that set, or simply return a filename straight

from that set. We use the abstract predicate dirstr(ds, ι, V, L, off ) to denote a directory stream ds
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opened for the directory with inode ι, with the set V denoting the filenames read so far, the set

L denoting the look-ahead set, and off storing the number of filenames read so far. The abstract

predicate imp ord ents(dir) returns a sequence of the names of the links in the directory dir in an

implementation-defined order.

opendir(path)

v let r = resolve(path, ι0);

if ¬iserr(r) then

return open dirstr(r)

else return r fi

closedir(ds) v 〈dirstr(ds,−,−,−,−) , true〉

readdir(ds) v return readdir buff fill(ds) t return readdir from buff(ds)

let open dirstr(ι) ,

A

FS . 〈fs(FS ) ∧ isdir(FS (ι)) , fs(FS ) ∗ dirstr(ret, ι, ∅, ∅)〉
u return enotdir(ι)

let readdir buff fill(ds) ,

A

FS ,V ∈ P(FNames),L ∈ P(FNames), off ∈ N.

〈fs(FS ) ∧ isdir(FS (ι)) ∗ dirstr(ds, ι,V ,L, off ) ,

∃V ′,L′,L′′,n > 0. fs(FS ) ∗ dirstr(ds, ι,V ′,L′′ \ {ret} , off ) ∧ L = ∅
∧ L′ = setofseq(subseq(off ,n, imp ord ents(FS (ι))))

∧ (L′ 6= ∅ ⇒ V ′ = V ] {ret} ∧ L′′ = L′ \ {ret})
∧ (L′ = ∅ ⇒ V ′ = V ∧ L′′ = L′ ∧ ret = null)

〉
let readdir from buff(ds) ,

A

V ∈ P(FNames),L ∈ P(FNames), off ∈ N.
〈dirstr(ds, ι,V ,L, off ) , dirstr(ds, ι,V ] {ret} ,L \ {ret} , off ) ∧ L 6= ∅〉

237



B. Atomicity and Refinement Technical

Appendix

B.1. Adequacy Addendum

In chapter 7, we have defined the semantics of our specification language and refinement both in

terms of operational and denotational semantics. With theorem 1, we have established the soundness

of denotational refinement with respect to contextual refinement based on the operational semantics.

The proof of this theorem relies on lemma 5, which equates the traces obtained by the denotational

semantics to the traces obtained by the operational semantics under the stuttering, mumbling and

faulting closure.

To prove lemma 5, we establish inequality between operational and denotational traces in both

directions. In appendix B.1.1, we prove that operational traces are contained within denotational

traces and in appendix B.1.2 we prove the reverse. As a stepping stone, in both directions, we will

work with raw traces, that are not closed by the stuttering, mumbling and faulting closure. This

simplifies the proof process by avoiding the need for mumbling and stuttering, not only for lemma 5,

but also for the refinement laws.

Before we proceed with the proof, we define the raw denotational semantics, and establish several

crucial lemmas.

Definition 61 (Raw Denotational Semantics). The raw denotational semantics, RJ−K− : VarStoreµ →
L → P(Trace), map specification programs to sets of traces, within a variable environment.

RJφ;ψKρ , RJφKρ ;RJψKρ

RJφ ‖ ψKρ , RJφKρ ‖ RJψKρ

RJφ t ψKρ , RJφKρ ∪RJψKρ

RJφ u ψKρ , RJφKρ ∩RJψKρ

RJ∃x. φKρ ,
⋃

v∈Val
RJφKρ[x 7→v]

RJlet f = F in φKρ , RJφKρ[f 7→RJF Kρ]

RJFeKρ , RJF Kρ JeKρ

RJfKρ , ρ(f)

RJAKρ , ρ(A)

RJµA. λx. φKρ ,
⋂{

Tf ∈ Val→ P(Trace)
∣∣∣ RJλx. φKρ[A 7→Tf ] ⊆ Tf

}
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RJλx. φKρ , λv.RJφKρ[x7→v]

R
r
a(∀~x. P, Q)Ak

zρ
,

{
(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
6= ∅


∪
{

(
 
,
 
)
}

The argument for the existence of the least fixpoint is the same as for the denotation semantics of

definition 51.

Lemma 8. (
 
,
 
) ∈ RJφKρ

Proof. Straightforward induction on φ. (
 
,
 
) ∈ R

r
a(∀~x. P, Q)Ak

zρ
by definition 61. All inductive

cases follow immediately from the inductive hypothesis.

Lemma 9 (Function and Recursion Substitution). If ψ is closed, then RJφKρ[y 7→RJψKρ] = RJφ [ψ/y]Kρ,
where y is a recursion variable A, or a function variable f .

Proof. Straightforward induction on φ. Base case RJAK trivial. Base case RJfK trivial. Base Case

R
r
a(∀~x. P, Q)Ak

z
trivial, as recursion and function variables or not free in P or Q. Inductive cases

follow immediately from the induction hypothesis.

Lemma 10 (Variable Substitution). If e is an expression, where x is not free, then RJφKρ[x 7→JeKρ] =

RJφ [JeKρ /x]Kρ and JφKρ[x 7→JeKρ] = Jφ [JeKρ /x]Kρ

Proof. Straightforward induction on φ.

The semantics of recursion are given as the Tarskian least fixpoint. However, in some proof steps,

the Kleenian least fixpoint is more useful. In order to switch to the Kleenian fixpoint we require

continuity.

Lemma 11 (Raw Denotation Continuity). RJφKρ[A 7→−] is Scott-continuous.

Proof. RJφKρ[A 7→−] : (Val→ P(Trace))→ P(Trace).

Let D ⊆ Val → P(Trace). D is a directed subset of Val → P(Trace), due to the fact that

Val→ P(Trace) is a lattice by pointwise extension of the powerset lattice.

For Scott-continuity we show that: t(RJφKρ[A 7→−])[D] = RJφKρ[A 7→tD] by induction on φ.

Base case: Ae.
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t(RJAeKρ[A 7→−])[D] =
⋃
Tf∈D

RJAeKρ[A 7→Tf ]

= by definition 61⋃
Tf∈D

Tfe

= by pointwise extension of the powerset lattice ⊔
Tf∈D

Tf

 e

= (tD) e

= by definition 61

RJAeKρ[A 7→tD]

Base cases fe, a(∀~x. P, Q)Ak not applicable as the recursion variable A does not appear in these cases.

Cases φ;ψ, φ ‖ ψ, φ t ψ and φ u ψ from induction hypothesis and by the fact that ;, ‖, ∪ and ∩
preserve continuity respectively.

All other cases follow straightforwardly from the inductive hypothesis.

The next three lemmas establish properties of the stuttering, mumbling and faulting closure that

we rely on in several proof steps.

Lemma 12 (Closure operator). −† is a closure operator:

T ⊆ T † (−† is extensive)

T ⊆ U ⇒ T † ⊆ U † (−† is increasing)

(T †)
†

= T † (−† is idempotent)

Proof. Idempotent: T † ⊆ (T †)
†

follows directly from rule (7.23).

We show that (T †)
† ⊆ T † by induction on the derivation of t ∈ T †.

Base cases:

Rule (7.24). (
 
,
 
) ∈ T †† and (

 
,
 
) ∈ T †.

Rule (7.23). Let t ∈ T ††. By premiss, t ∈ T †.
Inductive cases:

Rule CLStutter. Let s(h, h)t ∈ T ††. By premiss, st ∈ T ††. By the inductive hypothesis, st ∈ T †,
thus s(h, h)t ∈ T †.
Rule CLMumble. Let s(h, o)t ∈ T ††. By premiss, s(h, h′)(h′, o)t ∈ T ††. By the inductive hypothesis,

s(h, h′)(h′, o)t ∈ T †, thus also s(h, o)t ∈ T †.
Rule (7.25). Let t(h, h′)u ∈ T ††. By premiss, t(h,

 
) ∈ T ††. By the inductive hypothesis, t(h,

 
) ∈ T †,

thus also t(h, h′)u ∈ T †.
Increasing: By induction on the derivation of t ∈ T †.
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Base case:

Rule (7.24). (
 
,
 
) ∈ T † ⇒ (

 
,
 
) ∈ U † holds trivially.

Rule (7.23). Let t ∈ T †. By premiss, t ∈ T . By assumption, t ∈ U . Then, by rule (7.23), t ∈ U †.
Inductive cases:

Rule CLStutter. Let s(h, h)t ∈ T †. By premiss, st ∈ T †. By the induction hypothesis, st ∈ U †,
from which it follows that s(h, h)t ∈ U †.
Rule CLMumble. Let s(h, o)t ∈ T †. By premiss, s(h, h′)(h′, o)t ∈ T †. By the induction hypothesis,

s(h, h′)(h′, o)t ∈ U †, from which it follows that s(h, o)t ∈ U †.
Rule (7.25). Let t(h, h′)u ∈ T †. By premiss, t(h,

 
) ∈ T †. By the induction hypothesis, t(h,

 
) ∈ U †,

from which it follows that t(h, h′)u ∈ U †.
Extensive: ∀t. t ∈ T , by rule (7.23), t ∈ T †.

Lemma 13 (Trace Closure Distributivity).

1. T †;U † ⊆ (T ;U)†

2. T † ‖ U † ⊆ (T ‖ U)†

3.
⋃

(Ti
†) ⊆ (

⋃
Ti)
†

4.
⋂

(Ti
†) ⊇ (

⋂
Ti)
†

Proof. (1): First we show that T †;U ⊆ (T ;U)† by induction on the derivation of t ∈ T †. Fix u ∈ U .

Base cases:

Rule (7.24). (
 
,
 
) ∈ T †;U † ⇒ (

 
,
 
) ∈ (T ;U)† holds trivially.

Rule 7.23. Let t ∈ T †. By premiss, t ∈ T . By trace concatenation, tu ∈ T ;U . Then, by rule 7.23,

tu ∈ (T ;U)†.

Inductive cases:

Rule CLStutter. Let s(h, h)t ∈ T †. By premiss, st ∈ T †. By trace concatenation, stu ∈ T †;U .

Then, by the induction hypothesis, stu ∈ (T ;U)†, from which it follows that s(h, h)tu ∈ (T ;U)†.

Rule CLMumble. Let s(h, o)t ∈ T † . By premiss, s(h, h′)(h′, o)t ∈ T †. By trace concatenation,

s(h, h′)(h′, o)tu ∈ T †;U . Then, by the induction hypothesis, s(h, h′)(h′, o)tu ∈ (T ;U)†, from which it

follows that s(h, o)t ∈ (T ;U)†.

Rule (7.25). Let t(h, h′)u ∈ T †. By premiss, t(h,
 
) ∈ T †. By trace concatenation, t(h,

 
)u = t(h,

 
) ∈

T †;U . Then, by the induction hypothesis, t(h,
 
)u ∈ (T ;U)†, from which it follows that t(h, h′)u ∈

(T ;U)†.

Furthermore, T ;U † ⊆ (T ;U)† by induction on the derivation of u ∈ U † similarly.

Then, it follows that: T †;U † ⊆ (T ;U †)
† ⊆ ((T ;U)†)

†
. Then, by idempotence T †;U † ⊆ (T ;U)†.

(2): Similarly to (1).

(3): Fix index I, n ∈ I. By induction on the derivation of t ∈ Tn†.
Base case:

Rule (7.24). (
 
,
 
) ∈

⋃
(Ti
†) ⇐⇒ (

 
,
 
) ∈ (

⋃
Ti)
† holds trivially.

Inductive case:

Rule (7.23). Let t ∈ Tn†, then t ∈
⋃

(Ti
†). Then, by the induction hypothesis, t ∈ (

⋃
Ti)
†.

241



Rule CLStutter. Let s(h, h)t ∈
⋃

(Ti
†). By premiss, st ∈

⋃
(Ti
†). Then, by the induction hypothesis,

st ∈ (
⋃
Ti)
†, from which it follows that s(h, h)t ∈ (

⋃
Ti)
†.

Rule CLMumble. Let s(h, o)t ∈
⋃

(Ti
†). By premiss, s(h, h′)(h′, o)t ∈

⋃
(Ti
†). Then, by the induction

hypothesis, s(h, h′)(h′, o)t ∈
⋃

(Ti)
†, from which it follows that s(h, o)t ∈

⋃
(Ti)

†.

Rule (7.25). Let t(h, h′)u ∈
⋃

(Ti
†). By premiss, t(h,

 
) ∈

⋃
(Ti
†). Then, by the induction hypothesis,

t(h,
 
) ∈

⋃
(Ti)

†, from which it follows t(h, h′)u ∈
⋃

(Ti)
†.

(4): Similarly to (3).

Lemma 14.
(⋂ (

Ti
†))† =

⋂(
Ti
†)

Proof. By lemma 12 (extensive):
⋂(

Ti
†) ⊆ (⋂ (Ti†))†.

By lemma 13:
⋂(

Ti
††
)
⊇
(⋂ (

Ti
†))†.

By lemma 12 (idempotence):
⋂(

Ti
†) ⊇ (⋂ (Ti†))†.

The following lemma reflects the fact that the denotational semantics are idempotent with respect

to trace closure.

Lemma 15. (JφKρ)† = JφKρ

Proof. Straightforward induction on φ using lemma 12.

Base case: a(∀~x. P, Q)Ak

(r
a(∀~x. P, Q)Ak

zρ)†
=



{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A 6= ∅




†
†

= by lemma 12 (idempotence)
{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A 6= ∅




†

=
r
a(∀~x. P, Q)Ak

zρ

Base case: A

(JAKρ)† =
(
ρ(A)†

)†
= by lemma 12 (idempotence)

ρ(A)† = JAKρ

Base case: f , same as A

Case: φ;ψ
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(Jφ;ψKρ)† =
(

(JφKρ ; JψKρ)†
)†

= by lemma 12

Jφ;ψKρ

Case: φ ‖ ψ as previous.

Case: φ t ψ

(Jφ t ψKρ)† =
(

(JφKρ ∪ JψKρ)†
)†

= by lemma 12

Jφ t ψKρ

Case: φ u ψ

(Jφ u ψKρ)† =
(

(JφKρ ∩ JψKρ)†
)†

= by lemma 12

Jφ u ψKρ

Case: ∃x. φ

(JφKρ)† =

(⋃
v

JφKρ[x7→v]

)††

= by lemma 12

J∃x. φKρ

Case: µA. λx. φ

(JµA. λx. φKρ)† =

(⋂{
Tf ∈ Val→ P(Trace)

∣∣∣∣ (Jλx. φKρ[A 7→Tf ]
)†
⊆ Tf †

})†
= by lemma 14⋂{

Tf ∈ Val→ P(Trace)

∣∣∣∣ (Jλx. φKρ[A 7→Tf ]
)†
⊆ Tf †

}
= JµA. λx. φKρ

Case: let f = F in φ
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(Jlet f = F in φKρ)† =
(
JφKρ[f 7→JF Kρ]

)†
= by induction hypothesis

JφKρ[f 7→JF Kρ]

= Jlet f = F in φKρ

Case: λx. φ

(Jλx. φKρ)† =
(
λv. JφKρ[x 7→v]

)†
= by induction hypothesis

λv. JφKρ[x 7→v]

= Jλx. φKρ

Case: Fe

(JFeKρ)† = (JF Kρ JeKρ)†

= by induction hypothesis

JF Kρ JeKρ

= JFeKρ

The raw denotational semantics produce the denotational semantics by adding the trace closure, as

indicated by the following lemma.

Lemma 16. JφKρ = (RJφKρ)†.

Proof. First, we establish (RJφKρ)† ⊆ JφKρ.

Trivially, RJφKρ ⊆ JφKρ.

By lemma 12 (increasing), (RJφKρ)† ⊆ (JφKρ)†.

By lemma 15, (RJφKρ)† ⊆ JφKρ.

Second, we establish (RJφKρ)† ⊇ JφKρ, by induction on φ.

Base case:
(
R

r
a(∀~x. P, Q)Ak

zρ)†
⊇

r
a(∀~x. P, Q)Ak

zρ
by the definitions.

Base case: A. RJAKρ† ⊇ ρ(A)† ⊇ JAKρ.

Base case: f , as previous.

Case: φ;ψ.
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(RJφ;ψKρ)† = (RJφKρ ;RJψKρ)†

⊇ by lemma 13

(RJφKρ)†; (RJψKρ)†

⊇ by inductive hypothesis

JφKρ ; JψKρ

⊇ by lemma 12 (increasing on both sides, idempotence on left of ⊇)

(JφKρ ; JψKρ)†

= by definition 51

Jφ;ψKρ

Case: φ ‖ φ, similar to previous.

Case: φ t ψ

(RJφ t ψKρ)† = (RJφKρ ∪RJψKρ)†

= by lemma 12(
(RJφKρ ∪RJψKρ)†

)†
⊇ by lemma 13(

(RJφKρ)† ∪ (RJψKρ)†
)†

⊇ by inductive hypothesis

(JφKρ ∪ JψKρ)†

= by definition 51

Jφ t ψKρ

Case: φ u ψ

Jφ u ψKρ = (JφKρ ∩ JψKρ)†

⊆ by lemma 13

(JφKρ)† ∩ (JψKρ)†

= by lemma 12

JφKρ ∩ JψKρ

⊆ by inductive hypothesis

(RJφKρ)† ∩ (RJψKρ)†

⊆ by lemma 13
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(RJφKρ ∩RJψKρ)†

= by definition 61

RJφ u ψKρ

Case: ∃x. φ, similar to φ t ψ.

Case: µA. λx. φ

(RJµA. λx. φKρ)† =
(⋂{

Tf ∈ Val→ P(Trace)
∣∣∣ RJλx. φKρ[A 7→Tf ] ⊆ Tf

})†
= by lemma 11 and Kleene’s fixpoint theorem(⋃{

Tf ∈ Val→ P(Trace)
∣∣∣ n ∈ N ∧ Tf = (RJλx. φKρ[A 7→∅])n

})†
⊇ by lemma 13⋃{

Tf ∈ Val→ P(Trace)
∣∣∣ n ∈ N ∧ Tf = (RJλx. φKρ[A 7→∅])n

}†
=
⋃ {

Tf ∈ Val→ P(Trace)

∣∣∣∣ n ∈ N ∧ Tf =

((
RJλx. φKρ[A 7→∅]

)†)n}
= by lemma 11 and Kleene’s fixpoint theorem⋂{

Tf ∈ Val→ P(Trace)

∣∣∣∣ (Jλx. φKρ[A 7→Tf ]
)†
⊆ Tf †

}
= by definition 51

JµA. λx. φKρ

All other cases follow directly from the inductive hypothesis.

Lemma 17 (Trace-Set Interleaving is Associative and Commutative).

T ‖ (S ‖ U) = (T ‖ S) ‖ U T ‖ U = U ‖ T

Proof. Immediate by definition 49.

B.1.1. Operational traces are denotational traces

In definition 48 we defined the observed traces on the reflexive, transitive closure of  . As a stepping

stone, we also define single step traces which we relate to the raw denotational semantics.

Definition 62 (Single-Step Observed Traces). The single-step observed traces relation, O1J−K ⊆
L× P(Trace), is the smallest relation that satisfies the following rules:

(B.1)

(
 
,
 
) ∈ O1JφK

(B.2)

φ, h o

(h, o) ∈ O1JφK

(B.3)

φ, h ψ, h′ t ∈ O1JψK

(h, h′)t ∈ O1JφK

Traces in O1JφK are not closed by the stuttering, mumbling and faulting closure.

246



We now relate the operational semantics to the raw denotational semantics: every single step in the

operational semantics must be present as a move in the raw denotational semantics. Consequently,

the traces observed by O1JφK are contained within RJφK∅, when φ is closed.

Lemma 18.

• If φ, h ψ, h′ and t ∈ RJψK∅ then (h, h′)t ∈ RJφK∅

• If φ, h o then (h, o) ∈ RJφK∅

Proof. By induction on the derivation of φ, h κ

Base case: rule (7.14).

Let a(∀~x. P, Q)Ak , h  h′. By the premiss, (h, h′) ∈
{

a(P ([~x 7→ ~v]), Q([~x 7→ ~v]))Ak

∣∣∣ ~v ∈ −−→Val}. By

definition 61, (h, h′) ∈ R
r
a(∀~x. P, Q)Ak

z∅
.

Base case: rule (7.15).

Let a(∀~x. P, Q)Ak , h 
 
. By the premiss,

For all ~v ∈
−−→
Val, a(P ([~x 7→ ~v]), Q([~x 7→ ~v]))Ak (h) = ∅. By definition 61, (h,

 
) ∈ R

r
a(∀~x. P, Q)Ak

z∅
.

Case: rule (7.1).

Let s = t;u, such that, s ∈ RJφ′;ψK∅, t ∈ RJφ′K∅ and u ∈ RJψK∅. By the premiss and the inductive

hypothesis, (h, h′)t ∈ RJφK∅. Then, by definition 61, (h, h′)s = (h, h′)tu ∈ RJφ;ψK∅.
Case: rule (7.2).

Let s ∈ RJψK∅. By the premiss and the inductive hypothesis, (h, h′) ∈ RJφK∅. Then, by definition 61,

(h, h′)s ∈ RJφ;ψK∅.
Case: rule (7.3).

By the premiss and the inductive hypothesis, (h,
 
) ∈ RJφK∅. By lemma 8, (

 
,
 
) ∈ RJψK∅. By trace

concatenation (h,
 
) = (h,

 
); (
 
,
 
). Then, by definition 61, (h,

 
) ∈ RJφ;ψK∅.

Case: rule (7.4).

By case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss and the inductive

hypothesis, (h, h′)t ∈ RJφ ‖ ψK∅. Then, by definition 61 and lemma 17, (h, h′)t ∈ RJψ ‖ φK∅. Second,

let κ = o. By the premiss and the inductive hypothesis, (h, o) ∈ RJφ ‖ ψK∅. Then, by definition 61

and lemma 17, (h, o) ∈ RJψ ‖ φK∅.
Case: rule (7.5).

Let s ∈ t ‖ u, such that s ∈ RJφ′ ‖ ψK∅, t ∈ RJφ′K∅ and u ∈ RJψK∅. By the premiss and the inductive

hypothesis, (h, h′)t ∈ RJφK∅. Then, by definition 49, (h, h′)s ∈ (h, h′)t ‖ u. By definitions 61 and 49,

(h, h′)t ‖ u ⊆ RJφ ‖ ψK∅, from which it follows that (h, h′)s ∈ RJφ ‖ ψK∅.
Case: rule (7.6).

Let s ∈ RJψK∅. By the premiss and the inductive hypothesis, (h, h′) ∈ RJφK∅. Then, by definition 49,

(h, h′)s ∈ RJφ ‖ ψK∅.
Case: rule (7.7).

By the premiss and the inductive hypothesis, (h,
 
) ∈ RJφK∅. By lemma 8, (

 
,
 
)RJψK∅. By defini-

tion 49, (h,
 
) ∈ (h,

 
) ‖ (

 
,
 
). By definition 61 and definition 49, (h,

 
) ‖ (

 
,
 
) ⊆ RJφ ‖ ψK∅, from

which it follows (h,
 
) ∈ RJφ ‖ ψK∅.

Case: rule (7.8).
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Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss, by the inductive hypothesis,

for some i ∈ {0, 1}, (h, h′)t ∈ RJφiK∅. Thus, (h, h′)t ∈ RJφiK∅ ∪ R
q
φ(i+1) mod 2

y∅
. Then, by defini-

tion 61, (h, h′)t ∈ RJφ0 t φ1K∅. Second, let κ = o. By the premiss, by the inductive hypothesis, for

some i ∈ {0, 1}, (h, o) ∈ RJφiK∅. Thus, (h, o) ∈ RJφiK∅ ∪ R
q
φ(i+1) mod 2

y∅
. Then, by definition 61,

(h, o) ∈ RJφ0 t φ1K∅.
Case: rule (7.9).

Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss, by the inductive hypothesis,

for all i ∈ {0, 1}, (h, h′)t ∈ RJφiK∅. Thus, (h, h′)t ∈ RJφiK∅ ∩R
q
φ(i+1) mod 2

y∅
. Then, by definition 61,

(h, h′)t ∈ RJφ0 u φ1K∅. Second, let κ = o. By the premiss, by the inductive hypothesis, for all

i ∈ {0, 1}, (h, o) ∈ RJφiK∅. Thus, (h, o) ∈ RJφiK∅ ∩ R
q
φ(i+1) mod 2

y∅
. Then, by definition 61, (h, o) ∈

RJφ0 u φ1K∅.
Case: rule (7.10).

Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. Fix v. By the premiss and the inductive

hypothesis, (h, h′)t ∈ RJφ [v/x]K∅. Then, by definition 61, (h, h′)t ∈ RJ∃x. φK∅. Second, let κ = o.

By the premiss and the inductive hypothesis, (h, o) ∈ RJφ [v/x]K∅. Then, by definition 61, (h, o) ∈
RJ∃x. φK∅.
Case: rule (7.11).

Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss and the inductive hy-

pothesis, (h, h′)t ∈ RJφ [F/f ]K∅. Then, by lemma 9, (h, h′)t ∈ RJφK∅[f 7→RJF K∅]. Then, by defini-

tion 61, (h, h′)t ∈ RJlet f = F in φK∅. Second, let κ = o. By the premiss and the inductive hy-

pothesis, (h, o) ∈ RJφ [F/f ]K∅. Then, by lemma 9, (h, o) ∈ RJφK∅[f 7→RJF K∅]. Then, by definition 61,

(h, o) ∈ RJlet f = F in φK∅.
Case: rule (7.12).

Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss and the inductive hypothesis,

(h, h′)t ∈ RJ(λx. φ [µA. λx. φ/A]) eK∅. Then, from the fact that µ is denotationally the least fixpoint,

(h, h′)t ∈ RJ(µA. λx. φ) eK∅. Second, let κ = o. By the premiss and the inductive hypothesis, (h, o) ∈
RJ(λx. φ [µA. λx. φ/A]) eK∅. Then, from the fact that µ is denotationally the least fixpoint, (h, o) ∈
RJ(µA. λx. φ) eK∅.
Case: rule (7.13).

Case analysis on κ. First, let κ = φ′, h′. Let t ∈ RJφ′K∅. By the premiss and the inductive hypothesis,

(h, h′)t ∈ R
r
φ
[
JeK∅ /x

]z∅
. Then, by lemma 10, (h, h′)t ∈ RJφK∅[x 7→JeK] . Then, by definition 61,

(h, h′)t ∈ RJλx. φK∅. Second, let κ = o. By the premiss and the inductive hypothesis, (h, o) ∈

R
r
φ
[
JeK∅ /x

]z∅
. Then, by lemma 10, (h, o) ∈ RJφK∅[x 7→JeK] . Then, by definition 61, (h, o) ∈ RJλx. φK∅.

Corollary 1. If t ∈ O1JφK then t ∈ RJφK∅.

Proof. Straightforward induction on the derivation of t ∈ O1JφK, using lemma 18.

Base case: rule (B.1).

(
 
,
 
) ∈ O1JφK and by lemma 8, (

 
,
 
) ∈ RJφK∅.

Base case: rule (B.2).

By the premiss and lemma 18, (h, κ) ∈ RJφK∅.
Case: rule (B.3).
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By the premisses and lemma 18, (h, h′)t ∈ RJφK∅

Traces in O1JφK are obtained by observing every single transition in the operational semantics. They

relate to traces in OJφK, which are obtained by observing transitions in the transitive and reflexive

closure of the operational semantics, by the stuttering, mumbling and faulting closure.

Lemma 19. If t ∈ OJφK then t ∈ (O1JφK)†.

Proof. Induction on the derivation of t ∈ OJφK, with nested induction on steps κ ∗ κ′.

Base case: rule (7.16).

(
 
,
 
) ∈ OJφK and by definition 50, (

 
,
 
) ∈ (O1JφK)†.

Base case: rule (7.17).

By induction on the derivation of the premiss.

Nested base case: φ, h o

By definition 62, (h, o) ∈ O1JφK. Then by definition 50, (h, o) ∈ (O1JφK)†.
Nested case: φ, h, ψ, h′ and ψ, h′  ∗ o

By the inductive hypothesis, (h′, o) ∈ (O1JψK)†. Then, by definition 50, there exist h′′, h′′′, t such that

if t = ε, then h′′′ = h′′, and (h′, h′′)t(h′′′, o) ∈ O1JψK. Then, by definition 62, (h, h′)(h′, h′′)t(h′′′, o) ∈
O1JφK. Then, by definition 50, (h, o) ∈ (OJφK)†.
Case: rule (7.18).

Let t ∈ OJψK. By induction on the derivation of the premiss.

Nested base case: φ, h ψ, h′ By the inductive hypothesis t ∈ (O1JψK)†. By definition 50, there exists

u ∈ O1JψK such that t ∈ (O1JψK)†. Then, by definition 62, (h, h′)u ∈ O1JφK. Then, by definition 50,

(h, h′)t ∈ (O1JφK)†.
Nested case: φ, h φ′, h′′ and φ′, h′′  ∗ ψ, h′. By the inductive hypothesis, (h′′, h′)t ∈ (O1Jφ′K)†. By

definition 50, there exists u, v, h′′′, h′′′′, such that (h′′, h′′′)u(h′′′′, h′)v ∈ O1Jφ′K. Then, by definition 62,

(h, h′′)(h′′, h′′′)u(h′′′′, h′)v ∈ O1JφK. Then, by definition 50, (h, h′)t ∈ (O1JφK)†.

Corollary 2. If t ∈ OJφK then t ∈ JφK∅.

Proof.

OJφK ⊆ by lemma 19

(O1JφK)†

⊆ by corollary 1 and lemma 12(
RJφK∅

)†
= by lemma 16

JφK∅

B.1.2. Denotational traces are operational traces

The following two intermediate lemmas, establish compositional properties for O1JφK.
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Lemma 20. O1JφK;O1JψK ⊆ O1Jφ;ψK

Proof. We prove that if t ∈ O1JφK and u ∈ O1JψK, then tu ∈ O1Jφ;ψK, by induction on the derivation

of t ∈ O1JφK.
Base case: rule (B.1).

(
 
,
 
) ∈ O1JφK, (

 
,
 
) ∈ O1JψK and (

 
,
 
) ∈ O1Jφ;ψK.

Base case: rule (B.2).

Let u ∈ O1JψK. Let (h, o) ∈ O1JφK. Case analysis on o. First, let o =
 
. Then, by the premiss and

definition 44, φ;ψ, h  
 
, by which (h,

 
) ∈ O1Jφ;ψK. By trace concatenation, (h,

 
) = (h,

 
)u, by

which (h,
 
)u ∈ O1Jφ;ψK. Second, let o = h′. By definition 44, φ;ψ, h  ψ, h′. Then, by rule (B.3),

(h, h′)u ∈ O1Jφ;ψK.
Case: rule (B.3).

Let u ∈ O1JψK. Let (h, h′)t ∈ O1JφK. Then, by the premiss, there exists φ′, such that φ, h  φ′, h′

and t ∈ O1Jφ′K. By the induction hypothesis, tu ∈ O1Jφ′;ψK. From the premiss and definition 44,

φ;ψ, h φ′;ψ, h′. Then, (h, h′)tu ∈ O1Jφ;ψK.

Lemma 21. O1JφK ‖ O1JψK ⊆ O1Jφ ‖ ψK.

Proof. We prove that if t ∈ O1JφK, u ∈ O1JψK, and s ∈ t ‖ u, then s ∈ O1Jφ ‖ ψK, by induction on the

derivation of t ∈ O1JφK.
Base case: rule (B.1). (

 
,
 
) ∈ O1JφK, (

 
,
 
) ∈ O1JψK and (

 
,
 
) ∈ O1Jφ ‖ ψK.

Base case: rule (B.2).

Let u ∈ O1JψK. Let (h, o) ∈ O1JφK. Case analysis on o. First, let o =
 
. By definition 49, (h,

 
) ∈

(h,
 
) ‖ u. Then, by premiss and by definition 44, φ ‖ ψ, h 

 
, by which (h,

 
) ∈ O1Jφ ‖ ψK. Second, let

o = h′. By definition 49, (h, h′)u ∈ (h, h′) ‖ u. Then, by premiss and by definition 44, φ ‖ ψ, h ψ, h′.

Then, by rule (B.3), (h, h′)u ∈ O1Jφ ‖ ψK.
Case: rule (B.3).

Let u ∈ O1JψK. Let (h, h′)s ∈ O1JφK. Then, by the premiss, there exists φ′, such that φ, h φ′, h′ and

s ∈ O1Jφ′K. Let w ∈ s ‖ u. By definition 49, (h, h′)w ∈ (h, h′)s ‖ u. By the inductive hypothesis, w ∈
O1Jφ′ ‖ ψK. From the premiss and definition 44, φ ‖ ψ, h φ′ ‖ ψ, h′. Then, (h, h′)w ∈ O1Jφ ‖ ψK.

Lemma 22. O1JφK ∪ O1JψK ⊆ O1Jφ t ψK.

Proof. We prove that if t ∈ O1JφK or t ∈ O1JφK, then t ∈ O1Jφ t ψK, by proving: a). if t ∈ O1JφK,
then t ∈ O1Jφ t ψK, and b). if t ∈ O1JψK, then t ∈ O1Jφ t ψK, each by induction on the derivation of

t ∈ O1JφK.
Proof of a).

Base case: rule (B.1). (
 
,
 
) ∈ O1JφK, (

 
,
 
) ∈ O1JψK and (

 
,
 
) ∈ O1Jφ t ψK.

Base case: rule (B.2).

Let (h, o) ∈ O1JφK. Then, by premiss and definition 44, φtψ, h o. It follows that, (h, o) ∈ O1Jφ t ψK.
Case: rule (B.3).

Let u ∈ O1JψK. Let (h, h′)t ∈ O1JφK. Then, by the premiss, there exists φ′, such that φ, h φ′, h′ and

t ∈ O1Jφ′K. By the induction hypothesis, t ∈ O1Jφ′ t ψK. From definition 44, let φ t ψ, h  φ′, h′. It

follows that, (h, h′)t ∈ O1Jφ t ψK.
Proof of b). As in a).
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Lemma 23.
⋃
vO1Jφ [v/x]K ⊆ O1J∃x. φK.

Proof. We prove that if t ∈
⋃
vO1Jφ [v/x]K, then t ∈ O1J∃x. φK, by induction on the length of t.

Let v ∈ Val.

Base case: (
 
,
 
), trivial.

Base case: (h, o) ∈ O1Jφ [v/x]K.
By rule (B.2), φ [v/x] , h o. Then, by definition 44, ∃x. φ, h o. It follows that, (h, o) ∈ O1J∃x. φK.
Case: (h, h′)t ∈ O1Jφ [v/x]K.
By rule (B.3), there exists ψ such that φ [v/x] , φ ψ, h′ and t ∈ O1JψK. By definition 44, ∃x. φ, h 
ψ, h′. By rule (B.3), (h, h′)t ∈ O1J∃x. φK.

Lemma 24. O1Jφ [F/f ]K ⊆ O1Jlet f = F in φK.

Proof. By induction on the length of t ∈ O1Jφ [F/f ]K.

Lemma 25. O1Jφ
[
JeK∅ /x

]
K ⊆ O1J(λx. φ) eK.

Proof. Similarly, to lemma 24.

Lemma 26. O1Jφ [µA. λx. φ/A] [JeK /x]K ⊆ O1J(µA. λx. φ) eK.

Proof. Similarly to lemma 25.

The following lemma is a direct consequence of the fact that recursion is semantically the least

fixpoint.

Lemma 27. RJλx. φKρ[A 7→RJµA.λx.φKρ] = RJµA. λx. φKρ

Proof. By induction on φ.

Base case : Ae.

RJλx.AeKρ[A 7→RJµA.λx.AeKρ]

= λv.RJAeKρ[A 7→RJµA.λx.AeKρ][x 7→v]

= λv.
(
RJAKρ[A 7→RJµA.λx.AeKρ][x 7→v]

)
JeKρ[A 7→RJµA.λx.AeKρ][x7→v]

= λv. (RJµA. λx.AeKρ) JeKρ[x 7→v]

= by definition 61, lemma 11 and Kleene’s fixpoint theorem

λv.
(⋃{

Tf ∈ Val→ P(Trace)
∣∣∣ n ∈ N ∧ Tf = (RJλx.AeKρ[A 7→∅])n

})
JeKρ[x 7→v]

= λv.
(⋃{

Tf ∈ Val→ P(Trace)
∣∣∣ n ∈ N ∧ Tf = (λv.

(
RJAKρ[A 7→∅][x 7→v]

)
JeKρ[x 7→v])n

})
JeKρ[x 7→v]

=
⋃{

Tf ∈ Val→ P(Trace)
∣∣∣ n ∈ N ∧ Tf = (λv.

(
RJAKρ[A 7→∅][x 7→v]

)
JeKρ[x 7→v])n+1

}
= by Kleene’s fixpoint theorem

RJµA. λx. φKρ

All other cases follow directly from the inductive hypothesis.
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We now establish the reverse of corollary 1: RJφK∅ ⊆ O1JφK. This is difficult to prove directly

by induction over φ. Specifically, substructures of φ extend the variable environment, for example

RJ∃x. φK∅ =
⋃
vRJφK∅[x 7→v], and thus we cannot directly apply the inductive hypothesis. The solution

is to generalise the property for arbitrary variable stores. Then, the property we wish to prove takes

the form RJφKρ ⊆ O1JC[φ]K, where C is a context that closes φ according to the bindings in ρ. In order

to precisely state this property, we first formally define closing contexts induced by variable stores.

Definition 63 (Closing contexts).

Syntactic environments: η ::= ∅ | x 7→ e : η | f 7→ F : η | A 7→ φ

Syntactic environment application: θ(∅φ) , φ

θ((x 7→ e : η)φ) , θ(η(φ
[
JeKω(η) /x

]
))

θ((f 7→ F : η)φ) , θ(η(φ [F/f ]))

θ((A 7→ ψ : η)φ) , θ(η(φ [µA. λx. ψ/A]))

Syntactic environment erasure: ω(∅) , ∅
ω(x 7→ e : η) , ω(η)[x 7→ JeKω(η)]

ω(f 7→ F : η) , ω(η)[f 7→ RJF Kω(η)]

ω(A 7→ ψ : η) , ω(η)[A 7→ RJµA. λx. ψKω(η)]

Intuitively, a syntactic environment, η, represents the closing context. We use η, to list the variable

bindings that we need to introduce in φ. The syntactic environment application, theta(η φ), applies

the syntactic environment η to φ by substituting the variables in φ with their bound values. The

syntactic environment erasure, ω(η), erases η to a variable store that binds variables according to η.

Given definition 63, the reverse of corollary 1 is: RJφKω(η) ⊆ O1Jθ(ηφ)K.

Lemma 28. RJφKω(η) ⊆ O1Jθ(ηφ)K.

Proof. By induction on φ.

Base case: a(∀~x. P, Q)Ak .

R
r
a(∀~x. P, Q)Ak

zω(η)
= by definition 61{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mω(η)[~x7→~v]

A , LQMω(η)[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mω(η)[~x7→~v]

A , LQMω(η)[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMω(η)[~x7→~v]
6= ∅


∪
{

(
 
,
 
)
}

= by induction on η and definition 62

O1Jθ(η(a(∀~x. P, Q)Ak ))K

Case: φ;ψ.
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RJφ;ψKω(η) = by definition 61

RJφKω(η) ;RJψKω(η)

⊆ by induction hypothesis

O1Jθ(ηφ)K;O1Jθ(ηψ)K

⊆ by induction over η and lemma 20

O1Jθ(η(φ;ψ))K

Case: φ ‖ ψ.

RJφ ‖ ψKω(η) = by definition 61

RJφKω(η) ‖ RJψKω(η)

⊆ by induction hypothesis

O1Jθ(ηφ)K ‖ O1Jθ(ηψ)K

⊆ by induction over η and lemma 21

O1Jθ(η(φ ‖ ψ))K

Case: φ t ψ.

RJφ t ψKω(η) = by definition 61

RJφKω(η) ∪RJψKω(eta)

⊆ by induction hypothesis

O1Jθ(ηφ)K ∪ O1Jθ(ηψ)K

⊆ by induction over η and lemma 22

O1Jφ t ψK

Case: φ u ψ, similarly to previous.

Case: ∃x. φ.

RJ∃x. φKω(η) = by definition 61⋃
v

RJφKω(η)[x 7→v]

=
⋃
v

RJφKω(x 7→v:η)

⊆ by induction hypothesis⋃
v

O1Jθ((x 7→ v : η)φ)K
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= by syntactic environment application (definition 63)⋃
v

O1Jθ(η(φ [v/x]))K

⊆ by induction over η and lemma 23

O1Jθ(η(∃x. φ))K

Case: let f = F in φ

RJlet f = F in φKω(η) = by definition 61

RJφKω(η)[f 7→RJF K∅]

= RJφKω(f 7→F :η)

⊆ by induction hypothesis

O1Jθ((f 7→ F : η)φ)K

= by syntactic environment application (definition 63)

O1Jθ(η(φ [F/f ]))K

⊆ by induction over η and lemma 24

O1Jθ(η(let f = F in φ))K

Case: (λx. φ) e.

RJ(λx. φ) eKω(η) = by definition 61(
RJλx. φKω(η)

)
JeKω(η)

=
(
λv.RJφKω(η)[x 7→v]

)
JeKω(η)

= RJφKω(η)[x 7→JeKω(η)]

= RJφKω(x 7→JeKω(η):η)

⊆ by the induction hypothesis

O1Jθ((x 7→ JeKω(η) : η)φ)K

= by syntactic environment application (definition 63)

O1Jθ(η(φ
[
JeKω(η) /x

]
))K

⊆ by induction over η and lemma 25

O1Jθ(η((λx. φ) e))K

Case: (µA. λx. φ) e.
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RJ(µA. λx. φ) eKω(η) = by lemma 27

RJ(λx. φ) eKω(η)[A 7→RJµA.λx.φKω(η)]

= RJφKω(η)[A 7→RJµA.λx.φKω(η)][x 7→JeKω(η)]

= RJφKω(x 7→JeKω(η):A 7→φ:η)

⊆ by the induction hypothesis

O1Jθ((x 7→ JeKω(η) : A 7→ φ : η)φ)K
= by syntactic environment application (definition 63)

O1Jθ(η(φ [µA. λx. φ/A]
[
JeKω(η) /x

]
))K

⊆ by induction over η and lemma 26

O1Jθ(η((µA. λx. φ) e))K

Case: Ae. By induction on η.

Case: fe. By induction on η.

The following lemma reflects the fact that OJφK are obtained from the reflexive, transitive closure

of a single step in the operational semantics.

Lemma 29. If t ∈ O1JφK, then t ∈ OJφK.

Proof. By induction on the derivation of t ∈ O1JφK.
Base case: rule (B.1).

Trivial; (
 
,
 
) ∈ O1JφK and (

 
,
 
) ∈ OJφK.

Base case: rule (B.2).

Let (h, o) ∈ O1JφK. By the premiss, φ, h  o, from which it follows that φ, h  ∗ o. Then, by

rule (7.17), (h, o) ∈ OJφK.
Case: rule (B.3).

Let (h, h′)t ∈ O1JφK. By the premiss, there exists ψ, such that φ, h  ψ, h′ and t ∈ O1JψK. It follows

that φ, h ∗ ψ, h′. From the induction hypothesis, t ∈ OJψK. Then, by rule (7.18), (h, h′)t ∈ OJφK.

Corollary 3. If t ∈ O1JφK, then t ∈ (OJφK)†.

Proof. By lemma 29, t ∈ O1JφK ⇒ t ∈ OJφK. By rule (7.23), t ∈ OJφK ⇒ t ∈ (OJφK)†. Then, by

transitivity t ∈ O1JφK⇒ t ∈ (OJφK)†.

Corollary 4. If φ is closed, then JφK∅ ⊆ (OJφK)†.

Proof.

JφK∅ = by lemma 16(
RJφK∅

)†
⊆ by lemma 28 and lemma 12 (increasing property)

(O1JφK)†

⊆ by lemma 29 and lemma 12 (increasing property)

(OJφK)†
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Corollary 5. If φ is closed, then JφK∅ = (OJφK)†.

Proof. From corollary 2, OJφK ⊆ JφK∅.

By lemma 12 (increasing), (OJφK)† ⊆
(
JφK∅

)†
.

By lemma 15, (OJφK)† ⊆ JφK∅.
Then, by corollary 4, JφK∅ = (OJφK)†.

B.2. Proofs of General Refinement Laws

Lemma 30 (Refl). φ v φ

Proof. Immediate, by definition 52 and reflexivity of ⊆.

Lemma 31 (Trans). If φ v ψ′, and ψ′ v ψ, then φ v ψ.

Proof. Immediate, by definition 52 and transitivity of ⊆.

Lemma 32 (AntiSymm). If φ v ψ, and ψ v φ, then φ ≡ ψ.

Proof. Immediate, by definition 52 and anti-symmetricity of ⊆.

Lemma 33 (Skip). skip;φ ≡ φ ≡ φ; skip

Proof. Let ρ such that it closes φ.

By definition 53, RJskipKρ = RJa(true, true)εkK
ρ.

Then by definitions 61 and 42,

RJa(∀~x. true, true)εkK
ρ = {(h, h) | h ∈ Heap} ∪ {(

 
,
 
)}.

By rules CLStutter and CLMumble, (RJskipKρ ;RJφKρ)† = (RJφKρ)† = (RJφKρ ;RJskipKρ)†.
By lemma 16, Jskip;φKρ = JφKρ = Jφ; skipKρ.
By definition 52, skip;φ ≡ φ ≡ φ; skip.

Lemma 34 (Assoc). φ; (ψ1;ψ2) ≡ (φ;ψ1);ψ2

Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By definitions 61 and 47, RJφ; (ψ1;ψ2)Kρ = RJ(φ;ψ1);ψ2Kρ.
By lemma 12, (RJφ; (ψ1;ψ2)Kρ)† = (RJ(φ;ψ1);ψ2Kρ)

†.

By lemma 16, Jφ; (ψ1;ψ2)Kρ = J(φ;ψ1);ψ2Kρ.

Lemma 35. miracle v φ

Proof. Let ρ such that it closes φ.

By definition 53, RJmiracleKρ = RJa(true, false)εkK
ρ.

By definitions 61 and 42, RJa(true, false)εkK
ρ =

{
(
 
,
 
)
}

.

By lemma 8, (
 
,
 
) ∈ RJφKρ. Therefore RJmiracleKρ ⊆ RJφKρ.

By lemma 12, (RJmiracleKρ)† ⊆ (RJφKρ)†.
By lemma 16, JmiracleKρ ⊆ JφKρ.
Thus, by definition 52, miracle v φ.
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Lemma 36. φ v abort

Proof. Let ρ such that it closes φ.

By definition 53, RJabortKρ = RJa(false, true)εkK
ρ.

By definitions 61 and 42, RJa(false, true)εkK
ρ = (Heap×

{  }
) ∪
{

(
 
,
 
)
}

.

By definition 50, and specifically rule (7.25),

(RJa(false, true)εkK
ρ)
†

= Move∗;Fault?,

Thus, by lemma 16, Ja(false, true)εkK
ρ = Trace, is the set of all possible traces; the top element of

the refinement lattice.

Therefore, JφKρ ⊆ JabortKρ, and by definition 52, φ v abort.

Corollary 6 (MinMax). miracle v φ v abort

Proof. By lemma 35 and lemma 36.

Lemma 37 (EElim). φ [e/x] v ∃x. φ

Proof. Let ρ such that it closes φ.

By definition 61, RJ∃x. φKρ =
⋃
vRJφKρ[x 7→v].

By lemma 9, RJφ [e/x]K=RJφKρ[x 7→JeKρ].

Let v′ = JeKρ.
Then, RJφ [e/x]Kρ ⊆ RJ∃x. φKρ.
By lemma 12, (RJφ [e/x]Kρ)† ⊆ (RJ∃x. φKρ)†.
By lemma 16, Jφ [e/x]Kρ ⊆ J∃x. φKρ.
Thus, by definition 52, φ [e/x] v ∃x. φ.

Lemma 38 (EIntro). If x 6∈ free(φ), then ∃x. φ v φ

Proof. Let ρ such that it closes φ.

Directly by definition 61 and x 6∈ free(φ), RJ∃x. φKρ ⊆ RJφKρ.
By lemma 12, (RJ∃x. φKρ)† ⊆ (RJφKρ)†.
By lemma 16, J∃x. φKρ ⊆ JφKρ.
Thus, by definition 52, ∃x. φ v φ.

Lemma 39 (AChoiceEq). φ t φ ≡ φ

Proof. Let ρ such that it closes φ.

RJφKρ ∪RJφKρ = RJφKρ.
By lemma 12, (RJφKρ ∪RJφKρ)† = (RJφKρ)† ∪ (RJφKρ)† = (RJφKρ)†.
Then, by lemma 16, Jφ t φKρ = JφKρ.
Thus, by definition 52, φ t φ ≡ φ.

Lemma 40 (AChoiceId). φ t miracle ≡ φ
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Proof. Let ρ such that it closes φ.

By definitions, RJmiracleKρ =
{

(
 
,
 
)
}

.

By lemma 8, (
 
,
 
) ∈ RJφKρ.

Therefore, RJφKρ ∪RJmiracleKρ = RJφKρ.
Thus, RJφ t miracleKρ = RJφKρ.
Then, by lemma 12, (RJφ t miracleKρ)† = (RJφKρ)†.
Then, by lemma 16, Jφ t miracleKρ = JφKρ.
Thus, by definition 52, φ t miracle ≡ φ.

Lemma 41 (AChoiceAssoc). φ t (ψ1 t ψ2) ≡ (φ t ψ1) t ψ2

Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By associativity of set union, RJφKρ ∪ (RJψ1Kρ ∪RJψ2Kρ) = (RJφKρ ∪RJψ1Kρ) ∪RJψ2Kρ.
Thus, RJφ t (ψ1 t ψ2)Kρ = RJ(φ t ψ1) t ψ2Kρ.
Then, by lemma 12 (RJφ t (ψ1 t ψ2)Kρ)† = (RJ(φ t ψ1) t ψ2Kρ)

†.

Then, by lemma 16, Jφ t (ψ1 t ψ2)Kρ = J(φ t ψ1) t ψ2Kρ.
Thus, by definition 52, φ t (ψ1 t ψ2) ≡ (φ t ψ1) t ψ2.

Lemma 42 (AChoiceComm). φ t ψ ≡ ψ t φ

Proof. Let ρ such that it closes φ and ψ.

By commutativity of set union, RJφKρ ∪RJψKρ = RJψKρ ∪RJφKρ.
Therefore, RJφ t ψKρ = RJψ t φKρ.
Then, by lemma 12 (RJφ t ψKρ)† = (RJψ t φKρ)†.
Then, by lemma 16, Jφ t ψKρ = Jψ t φKρ.
Thus, by definition 52, φ t ψ ≡ ψ t φ.

Lemma 43 (AChoiceElim). φ v φ t ψ

Proof. Let ρ such that it closes φ and ψ.

By set theory, RJφKρ ⊆ RJφKρ ∪RJψKρ.
Therefore, RJφKρ ⊆ RJφ t ψKρ.
Thus, by lemma 12, (RJφKρ)† ⊆ (RJφ t ψKρ)†.
Thus, by lemma 16, JφKρ ⊆ Jφ t ψKρ.
Thus, by definition 52, φ v φ t ψ.

Lemma 44. (T1 ∪ T2);T3 = (T1;T3) ∪ (T2;T3)

Proof. By definitions, (T1 ∪ T2);T3 = {st | s ∈ T1 ∪ T2, t ∈ T3}.
Also, T1;T3 = {st | s ∈ T1, t ∈ T3}.
Also, T2;T3 = {st | s ∈ T2, t ∈ T3}.
Then, (T1;T3) ∪ (T2;T3) = {st | s ∈ T1 ∪ T2, t ∈ T3}

Corollary 7 (AChoiceDstR). (φ1 t φ2);ψ ≡ (φ1;ψ) t (φ2;ψ)
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Proof. Let ρ such that it closes φ and ψ.

By lemma 44, (RJφ1Kρ ∪RJφ2Kρ) ;RJψKρ = (RJφ1Kρ ;RJψKρ) ∪ (RJφ2Kρ ;RJψKρ).
Thus, ((RJφ1Kρ ∪RJφ2Kρ) ;RJψKρ)† = ((RJφ1Kρ ;RJψKρ) ∪ (RJφ2Kρ ;RJψKρ))†.
By definition 61, (RJ(φ1 t φ1);ψKρ)† = (RJ(φ1;ψ) t (φ2;ψ)Kρ)†.
By lemma 16, J(φ1 t φ1);ψKρ = J(φ1;ψ) t (φ2;ψ)Kρ.
Thus, by definition 52, (φ1 t φ1);ψ ≡ (φ1;ψ) t (φ2;ψ).

Lemma 45. T1; (T2 ∪ T3) = (T1;T2) ∪ (T1;T3)

Proof. By definition, T1; (T2 ∪ T3) = {st | s ∈ T1, t ∈ T2 ∪ T3}.
Also, T1;T2 = {st | s ∈ T1, t ∈ T2}.
Also, T1;T3 = {st | s ∈ T1, t ∈ T3}.
Then, (T1;T2) ∪ (T1;T3) = {st | s ∈ T1, t ∈ T2 ∪ T3}.

Corollary 8 (AChoiceDstL). ψ; (φ1 t φ2) ≡ (ψ;φ1) t (ψ;φ2)

Proof. Let ρ such that it closes φ1, φ2 and ψ.

By lemma 45, RJψKρ ; (RJφ1Kρ ∪RJφ2Kρ) = (RJψKρ ;RJφ1Kρ) ∪ (RJψKρ ;RJφ2Kρ).
Thus, (RJψKρ ; (RJφ1Kρ ∪RJφ2Kρ))

† = ((RJψKρ ;RJφ1Kρ) ∪ (RJψKρ ;RJφ2Kρ))
†.

By definition 61, (RJψ; (φ1 t φ2)Kρ)† = (RJ(ψ;φ1) t (ψ;φ2)Kρ)†.
By lemma 16, Jψ; (φ1 t φ2)Kρ = J(ψ;φ1) t (ψ;φ2)Kρ.
Thus, by definition 52, ψ; (φ1 t φ2) ≡ (ψ;φ1) t (ψ;φ2).

Lemma 46 (DChoiceEq). φ u φ ≡ φ

Proof. Let ρ such that it closes φ.

By set intersection, RJφKρ ∩RJφKρ = RJφKρ.
Therefore, RJφ u φKρ = RJφKρ.
Then, by lemma 12, (RJφ u ψKρ)† = (RJφKρ)†.
Then, by lemma 16, Jφ u ψKρ = JφKρ.
Thus, by definition 52, φ u φ ≡ φ.

Lemma 47 (DChoiceId). φ u abort ≡ φ

Proof. Let ρ such that it closes φ.

By definitions, JabortKρ = Trace.

Then, by the fact that Trace is the top element in the P(Trace) lattice, and by set intersection,

JφKρ ∩ JabortKρ = JφKρ.
Then, by lemma 12, (JφKρ ∩ JabortKρ)† = (JφKρ)†.
Then, by lemma 15 and definition 51, Jφ u abortKρ = JφKρ.
Thus, by definition 52, φ u abort ≡ φ.

Lemma 48 (DChoiceAssoc). φ u (ψ1 u ψ2) ≡ (φ u ψ1) u ψ2
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Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By associativity of set intersection, RJφKρ ∩ (RJψ1Kρ ∩RJψ2Kρ) = (RJφKρ ∩RJψ1Kρ) ∩RJψ2Kρ.
Thus, RJφ u (ψ1 u ψ2)Kρ = RJ(φ u ψ1) u ψ2Kρ.
Then, by lemma 12 (RJφ u (ψ1 u ψ2)Kρ)† = (RJ(φ u ψ1) u ψ2Kρ)

†.

Then, by lemma 16, Jφ u (ψ1 u ψ2)Kρ = J(φ u ψ1) u ψ2Kρ.
Thus, by definition 52, φ u (ψ1 u ψ2) ≡ (φ u ψ1) u ψ2.

Lemma 49 (DChoiceComm). φ u ψ ≡ ψ u φ

Proof. Let ρ such that it closes φ and ψ.

By commutativity of set intersection, RJφKρ ∩RJψKρ = RJψKρ ∩RJφKρ.
Therefore, RJφ u ψKρ = RJψ u φKρ.
Then, by lemma 12 (RJφ u ψKρ)† = (RJψ u φKρ)†.
Then, by lemma 16, Jφ u ψKρ = Jψ u φKρ.
Thus, by definition 52, φ u ψ ≡ ψ u φ.

Lemma 50 (DChoiceElim). If φ v ψ1 and φ v ψ2, then φ v ψ1 u ψ2.

Proof. Assume premisses hold. Then,

ψ1 u ψ2 w by first premiss and CMono

φ u ψ2

w by second premiss and CMono

φ u φ
≡ by DChoiceEq

φ

Lemma 51 (DChoiceIntro). φ u ψ v φ

Proof. Let ρ such that it closes φ and ψ.

By set intersection, RJφKρ ∩RJψKρ ⊆ RJφKρ.
Then, by definition 61, RJφ u ψKρ ⊆ RJφKρ.
Then, by lemma 12, (RJφ u ψKρ)† ⊆ (RJφKρ)†.
Then, by lemma 16, Jφ u ψKρ ⊆ JφKρ.
Thus, by definition 52, φ u ψ v φ.

Lemma 52. (T1 ∩ T2);T3 = (T1;T3) ∩ (T2;T3)

Proof. By definitions, (T1 ∩ T2);T3 = {st | s ∈ T1 ∩ T2, t ∈ T3}.
Also, T1;T3 = {st | s ∈ T1, t ∈ T3}.
Also, T2;T3 = {st | s ∈ T2, t ∈ T3}.
Then, (T1;T3) ∩ (T2;T3) = {st | s ∈ T1 ∩ T2, t ∈ T3}

Corollary 9 (DChoiceDstR). (φ1 u φ2);ψ ≡ (φ1;ψ) u (φ2;ψ).
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Proof. Let ρ such that it closes φ1, φ2 and ψ.

By lemma 52, RJψKρ ; (RJφ1Kρ ∩RJφ2Kρ) = (RJψKρ ;RJφ1Kρ) ∩ (RJψKρ ;RJφ2Kρ).
Thus, (RJψKρ ; (RJφ1Kρ ∩RJφ2Kρ))

† = ((RJψKρ ;RJφ1Kρ) ∩ (RJψKρ ;RJφ2Kρ))
†.

By definition 61, (RJψ; (φ1 u φ2)Kρ)† = (RJ(ψ;φ1) u (ψ;φ2)Kρ)†.
By lemma 16, Jψ; (φ1 u φ2)Kρ = J(ψ;φ1) u (ψ;φ2)Kρ.
Thus, by definition 52, ψ; (φ1 u φ2) ≡ (ψ;φ1) u (ψ;φ2).

Lemma 53. T1; (T2 ∩ T3) = (T1;T2) ∩ (T1;T3)

Proof. By definition, T1; (T2 ∩ T3) = {st | s ∈ T1, t ∈ T2 ∩ T3}.
Also, T1;T2 = {st | s ∈ T1, t ∈ T2}.
Also, T1;T3 = {st | s ∈ T1, t ∈ T3}.
Then, (T1;T2) ∩ (T1;T3) = {st | s ∈ T1, t ∈ T2 ∩ T3}.

Corollary 10 (DChoiceDstL). ψ; (φ1 u φ2) ≡ (ψ;φ1) u (ψ;φ2)

Proof. Let ρ such that it closes φ1, φ2 and ψ.

By lemma 45, RJψKρ ; (RJφ1Kρ ∩RJφ2Kρ) = (RJψKρ ;RJφ1Kρ) ∩ (RJψKρ ;RJφ2Kρ).
Thus, (RJψKρ ; (RJφ1Kρ ∩RJφ2Kρ))

† = ((RJψKρ ;RJφ1Kρ) ∩ (RJψKρ ;RJφ2Kρ))
†.

By definition 61, (RJψ; (φ1 u φ2)Kρ)† = (RJ(ψ;φ1) u (ψ;φ2)Kρ)†.
By lemma 16, Jψ; (φ1 u φ2)Kρ = J(ψ;φ1) u (ψ;φ2)Kρ.
Thus, by definition 52, ψ; (φ1 u φ2) ≡ (ψ;φ1) u (ψ;φ2).

Lemma 54 (AChoiceDstD). φ t (ψ1 u ψ2) ≡ (φ t ψ1) u (φ t ψ2)

Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By distributivity of set union over set intersection,

RJφKρ ∪ (RJψ1Kρ ∩RJψ2Kρ) = (RJφKρ ∪RJψ1Kρ) ∩ (RJφKρ ∪RJψ2Kρ)

Therefore, by definition 61, RJφ t (ψ1 u ψ2)Kρ = RJ(φ t ψ1) u (φ t ψ2)Kρ.
Then, by lemma 12, (RJφ t (ψ1 u ψ2)Kρ)† = (RJ(φ t ψ1) u (φ t ψ2)Kρ)†.
Then, by lemma 16, Jφ t (ψ1 u ψ2)Kρ = J(φ t ψ1) u (φ t ψ2)Kρ.
Thus, by definition 52, φ t (ψ1 u ψ2) ≡ (φ t ψ1) u (φ t ψ2).

Lemma 55 (DChoiceDstA). φ u (ψ1 t ψ2) ≡ (φ u ψ1) t (φ u ψ2)

Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By distributivity of set intersection over set union,

RJφKρ ∩ (RJψ1Kρ ∪RJψ2Kρ) = (RJφKρ ∩RJψ1Kρ) ∪ (RJφKρ ∩RJψ2Kρ)

Therefore, by definition 61, RJφ u (ψ1 t ψ2)Kρ = RJ(φ u ψ1) t (φ u ψ2)Kρ.
Then, by lemma 12, (RJφ u (ψ1 t ψ2)Kρ)† = (RJ(φ u ψ1) t (φ u ψ2)Kρ)†.
Then, by lemma 16, Jφ u (ψ1 t ψ2)Kρ = J(φ u ψ1) t (φ u ψ2)Kρ.
Thus, by definition 52, φ u (ψ1 t ψ2) ≡ (φ u ψ1) t (φ u ψ2).
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Lemma 56 (Absorb). φ t (φ u ψ) ≡ φ ≡ φ u (φ t ψ).

Proof. Let ρ such that it closes φ and ψ.

By the absorption property in the lattice of powersets,

RJφKρ ∪ (RJφKρ ∩RJψKρ) = RJφKρ = RJφKρ ∩ (RJφKρ ∪RJψKρ)

Therefore, by definition 61, RJφ t (φ u ψ)Kρ = RJφKρ = RJφ u (φ t ψ)Kρ.

Then, by lemma 12, (RJφ t (φ u ψ)Kρ)† = (RJφKρ)† = (RJφ u (φ t ψ)Kρ)†.

Then, by lemma 16, Jφ t (φ u ψ)Kρ = JφKρ = Jφ u (φ t ψ)Kρ.

Thus, by definition 52, φ t (φ u ψ) ≡ φ ≡ φ u (φ t ψ).

Lemma 57 (Demonise). φ u ψ v φ t ψ

Proof.

φ u ψ v by DChoiceIntro

φ

v by AChoiceElim

φ t ψ

Lemma 58 (ParSkip). φ ‖ skip ≡ φ

Proof. By definitions, and CLStutter and CLMumble rules.

Lemma 59 (ParAssoc). φ ‖ (ψ1 ‖ ψ2) ≡ (φ ‖ ψ1) ‖ ψ2

Proof. Let ρ such that it closes φ, ψ1 and ψ2.

By lemma 17, RJφKρ ‖ (RJψ1Kρ ‖ RJψ2Kρ) = (RJφKρ ‖ RJψ1Kρ) ‖ RJψ2Kρ.

Therefore, by definition 61, RJφ ‖ (ψ1 ‖ ψ2)Kρ = RJ(φ ‖ ψ1) ‖ ψ2Kρ.

Then, by lemma 12, (RJφ ‖ (ψ1 ‖ ψ2)Kρ)† = (RJ(φ ‖ ψ1) ‖ ψ2Kρ)
†.

Then, by lemma 16, Jφ ‖ (ψ1 ‖ ψ2)Kρ = J(φ ‖ ψ1) ‖ ψ2Kρ.

Thus, by definition 52, φ ‖ (ψ1 ‖ ψ2) ≡ (φ ‖ ψ1) ‖ ψ2.

Lemma 60 (ParComm). φ ‖ ψ ≡ ψ ‖ φ

Proof. Let ρ such that it closes φ and ψ.

By definition 51, Jφ ‖ ψKρ = (JφKρ ‖ JψKρ)†.

By lemma 17, (JφKρ ‖ JψKρ)† = (JψKρ ‖ JφKρ)†.

Thus, by definition 51, Jφ ‖ ψKρ = Jψ ‖ φKρ.

Therefore, by definition 52, φ ‖ ψ ≡ ψ ‖ φ.

Lemma 61 (Exchange). (φ ‖ ψ); (φ′ ‖ ψ′) v (φ;φ′) ‖ (ψ;ψ′)
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Proof. Let ρ such that is closes φ, φ′, ψ, ψ′.

By definition 61, RJ(φ ‖ ψ); (φ′ ‖ ψ′)Kρ = (RJφKρ ‖ RJψKρ); (RJφ′Kρ ‖ RJψ′Kρ).
Let t1 ∈ RJφKρ, u1 ∈ RJψKρ, t2 ∈ RJφ′Kρ, u2 ∈ RJψ′Kρ.
Let s ∈ t1 ‖ u1 and w ∈ t2 ‖ u2.

We prove that sw ∈ t1t2 ‖ u1u2 by induction on the derivation of s ∈ t ‖ u.

Base case: (h,
 
) ∈ (h,

 
) ‖ u1u2, directly by rule (7.22).

Base case: (h, h′)u1u2 ∈ (h, h′) ‖ u1u2, directly by rule (7.21).

Case (h, h′)sw ∈ (h, h′)t1t2 ‖ u1u2:

By rule (7.20), (h, h′)s ∈ (h, h′)t1 ‖ u1.

Then, by the induction hypothesis: (h, h′)sw ∈ (h, h′)t1t2 ‖ u1u2.

Case sw ∈ u1u2 ‖ t1t2:

By rule (7.19), s ∈ u1 ‖ t1 and w ∈ u2 ‖ t2.

Then, by the induction hypothesis: sw ∈ u1u2 ‖ t1t2.

Therefore, (RJφKρ ‖ RJψKρ); (RJφ′Kρ ‖ RJψ′Kρ) ⊆ (RJφKρ ;RJφ′Kρ) ‖ (RJψKρ ;RJψ′Kρ).
Thus, by definition 61, RJ(φ ‖ ψ); (φ′ ‖ ψ′)Kρ ⊆ RJ(φ;φ′) ‖ (ψ;ψ′)Kρ.
Then, by lemma 12, (RJ(φ ‖ ψ); (φ′ ‖ ψ′)Kρ)† ⊆ (RJ(φ;φ′) ‖ (ψ;ψ′)Kρ)†.
By lemma 16, J(φ ‖ ψ); (φ′ ‖ ψ′)Kρ ⊆ J(φ;φ′) ‖ (ψ;ψ′)Kρ.
Therefore, by definition 52: (φ ‖ ψ); (φ′ ‖ ψ′) v (φ;φ′) ‖ (ψ;ψ′).

Lemma 62. (S ‖ T ) ∪ (S′ ‖ T ′) ⊆ (S ∪ S′) ‖ (T ∪ T ′)

Proof. Immediate by definition 49.

Corollary 11 (AChoiceExchange). (φ ‖ ψ) t (φ′ ‖ ψ′) v (φ t φ′) ‖ (ψ t ψ′)

Proof. Let ρ such that it closes φ, φ′, ψ and ψ′.

By lemma 62, (RJφKρ ‖ RJψKρ) ∪ (RJφ′Kρ ‖ RJψ′Kρ) ⊆ (RJφKρ tRJφ′Kρ) ‖ (RJψKρ tRJψ′Kρ).
Therefore, by definition 61, RJ(φ ‖ ψ) t (φ′ ‖ ψ′)Kρ ⊆ RJ(φ t φ′) ‖ (ψ t ψ′)Kρ.
Then, by lemma 12, (RJ(φ ‖ ψ) t (φ′ ‖ ψ′)Kρ)† ⊆ (RJ(φ t φ′) ‖ (ψ t ψ′)Kρ)†.
Then, by lemma 16, J(φ ‖ ψ) t (φ′ ‖ ψ′)Kρ ⊆ J(φ t φ′) ‖ (ψ t ψ′)Kρ.
Thus, by definition 52, (φ ‖ ψ) t (φ′ ‖ ψ′) v (φ t φ′) ‖ (ψ t ψ′).

Lemma 63 (SeqPar). φ;ψ v φ ‖ ψ

Proof.

φ;ψ ≡ by ParSkip and CMono

(φ ‖ skip); (ψ ‖ skip)

v by Exchange and CMono rules

(φ; skip) ‖ (ψ; skip)

≡ by Skip and CMono

φ ‖ ψ
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Lemma 64 (ParDstLR). φ; (ψ1 ‖ ψ2) v (φ;ψ1) ‖ ψ2

Proof.

φ; (ψ1 ‖ ψ2) ≡ by ParSkip and CMono

(φ ‖ skip); (ψ1 ‖ ψ2)

v by Exchange

(φ;ψ1) ‖ (skip;ψ2)

≡ by Skip and CMono

(φ;ψ1) ‖ ψ2

Lemma 65 (ParDstLL). φ; (ψ1 ‖ ψ2) v ψ1 ‖ (φ;ψ2)

Proof.

φ; (ψ1 ‖ ψ2) ≡ by ParSkip, ParComm and CMono

(skip ‖ φ); (ψ1 ‖ ψ2)

v by Exchange

(skip;ψ1) ‖ (φ;ψ2)

≡ by Skip and CMono

ψ1 ‖ (φ;ψ2)

Lemma 66 (ParDstRL). (φ ‖ ψ1);ψ2 v φ ‖ (ψ1;ψ2)

Proof.

(φ ‖ ψ1);ψ2 ≡ by ParSkip, ParComm and CMono

(φ ‖ ψ1); (skip ‖ ψ2)

v by Exchange

(φ; skip) ‖ (ψ1;ψ2)

≡ by Skip and CMono

φ ‖ (ψ1;ψ2)

Lemma 67 (ParDstRR). (φ ‖ ψ1);ψ2 v (φ;ψ2) ‖ ψ1
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Proof.

(φ ‖ ψ1);ψ2 ≡ by Skip and CMono

(φ ‖ ψ1); (ψ2 ‖ skip)

v by Exchange

(φ;ψ2) ‖ (ψ1; skip)

≡ by Skip and CMono

(φ;ψ2) ‖ ψ1

Lemma 68 (AChoiceEq). ∃x. φ ≡
⊔
v∈Val φ [v/x]

Proof. Let ρ such that it closes φ.

By definition 61, RJ∃x. φKρ =
⋃
v∈ValRJφKρ[x 7→v].

By lemma 10, RJ∃x. φKρ =
⋃
v∈ValRJφ [v/x]Kρ.

Then, by lemma 12, (RJ∃x. φKρ)† =
(⋃

v∈ValRJφ [v/x]Kρ
)†

.

Therefore, by definition 61, (RJ∃x. φKρ)† =
(
R

q⊔
v∈Val φ [v/x]

yρ)†
.

Then, by lemma 16, J∃x. φKρ =
q⊔

v∈Val φ [v/x]
yρ

.

Thus, by definition 52, ∃x. φ ≡
⊔
v∈Val φ [v/x].

Lemma 69 (ESeqExt). If x 6∈ free(φ), then ∃x. φ;ψ ≡ φ;∃x. ψ.

Proof. Let ρ such that it closes φ and ψ.

By definition 61, RJ∃x. φ;ψKρ =
⋃
vRJφ;ψKρ[x 7→v] =

⋃
v

(
RJφKρ[x 7→v] ;RJψKρ[x 7→v]

)
.

By the premiss, RJφKρ[x 7→v] = RJφKρ.
Therefore,

⋃
v

(
RJφKρ[x 7→v] ;RJψKρ[x 7→v]

)
= RJφKρ ;

⋃
vRJψKρ[x 7→v].

Thus, by definition 61, RJ∃x. φ;ψKρ = RJφ; ∃x. ψKρ.
By lemma 12, (RJ∃x. φ;ψKρ)† = (RJφ; ∃x. ψKρ)†.
By lemma 16, J∃x. φ;ψKρ = Jφ; ∃x. ψKρ.
Thus, by definition 52, ∃x. φ;ψ ≡ φ;∃x. ψ.

Lemma 70 (ESeqDst). ∃x. φ;ψ v (∃x. φ); (∃x. ψ).

Proof. Let ρ such that it closes φ and ψ modulo x.

By definitions,
⋃
v∈ValRJφKρ[x 7→v] ;RJψKρ[x 7→v] ⊆

(⋃
v∈ValRJφKρ[x 7→v]

)
;
(⋃

v∈ValRJψKρ[x 7→v]
)

.

By definition 61, RJ∃x. φ;ψKρ ⊆ RJ(∃x. φ); (∃x. ψ)Kρ.
Then, by lemma 12, (RJ∃x. φ;ψKρ)† ⊆ (RJ(∃x. φ); (∃x. ψ)Kρ)†.
Then, by lemma 16, J∃x. φ;ψKρ ⊆ J(∃x. φ); (∃x. ψ)Kρ.
Thus, by definition 52, ∃x. φ;ψ v (∃x. φ); (∃x. ψ).

Lemma 71 (EAChoiceDst). ∃x. φ t ψ ≡ (∃x. φ) t (∃x. ψ)

Proof. Direct, via EAChoiceEq and AChoiceAssoc.

Lemma 72 (EParDst). ∃x. φ ‖ ψ v (∃x. φ) ‖ (∃x. ψ)
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Proof. Direct, via EAChoiceEq and AChoiceExchange.

Lemma 73 (CMono). Let C be a specification context. If φ v ψ, then C[φ] v C[ψ].

Proof. By straightforward induction on C[−].

Lemma 74 (FApplyElim). φ [e/x] ≡ (λx. φ) e

Proof. Let ρ such that it closes φ, modulo x.

By definition 51, J(λx. φ) eKρ = JφKρ[x 7→JeKρ].

Then, by lemma 10, J(λx. φ) eKρ = Jφ [e/x]Kρ.
Thus, by definition 52, φ [e/x] ≡ (λx. φ) e.

Lemma 75 (FApplyElimRec). φ [(µA. λx. φ) /A] [e/x] ≡ (µA. λx. φ) e

Proof. Let ρ such that it closes φ, modulo x and A, and e.

By definition 61, RJ(µA. λx. φ) eKρ = (RJµA. λx. φKρ) JeKρ.
Then, by lemma 27, RJ(µA. λx. φ) eKρ =

(
RJλx. φKρ[A 7→RJµA.λx.φKρ]

)
JeKρ.

By definition 61, RJ(µA. λx. φ) eKρ = RJφKρ[A 7→RJµA.λx.φKρ][x 7→JeKρ].

Then, by lemma 9, RJ(µA. λx. φ) eKρ = RJφ [(µA. λx. φ) /A]Kρ[x7→JeKρ].

Then, by lemma 10, RJ(µA. λx. φ) eKρ = RJφ [(µA. λx. φ) /A] [e/x]Kρ.
Then, by lemma 12, (RJ(µA. λx. φ) eKρ)† = (RJφ [(µA. λx. φ) /A] [e/x]Kρ)†.
Then, by lemma 16, J(µA. λx. φ) eKρ = Jφ [(µA. λx. φ) /A] [e/x]Kρ.
Thus, by definition 52, φ [(µA. λx. φ) /A] [e/x] ≡ (µA. λx. φ) e.

Lemma 76 (FElim). Fl ≡ λx. Flx

Proof. Let ρ such that it closes Fl.

Case analysis on Fl.

Case λx. φ, immediate by definition 51.

Case µA. λx. φ:

By definition 61, RJλx. (µA. λx. φ)xKρ = λv. (RJµA. λx. φKρ) v.

By lemma 27, RJλx. (µA. λx. φ)xKρ = λv.
(
RJλx. φKρ[A 7→RJµA.λx.φKρ]

)
v.

Then, by definition 61, RJλx. (µA. λx. φ)xKρ = RJλx. φKρ[A 7→RJµA.λx.φKρ]

Therefore, by lemma 27, RJλx. (µA. λx. φ)xKρ = RJµA. λx. φKρ.
Then, by lemma 12, (RJλx. (µA. λx. φ)xKρ)† = (RJµA. λx. φKρ)†.
Then, by lemma 16, Jλx. (µA. λx. φ)xKρ = JµA. λx. φKρ.
Thus, by definition 52, Fl ≡ λx. Flx.

Lemma 77 (FRename). If φ [e1/x] v φ [e2/x], then (λx. φ) e1 v (λx. φ) e2.

Proof. By FApplyElim and CMono.

Lemma 78 (FRenameRec). If φ [(µA. λx. φ) /A] [e1/x] v φ [(µA. λx. φ) /A] [e2/x], then (µA. λx. φ) e1 v
(µA. λx. φ) e2.

Proof. By FApplyElimRec and CMono.
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Lemma 79 (FuncIntro). If x 6∈ free(φ), then (λx. φ) () ≡ φ.

Proof. Immediate by definition 51.

Lemma 80 (Inline). φ [F/f ] ≡ let f = F in φ

Proof. Immediate by definition 51 and lemma 9.

Lemma 81 (Ind). If λx. φ [λx. ψ/A] v λx. ψ, then µA. λx. φ v λx. ψ.

Proof. By lemma 4, the function Jλx. φKρ[A 7→−] : (Val → P(Trace)) → (Val → P(Trace)) is

monotonic. Furthermore, the function space Val→ P(Trace) is a complete lattice.

By the premiss and definition 52, for all closing ρ, Jλx. φ [λx. ψ/A]Kρ ⊆ Jλx. ψKρ.
By lemma 9, Jλx. φKρ[A 7→Jλx.ψKρ] ⊆ Jλx. ψKρ.
Then, by the fixpoint induction theorem, µ Jλx. φKρ[A 7→−] ⊆ Jλx. ψKρ.
Thus, by definition 51, JµA. λx. φKρ v Jλx. ψKρ.
Therefore, by definition 52, µA. λx. φ v λx. ψ.

Lemma 82 (UnrollR). If A 6∈ free(φ; ) ∪ free(ψ), then

(µA. λx. ψ t φ;Ae′) e ≡ ψ [e/x] t φ [e/x] ; (µA. λx. ψ t φ;Ae′′) e′.

Proof. By FApplyElimRec.

Lemma 83 (UnrollL). If A 6∈ free(φ; ) ∪ free(ψ), then

(µA. λx. ψ tAe′;φ) e ≡ ψ [e/x] t φ [e/x] ; (µA. λx. ψ tAe′′;φ) e′.

Proof. By FApplyElimRec.

Lemma 84 (RecSeq). If A 6∈ free(φ) ∪ free(ψ1) ∪ free(ψ2), then

(
µA. λx. ψ1 t φ;Ae′

)
e;ψ2 [e/x] ≡

(
µA. λx. ψ1;ψ2 t φ;Ae′

)
e

Proof. First, we have the following:

λx. ψ1;ψ2 t φ;
(
λx.

(
µA. λx. ψ1 t φ;Ae′

)
x;ψ2 [e/x]

)
e′

≡ by FApplyElim

λx. ψ1;ψ2 t φ;
(
µA. λx. ψ1 t φ;Ae′

)
e′;ψ2 [e/x]

≡ by AChoiceDstR

λx.
(
ψ1 t φ;

(
µA. λx. ψ1 t φ;Ae′

)
e′
)

;ψ2 [e/x]

≡ by UnrollR and CMono

λx.
(
µA. λx. ψ1 t φ;Ae′

)
x;ψ2 [e/x]

Therefore, by Ind, µA. λx. ψ1;ψ2 t φ;Ae′ ≡ λx. (µA. λx. ψ1 t φ;Ae′)x;ψ2 [e/x].

Then, by CMono and FApplyElim, (µA. λx. ψ1;ψ2 t φ;Ae′) e ≡ (µA. λx. ψ1 t φ;Ae′) e;ψ2 [e/x].
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B.3. Primitive Atomic Refinement Laws Proofs

Lemma 85 (UElim). a(∀~x. P, Q)Ak v a(∀y, ~x. P, Q)Ak

Proof. Let ρ such that it closes a(∀~x. P, Q)Ak . Let ~v ∈
−−→
Val, of the same length as ~x and let v ∈ Val.

By pointwise extension, LP Mρ[~x7→~v]
A ⊆ LP Mρ[~x7→~v][y 7→v]

A , and LQMρ[~x7→~v]
A ⊆ LQMρ[~x7→~v][y 7→v]

A .

Therefore, by definition 61, R
r
a(∀~x. P, Q)Ak

zρ
⊆ R

r
a(∀y, ~x. P, Q)Ak

zρ
.

Then, by lemma 12,
(
R

r
a(∀~x. P, Q)Ak

zρ)†
⊆ R

r
a(∀y, ~x. P, Q)Ak

zρ
.

Then, by lemma 16,
r
a(∀~x. P, Q)Ak

zρ
⊆

r
a(∀y, ~x. P, Q)Ak

zρ
.

Thus, by definition 52, a(∀~x. P, Q)Ak v a(∀y, ~x. P, Q)Ak .

Lemma 86 (EPAtom). If x 6∈ free(P ), then ∃x. a(∀~y. P, Q)Ak ≡ a(∀~y. P, ∃x.Q)Ak

Proof. Let ρ such that it closes both specifications. Let ~v ∈
−−→
Val.

By premiss, ∀v ∈ V alues. LP Mρ[x 7→v]
A = LP MρA.

Then, by definition 42,
⋃
v∈Val a

(
LP Mρ[x 7→v][~y 7→~v]

A , LQMρ[x7→v][~y 7→~v]
A

)A
k

= a
(
LP Mρ[~y 7→~v]

A ,
⋃
v∈ValLQMρ[x 7→v][~y 7→~v]

A

)A
k

.

By definitions, a
(
LP Mρ[~y 7→~v]

A ,
⋃
v∈ValLQMρ[x 7→v][~y 7→~v]

A

)A
k

= a
(
LP Mρ[~y 7→~v]

A , L∃x.QMρ[~y 7→~v]
A

)A
k

.

Thus, by definition 61, R
r
∃x. a(∀~y. P, Q)Ak

zρ
= R

r
a(∀~y. P, ∃x.Q)Ak

zρ
.

Then, by lemma 12, lemma 16 and definition 52, ∃x. a(∀~y. P, Q)Ak ≡ a(∀~y. P, ∃x.Q)Ak .

Lemma 87 (EPElim). a(∀~y, x. P, Q)Ak v a(∀~y. ∃x. P, ∃x.Q)Ak

Proof. Let ρ such that it closes both specifications. Let ~v ∈
−−→
Val and v ∈ Val.

By definitions 42 and 38, a
(
LP Mρ[~y 7→~v]

A , LQMρ[~y 7→~v]
A

)A
k
⊆ a
(
L∃x. P Mρ[~y 7→~v]

A , L∃x.QMρ[~y 7→~v]
A

)A
k

.

Therefore, by definition 61, R
r
a(∀~y, x. P, Q)Ak

zρ
⊆ R

r
a(∀~y. ∃x. P, ∃x.Q)Ak

zρ
.

Then, by lemma 12,
(
R

r
a(∀~y, x. P, Q)Ak

zρ)†
⊆
(
R

r
a(∀~y. ∃x. P, ∃x.Q)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~y, x. P, Q)Ak

zρ
⊆

r
a(∀~y. ∃x. P, ∃x.Q)Ak

zρ
.

Thus, by definition 52, a(∀~y, x. P, Q)Ak v a(∀~y. ∃x. P, ∃x.Q)Ak .

Lemma 88 (PDisjunction). a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

Proof. Let ρ such that it closes both specifications.

By definition 42, a
(
LP1M

ρ
A, LQ1M

ρ
A
)A
k
∪ a
(
LP2M

ρ
A, LQ2M

ρ
A
)A
k
⊆ a
(
LP1 ∨ P2M

ρ
A, LQ1 ∨Q2M

ρ
A
)A
k

.

Therefore, by definition 61,R
r
a(∀~x. P1, Q1)Ak

zρ
∪R

r
a(∀~x. P2, Q2)Ak

zρ
⊆ R

r
a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

zρ
.

Thus, R
r
a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak

zρ
⊆ R

r
a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

zρ
.

Then, by lemma 12,
(
R

r
a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak

zρ)†
⊆
(
R

r
a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak

zρ
⊆

r
a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak

zρ
.

Thus, by definition 52, a(∀~x. P1, Q1)Ak t a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∨ P2, Q1 ∨Q2)Ak .

Lemma 89 (PConjunction). a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak
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Proof. Let ρ such that it closes both specifications.

By definition 42, a
(
LP1M

ρ
A, LQ1M

ρ
A
)A
k
∩ a
(
LP2M

ρ
A, LQ2M

ρ
A
)A
k
⊆ a
(
LP1 ∧ P2M

ρ
A, LQ1 ∧Q2M

ρ
A
)A
k

.

Therefore, by definition 61,R
r
a(∀~x. P1, Q1)Ak

zρ
∩R

r
a(∀~x. P2, Q2)Ak

zρ
⊆ R

r
a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak

zρ
.

Thus, R
r
a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak

zρ
⊆ R

r
a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak

zρ
.

Then, by lemma 12,
(
R

r
a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak

zρ)†
⊆
(
R

r
a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak

zρ
⊆

r
a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak

zρ
.

Thus, by definition 52, a(∀~x. P1, Q1)Ak u a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∧ P2, Q1 ∧Q2)Ak .

Lemma 90 (Frame). a(∀~x. P, Q)Ak v a(∀~x. P ∗R, Q ∗R)Ak

Proof. Let ρ such that it closes both specifications.

Let p, r ∈ ViewA. By definition 35, p ≤ p ∗ r.
Therefore, by definition 42:

a
(
LP MρA, LQMρA

)A
k

(h) =

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP MρA ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LQMρA ∗ r

}

⊆

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP MρA ∗ LRMρA ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LQMρA ∗ LRMρA ∗ r

}
= by definition 38{

h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ∗RMρA ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LQ ∗RMρA ∗ r

}
= a

(
LP ∗RMρA, LQ ∗RMρA

)A
k

(h)

Therefore, by definition 61, R
r
a(∀~x. P, Q)Ak

zρ
⊆ R

r
a(∀~x. P ∗R, Q ∗R)Ak

zρ
.

By lemma 12,
(
R

r
a(∀~x. P, Q)Ak

zρ)†
⊆
(
R

r
a(∀~x. P ∗R, Q ∗R)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P, Q)Ak

zρ
⊆

r
a(∀~x. P ∗R, Q ∗R)Ak

zρ
.

Thus, by definition 52, a(∀~x. P, Q)Ak v a(∀~x. P ∗R, Q ∗R)Ak .

Lemma 91 (Stutter). a(∀~x. P, P )Ak ; a(∀~x. P, Q)Ak v a(∀~x. P, Q)Ak

Proof. Let ρ such that it closes a(∀~x. P, Q)Ak .

By definition 50, and specifically the CLStutter rule,(
R

r
a(∀~x. P, P )Ak ; a(∀~x. P, Q)Ak

zρ)†
⊆
(
R

r
a(∀~x. P, Q)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P, P )Ak ; a(∀~x. P, Q)Ak

zρ
⊆

r
a(∀~x. P, Q)Ak

zρ
.

Thus, by definition 52, a(∀~x. P, P )Ak ; a(∀~x. P, Q)Ak v a(∀~x. P, Q)Ak .

Lemma 92 (Mumble). a(∀~x. P, Q)Ak v a(∀~x. P, P ′)Ak ; a(∀~x. P ′, Q)Ak

Proof. Let ρ such that it closes both specifications.

By definition 50, and specifically the CLMumble rule,(
R

r
a(∀~x. P, Q)Ak

zρ)†
⊆
(
R

r
a(∀~x. P, P ′)Ak ; a(∀~x. P ′, Q)Ak

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P, Q)Ak

zρ
⊆

r
a(∀~x. P, P ′)Ak ; a(∀~x. P ′, Q)Ak

zρ
.

Thus, by definition 52, a(∀~x. P, Q)Ak v a(∀~x. P, P ′)Ak ; a(∀~x. P ′, Q)Ak .
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Lemma 93 (Interleave).

a(∀~x. P1, Q1)Ak ‖ a(∀~x. P2, Q2)Ak

≡
(
a(∀~x. P1, Q1)Ak ; a(∀~x. P2, Q2)Ak

)
t
(
a(∀~x. P2, Q2)Ak ; a(∀~x. P1, Q1)Ak

)
Proof. Let ρ such that it closes both specifications. Let m1,m2 ∈ (Heap×Heap

 
)∪
{  
,
 }

. Then, by

definition 49, m1 ‖ m2 = {m1m2,m2m1}.

Therefore, by definition 61,

R
r
a(∀~x. P1, Q1)Ak

zρ
‖ R

r
a(∀~x. P2, Q2)Ak

zρ

=
(
R

r
a(∀~x. P1, Q1)Ak

zρ
;R

r
a(∀~x. P2, Q2)Ak

zρ)
∪
(
R

r
a(∀~x. P2, Q2)Ak

zρ
;R

r
a(∀~x. P1, Q1)Ak

zρ)
Then, the result is established by lemma 12, lemma 16 and definition 52.

Lemma 94 (PParallel).

a(∀~x. P1, Q1)Ak ‖ a(∀~x. P2, Q2)Ak v a(∀~x. P1 ∗ P2, Q1 ∗Q2)Ak

Proof. By Interleave, Frame and AChoiceEq.

Lemma 95 (Cons). If P ⇒ P ′ and Q′ ⇒ Q, then a(∀~x. P ′, Q′)Ak v a(∀~x. P, Q)Ak .

Proof. Let ρ such that it closes both specifications.

From the first premiss, when P is satisfied, then LP MρA ⊆ LP ′MρA.

From the second premiss, when Q′ is satisfied, then LQ′MρA ⊆ LQ′MρA.

Then, from definition 42, it follows that for all h ∈ Heap, a
(
LP ′MρA, LQ

′MρA
)A
k

(h) ⊆ a
(
LP MρA, LQMρA

)A
k

(h).

Therefore, R
r
a(∀~x. P ′, Q′)Ak

zρ
⊆ R

r
a(∀~x. P, Q)Ak

zρ
.

Then, by lemma 12,
(
R

r
a(∀~x. P ′, Q′)Ak

zρ)†
⊆
(
R

r
a(∀~x. P, Q)Ak

zρ)†
.

Thus, by lemma 16, and definition 52, a(∀~x. P ′, Q′)Ak v a(∀~x. P, Q)Ak .

Lemma 96 (PAChoice). a(∀~x. P, Q ∨Q′)Ak v a(∀~x. P, Q)Ak t a(∀~x. P, Q′)Ak

Proof. Let ρ such that it closes both specifications.

By definition 38 and definition 42,

a
(
LP MρA, LQ ∨Q′M

ρ
A
)A
k

= a
(
LP MρA, LQMρA ∪ LQ′MρA

)A
k

= a
(
LP MρA, LQMρA

)A
k
∪ a
(
LP MρA, LQ

′MρA
)A
k

.

By definition 61,
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R
r
a(∀~x. P, Q ∨Q′)Ak

zρ
=

{
(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQ ∨Q′Mρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQ ∨Q′Mρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQ ∨Q′Mρ[~x7→~v]
6= ∅


∪
{

(
 
,
 
)
}

= by definition 38{
(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A ∪ LQ′Mρ[~x7→~v]

A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A ∪ LQ′Mρ[~x7→~v]

A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A ∪ LQ′Mρ[~x7→~v]

A 6= ∅


∪
{

(
 
,
 
)
}

=

{
(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪
{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQ′Mρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A ∪ LQ′Mρ[~x7→~v]

A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A ∪ LQ′Mρ[~x7→~v]

A 6= ∅


∪
{

(
 
,
 
)
}
∪
{

(
 
,
 
)
}

⊆
{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h)

}
∪
{

(h, h′) ∈Move

∣∣∣∣ ~v ∈ −−→Val ∧ h′ ∈ a
(
LP Mρ[~x7→~v]

A , LQ′Mρ[~x7→~v]
A

)A
k

(h)

}
∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQMρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQMρ[~x7→~v]
A 6= ∅


∪

(h,
 
) ∈ Heap

 
∣∣∣∣∣∣ ~v ∈

−−→
Val ∧ a

(
LP Mρ[~x7→~v]

A , LQ′Mρ[~x7→~v]
A

)A
k

(h) = ∅

∧ LQ′Mρ[~x7→~v]
A 6= ∅


∪
{

(
 
,
 
)
}
∪
{

(
 
,
 
)
}

= by definition 61

R
r
a(∀~x. P, Q)Ak

zρ
tR

r
a
(
∀~x. P, Q′

)A
k

zρ

Then, by lemma 12,(
R

r
a(∀~x. P, Q ∨Q′)Ak

zρ)†
⊆
(
R

r
a(∀~x. P, Q)Ak t a(∀~x. P, Q′)Ak

zρ)†
.

By lemma 16,
r
a(∀~x. P, Q ∨Q′)Ak

zρ
⊆

r
a(∀~x. P, Q)Ak t a(∀~x. P, Q′)Ak

zρ
.

Thus, by definition 52, a(∀~x. P, Q ∨Q′)Ak v a(∀~x. P, Q)Ak t a(∀~x. P, Q′)Ak

Lemma 97 (RLevel). If k1 ≤ k2, then a(∀~x. P, Q)Ak1 v a(∀~x. P, Q)Ak2

Proof. Let ρ that closes a(∀~x. P, Q)A−.
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Fix h ∈ Heap. By definition 42,

a
(
LP MρA, LQMρA

)A
k1

(h) =

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP MρA ∗ r. h ∈ TwUk1;A

∧ ∃w′. w Gk1;A w
′ ∧ h′ ∈ Tw′Uk1;∧w

′ ∈ LQMρA ∗ r

}
= by TwUk1;A = TwUk2;A, Tw′Uk1;A = Tw′Uk2;A as all regions are opened{

h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP MρA ∗ r. h ∈ TwUk2;A

∧ ∃w′. w Gk1;A w
′ ∧ h′ ∈ Tw′Uk2;∧w

′ ∈ LQMρA ∗ r

}
⊆ by Gk1;A⊆Gk2;A{

h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP MρA ∗ r. h ∈ TwUk2;A

∧ ∃w′. w Gk2;A w
′ ∧ h′ ∈ Tw′Uk2;∧w

′ ∈ LQMρA ∗ r

}
= a
(
LP MρA, LQMρA

)A
k2

(h)

From this and definition 61, R
r
a(∀~x. P, Q)Ak1

zρ
⊆ R

r
a(∀~x. P, Q)Ak2

zρ
.

By lemma 12,
(
R

r
a(∀~x. P, Q)Ak1

zρ)†
⊆
(
R

r
a(∀~x. P, Q)Ak2

zρ)†
.

Then, by lemma 16,
r
a(∀~x. P, Q)Ak1

zρ
⊆

r
a(∀~x. P, Q)Ak2

zρ
.

Thus, by definition 52, a(∀~x. P, Q)Ak1 v a(∀~x. P, Q)Ak2 .

Lemma 98 (RIEq proof).

a
(
∀x ∈ X. Ir(tkα(x)) ∗ P, Ir(tkα(x)) ∗Q

)A
k
≡ a

(
∀x ∈ X. tkα(x) ∗ P, tkα(x) ∗Q

)A
k+1

Proof. Fix ρ such that it closes both specifications. Fix v ∈ X.

Let P ′ = Ir(t
k
α(x)) ∗ P and Q′ = Ir(t

k
α(x)) ∗Q.

a
(
LP ′Mρ[x 7→v]

A , LQ′Mρ[x 7→v]
A

)A
k

(h) ={
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x 7→v]
A ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LQ′Mρ[x 7→v]

A ∗ r

}

Let w ∈ Ltkα(x) ∗ P MρA. Then, TwUk = TwUk+1.

Let w′ ∈ Ltkα(x) ∗QMρA. From the guarantee, w Gk+1;A w′, and we have that Tw′Uk = Tw′Uk+1.

Therefore, {
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x 7→v]
A ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;∧w

′ ∈ LQ′Mρ[x 7→v]
A ∗ r

}

=

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x 7→v]
A ∗ r. h ∈ TwUk+1;A

∧ ∃w′. w Gk+1;A w
′ ∧ h′ ∈ Tw′Uk+1;∧w

′ ∈ LQ′Mρ[x 7→v]
A ∗ r

}

=a
(
LP ′Mρ[x 7→v]

A , LQ′Mρ[x 7→v]
A

)A
k+1

(h)

where P ′ = tkα(x) ∗ P and Q′ = tkα(x) ∗Q.
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Thus, from definition 51,

s
a
(
∀x ∈ X. Ir(tkα(x)) ∗ P, Ir(tkα(x)) ∗Q

)A
k

{ρ
=

s
a
(
∀x ∈ X. tkα(x) ∗ P, tkα(x) ∗Q

)A
k+1

{ρ

Then, from definition 52,

a
(
∀x ∈ X. Ir(tkα(x)) ∗ P, Ir(tkα(x)) ∗Q

)A
k
≡ a

(
∀x ∈ X. tkα(x) ∗ P, tkα(x) ∗Q

)A
k+1

Lemma 99 (RUEq). If α 6∈ A and ∀x ∈ X. (x, f(x)) ∈ Tt(G)∗, then

a
(
∀x ∈ X. Ir(tkα(x)) ∗ P ∗ [G]α , Ir(t

k
α(f(x))) ∗Q

)A
k
≡ a

(
∀x ∈ X. tkα(x) ∗ P ∗ [G]α , tkα(f(x)) ∗Q

)A
k+1

Proof. Assume the premiss.

Fix ρ such that it closes both specifications. Fix v ∈ X.

Let P ′ = Ir(t
k
α(x)) ∗ P ∗ [G]α and Q′ = Ir(t

k
α(f(x))) ∗Q.

a
(
LP ′Mρ[x 7→v]

A , LQ′Mρ[x 7→v]
A

)A
k

(h) =

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x7→v]
A ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;∧w

′ ∈ LQ′Mρ[x 7→v]
A ∗ r

}

Let w ∈ Ltkα(x) ∗ P ∗ [G]αMρA. Then, TwUk = TwUk+1.

Let w′ ∈ Ltkα(x) ∗QMρA. From the guarantee, w Gk+1;A w′, and we have that Tw′Uk = Tw′Uk+1.

Therefore, {
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x 7→v]
A ∗ r. h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LQ′Mρ[x 7→v]

A ∗ r

}

=

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LP ′Mρ[x 7→v]
A ∗ r. h ∈ TwUk+1;A

∧ ∃w′. w Gk+1;A w′ ∧ h′ ∈ Tw′Uk+1;A ∧ w′ ∈ LQ′Mρ[x 7→v]
A ∗ r

}

=a
(
LP ′Mρ[x7→v]

A , LQ′Mρ[x 7→v]
A

)A
k+1

(h)

where P ′ = tkα(x) ∗ P ∗ [G]α and Q′ = tkα(f(x)) ∗Q.

Thus, from definition 51,

r
a
(
∀x ∈ X. Ir(tkα(x)) ∗ P ∗ [G]α , Ir(t

k
α(f(x))) ∗Q

)A
k

zρ
=

r
a
(
∀x ∈ X. tkα(x) ∗ P ∗ [G]α , tkα(f(x)) ∗Q

)A
k+1

zρ

Then, from definition 52,

a
(
∀x ∈ X. Ir(tkα(x)) ∗ P ∗ [G]α , Ir(t

k
α(f(x))) ∗Q

)A
k
≡ a

(
∀x ∈ X. tkα(x) ∗ P ∗ [G]α , tkα(f(x)) ∗Q

)A
k+1
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B.4. Proofs of Abstract Atomic Refinement Laws

Lemma 100.

∃~x ∈
−→
X, ~y ∈

−→
Y . a

(
Pp ∗ P (~x), P ′p(~x, ~y) ∗Q(~x, ~y)

)A
k

;
〈
P ′p(~x, ~y) | Q(~x, ~y), Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. By AWeaken2, lemma 7, AChoiceElim and UnrollR.

Lemma 101.

a
(
∀~x ∈

−→
X.Pp ∗ P (~x), P ′p ∗ P (~x)

)A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof.

a
(
∀~x ∈

−→
X.Pp ∗ P (~x), P ′p ∗ P (~x)

)A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v by lemma 6, Cons, EPAtom and FApplyElimRec

∃p′p. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), P ′p ∧ p′p ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X, ~y ∈

−→
Y .∃p′′p. a

(
pp ∗ P (~x), p′′p ∗Q(~x, ~y)

)A
k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(~x, ~y)

)A
k

·p′′p
· p′p

v by Stutter, Cons, EPAtom and CMono

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), P ′p ∧ p′p ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X, ~y ∈

−→
Y .∃p′′p. a

(
pp ∗ P (~x), p′′p ∗Q(~x, ~y)

)A
k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(~x, ~y)

)A
k

·p′′p
· p′p

v by AChoiceElim, AChoiceComm, UnrollR and CMono

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;
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µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X, ~y ∈

−→
Y .∃p′′p. a

(
pp ∗ P (~x), p′′p ∗Q(~x, ~y)

)A
k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(~x, ~y)

)A
k

·p′′p
· pp

≡ by definition 56

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Lemma 102 (MakeAtomic Proof). If α 6∈ A and {(x, y) | x ∈ X, y ∈ Y (x)} ⊆ Tt(G)∗, then

∃~x ∈
−→
X. I(~x) `

{
Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ �, ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y)

}α:x∈X Y (x),A
k′

v

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A
k′

Proof. Assume the premisses hold.

Let A = α : x ∈ X  Y (x),A′.

∃~x ∈
−→
X. I(~x) `

{
Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ �, ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y)

}A
k′

≡ by definition 57

A
~x ∈
−→
X.
〈
Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � | I(~x),

E
z ∈ 1. ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) | I(~x)

〉A
k′

v by definition 56, Frame, and similarly to lemma 7 (in the v direction)

∃p. a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tk

′
α (~e, x) ∗ α Z⇒ � ∗ I(~x), (Pp ∗ ∃x ∈ X. tk

′
α (x) ∗ α Z⇒ �) ∧ p ∗ I(~x)

)A
k′

µA.λp. ∃p′. a
(
∀~x ∈

−→
X. p ∗ I(~x), p′ ∗ I(~x)

)A
k′

;Ap′

t ∃~x ∈
−→
X. a(p ∗ I(~x), ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) ∗ I(~x))Ak′

·p
v by lemma 6

∃p′. a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), p′ ∗ I(~x)

)A
k′

;Ap′

t ∃~x ∈
−→
X. a

(
Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) ∗ I(~x)

)A
k′

where

A = µA.λp. ∃p′. a
(
∀~x ∈

−→
X. p ∗ I(~x), p′ ∗ I(~x)

)A
k′

;Ap′

t ∃~x ∈
−→
X. a(p ∗ I(~x), ∃x ∈ X, y ∈ Y (x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) ∗ I(~x))Ak′

Let ρ such that it closes both specifications.

Consider a
(
LPp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x)MρA, Lp

′ ∗ I(~x)MρA
)A
k′

a
(
LPp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x)MρA, Lp

′ ∗ I(~x)MρA
)A
k′

(h) ={
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA. ∀w ∈ LPp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x)MρA ∗ r. h ∈ TwUk′;A
∧ ∃w′. w Gk′;A w′ ∧ h′ ∈ Tw′Uk′;A ∧ w′ ∈ Lp′ ∗ I(~x)MρA ∗ r

}
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Let vx ∈ X and vy ∈ Y (vx). Fix r ∈ ViewA′ . Fix w ∈
(
LPp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)MρA′ ∗ r

)
. Let

v = Lp′ ∗ I(~x)MρA.

Let v′ =
{
w ∈ AWorlddom(A′) | (w ◦ α 7→ �) ∈ v

}
.

Let v′′ =
{
w ∈ AWorlddom(A′) | (w ◦ α 7→ (x, y)) ∈ v

}
.

Let r = r ∗ L[G(~e ′)]α ∗ α Z⇒ −MρA.

r is stable with respect to A because the additional interference is α : x ∈ X  Y (x) and the subset

of r that is compatible with [G(~e ′)]α must be closed under this.

Let w = w ◦ α 7→ �.

Then, by construction: TwUk′;A′ = TwUk′;A.

We have w ∈ LPp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x)MρA ∗ r.
There exists w′ such that:

i). w Gk′;A w′

ii). h′ ∈ Tw′Uk′;A

iii). w′ ∈ v′ ∗ r

From i) and dw = � and βw = x we know that either dw′ = � or dw′ = (x, y) for some y ∈ Y (x). This

means that dw′ 6= ♦.

Let w′ such that w = w′ ◦ α 7→ −.

Then by iii),

w′ ∈ Lp′p∗tkα(~e, x)∗[G(~e ′)]α∗I(~x)M
ρ[x 7→vx][y 7→vy ][p′p 7→v′][p′′p 7→v′′]
A′ ∪Lp′′p∗tkα(~e, y)∗[G(~e ′)]α∗I(~x)M

ρ[x 7→vx][y 7→vy ][p′p 7→v′][p′′p 7→v′′]
A′ .

By i) and definitions, we get w Gk′;A w
′.

By construction, Tw′Uk′;A′ = TwUk′;A. Thus, h′ ∈ Tw′Uk′;A′ by ii).

Therefore, from the above:

a
(
LPp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x)MρA, Lp

′ ∗ I(~x)MρA
)A
k′

=

a

(
LPp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)M

ρ[x7→vx][y 7→vy ][p′p 7→v′][p′′p 7→v′′]
A′ ,

L
(
p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)

)
∨
(
p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)

)
M
ρ[x 7→vx][y 7→vy ][p′p 7→v′][p′′p 7→v′′]
A′

)A′

k′

Then by definition 61,

R
s
∃p′. a

(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(x) ∗ α Z⇒ � ∗ I(~x), p′ ∗ I(~x)

)A
k′

{ρ
=

R

u

ww
v

∃x ∈ X, y ∈ Y (x), p′p, p
′′
p.

a

(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),(

p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α
)
∨
(
P ′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α

)
∗ I(~x)

)A′

k′

}

��
~

ρ

(L1)

Then, by lemma 12, lemma 16 and definition 52,

∃p′. a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), p′ ∗ I(~x)

)A
k′
≡

∃x ∈ X, y ∈ Y (x), p′p, p
′′
p. a

(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

(
p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α

)
∨
(
p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α

)
∗ I(~x)

)A′

k′
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Then by PAChoice,

a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

(
p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α

)
∨
(
p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α

)
∗ I(~x)

)A′

k′

v

a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′

t a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′

Therefore, by the above, CMono and AChoiceDstR:

∃p′. a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), p′ ∗ I(~x)

)A
k

;Ap′

t a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), ∃x ∈ X, y ∈ Q(x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) ∗ I(~x)

)A
k′

v ∃x ∈ X, y ∈ Y (x), p′p, p
′′
p.

a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′
;Ap′

t a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′
;Ap′

t a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), ∃x ∈ X, y ∈ Q(x). Qp(x, ~x, y) ∗ α Z⇒ (x, y) ∗ I(~x)

)A
k′

Now, we have the following:

∃x ∈ X, y ∈ Y (x), p′p, p
′′
p.

a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′p ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′
;

A

x ∈ X,~x ∈
−→
X.
〈
p′p | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t a
(
∀~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x), p′′p ∗ tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)

)A′

k′
;

A

x ∈ X,~x ∈
−→
X.
〈
p′′p | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), ∃x ∈ X, y ∈ Q(x). Qp(x, ~xy) ∗ α Z⇒ (x, y) ∗ I(~x)

)A
k′

v by AChoiceComm, UnrollR, AChoiceElim, lemma 100 and CMono

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t a
(
∀~x ∈

−→
X.Pp ∗ ∃x ∈ X. tkα(~e, x) ∗ α Z⇒ � ∗ I(~x), ∃x ∈ X, y ∈ Q(x). Qp(x, y) ∗ α Z⇒ (x, y) ∗ I(~x)

)A
k′

v by similar reasoning to (L1) followed by Skip, UnrollR as before

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

t

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

v by AChoiceEq

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ [G(~e ′)]α ∗ I(~x),

E

y ∈ Y (x). Qp(x, ~x, y) | tkα(~e, y) ∗ [G(~e ′)]α ∗ I(~x)
〉A′

k′

Thus we have established the premiss of Ind, the conclusion of which proves this lemma.
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Lemma 103.

a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), P ′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

v a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, P ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)α:x∈X Y (x),A

k+1

Proof. Fix x ∈ X,~x ∈
−→
X .

a
(
LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA, LP

′
p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA

)A
k

(h) ={
h
′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA ∗ r ∧ h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LP ′p ∗ Ir(tkα(x)) ∗ P (x, ~x)MρA ∗ r

}

Let ρ such that it closes both specifications. Let A′ = α : x ∈ X  Y (x),A. Fix r ∈ ViewA′ ,

w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x) ∗ α Z⇒ �MρA ∗ r), h ∈ TwUk+1;A′ and h′ ∈ Tw′Uk+1;A′ .

Let r ∈ ViewA such that we open all regions at level k (except α) with their states as given by w and

remove their atomicity tracking component:

r = removedoneα

r ∗~ α′∈RId
α′ 6=α

rw(α′)=(k,−,−)

LIr(rw(α′), α′, βw(α′))MρA


There is some w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗P (x, ~x)MρA ∗ r), with rw = rw, βw = βw and TwUk;A = TwUk+1;A′

and thus h ∈ TwUk;A.

Thus, there is some w′ such that w Gk;A w
′ and h′ ∈ Tw′Uk;A and w′ ∈ (LP ′p∗Ir(tkα(~e, x))∗P (x, ~x)MρA∗r),

with w′ = w′′ ◦ w′, where

w
′ ∈

LIr(tkα(~e, x))MρA ∗~ α′∈RId
α′ 6=α

rw(α′)=(k,−,−)

LIr(rw(α′), α′, βw(α′))MρA


and w′′ ∈ (LP ′p ∗ P (x, ~x)MρA ∗ r).

Let w′ = (rw′′ , hw′′ , bw′′ , γw′′ , βw′′ , dw′′ [α 7→ �]).

Hence, by the guarantee w′ ∈ (LPp ∗tkα(~e, x)∗P (x, ~x)MρA′ ∗r) and by construction Tw′Uk+1;A′ = Tw′Uk;A

and w Gk+1;A′ w′.

Therefore,

a
(
LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA, LP

′
p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA

)A
k

(h) ={
h
′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA.∀w ∈ LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA ∗ r ∧ h ∈ TwUk;A

∧ ∃w′. w Gk;A w
′ ∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ LP ′p(ρ) ∗ Ir(tkα(x)) ∗ P (x, ~x)(ρ)MρA ∗ r

}

⊆

{
h′ ∈ Heap

∣∣∣∣∣ ∀r ∈ ViewA′ . ∀w ∈ (LPp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ ∗ r) ∧ h ∈ TwUk+1;A′∧
∃w′. w Gk+1;A′ w′ ∧ h′ ∈ Tw′Uk+1;A′ ∧ w′ ∈ (LP ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ ∗ r)

}
= a
(
LPp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ , LP ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′

)A′

k+1
(h)
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Therefore by definition 61,

R
s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), P ′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

{ρ

⊆ R
s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, P ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)α:x∈X Y (x),A

k+1

{ρ

By lemma 12,(
R

s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), P ′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

{ρ)†
⊆
(
R

s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, P ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)α:x∈X Y (x),A

k+1

{ρ)†
By lemma 16,

s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), P ′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

{ρ

⊆
s
a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, P ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)α:x∈X Y (x),A

k+1

{ρ

Thus, by definition 52

a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), P ′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

v a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, P ′p ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)α:x∈X Y (x),A

k+1

Lemma 104.

∃z ∈ Z. a

∀x ∈ X,~x ∈
−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x),

∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

v ∃z ∈ Z. a

∀x ∈ X,~x ∈
−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,
∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

α:x∈X Y (x)

k+1

Proof. Let ρ such that it closes both specifications. Fix x ∈ X,~x ∈
−→
X . Let A′ = α : x ∈ X  Y (x),A.

Fix z ∈ Z.

a

(
LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA,
L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)
MρA

)A
k

(h) =h′ ∈ Heap

∣∣∣∣∣∣∣
∀r ∈ ViewA.∀w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA ∗ r) ∧ h ∈ TwUk;A ∧ ∃w.w Gk;A w

′

∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ (L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗ (Ir(t
k
α(~e, y)) ∗Q1(x, ~x, z, y)MρA)

∪ (LIr(tkα(~e, x)) ∗Q2(x, ~x, z)MρA) ∗ r)


Fix r ∈ ViewA′ , w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ ∗ r), h ∈ TwUk+1;A′ and h′ ∈ Tw′Uk+1;A′ .
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Let r ∈ ViewA such that we open all regions at level k (except α) with their states as given by w and

remove their atomicity tracking component.

R = removedoneα

r ∗~ α′∈RId
α′ 6=α

rw(α′)=(k,−,−)

LIr(rw(α′), α′, βw(α′))MρA′


There is some w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗P (x, ~x)MρA ∗ r), with rw = rw, βw = βw and TwUk;A = TwUk+1;A

and thus h ∈ TwUk;A.

Thus, there is some w′ such that w Gk;A w
′ and h′ ∈ Tw′Uk;A and

w′ ∈
(
L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(~e, y) ∗Q1(x, ~x, z, y)MρA

)
∪
(
Ltkα(~e, x) ∗Q2(x, ~x, z)MρA

)
∗ r
)

We have the following cases for w′:

• w′ ∈ (LP ′′p (x, ~x, z, y) ∗ Ir(tkα(~e, y)) ∗ Q1(x, ~x, z, y)MρA ∗ r) for some y ∈ Y (x) and z ∈ Z. Then,

w′ = w′′ ◦ w′ where

w′ ∈

LIr(tkα(~e, y))MρA ∗~ α′∈RId
α′ 6=α

rw(α′)=(k,−,−)

LIr(rw(α′), α′, βw(α′))MρA


and w′′ ∈ (LP ′′p (x, ~x, z, y) ∗Q1(x, ~x, z, y)MρA′ ∗ r).

Let w′ = (rw′′ , hw′′ , bw′′ , γw′′ , βw′′ [α 7→ z], dw′′ [α 7→ (x, z)]).

Then, by the guarantee, w′ ∈ (LP ′′p (x, z, y) ∗ tkα(~e, y) ∗ Q1(x, ~x, z, y)MρA′ ∗ r) and by construction

Tw′Uk+1;A′ = Tw′Uk;A.

• w′ ∈ (LP ′′p (x, ~x, z, y) ∗ Ir(tkα(~e, x)) ∗ Q2(x, ~x, z)MρA ∗ r) for some y ∈ Y (x) and z ∈ Z. Then,

w′ = w′′ ◦ w′ where

w′ ∈

LIr(tkα(~e, x))MρA ∗~ α′∈RId
α′ 6=α

rw′ (α′)=(k,−,−)

LIr(rw(α′), α′, βwα
′)MρA


and w′′ ∈ (LP ′′p (x, ~x, z, y) ∗Q2(x, ~x, z)MρA′ ∗ r).

Let w′ = (rw′′ , hw′′ , bw′′ , γw′′ , βw′′ , dw′′ [α 7→ �]).

Then, by the guarantee, w′ ∈ (LP ′′p (x, ~x, z, y) ∗ tkα(~e, x) ∗ Q2(x, ~x, z)MρA′ ∗ r) and by construction

Tw′Uk+1;A′ = Tw′Uk;A.
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By both cases we have that:

a

(
LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA,
L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)
MρA

)A
k

(h) =h′ ∈ Heap

∣∣∣∣∣∣∣
∀r ∈ ViewA.∀w ∈ (LPp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)MρA ∗ r) ∧ h ∈ TwUk;A ∧ ∃w.w Gk;A w

′

∧ h′ ∈ Tw′Uk;A ∧ w′ ∈ (∃y ∈ Y (x). LP ′′p (x, ~x, z, y) ∗ (Ir(t
k
α(~e, y)) ∗Q1(x, ~x, z, y)MρA)

∪ (LIr(tkα(~e, x)) ∗Q2(x, ~x, z)MρA) ∗ r)


⊆

h
′ ∈ Heap

∣∣∣∣∣∣∣∣∣∣
∀r ∈ ViewA′ . ∀w ∈ (LPp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ ∗ r) ∧ h ∈ TwUk+1;A′

∧ ∃w.w Gk+1;A′ w′ ∧ h′ ∈ Tw′Uk+1;A′

∧ w′ ∈ (L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗ (tkα(~e, z) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)MρA′)

∨ (Ltkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �MρA′) ∗ r)


= a

LPp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �MρA′ ,

L∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗
(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

) MρA′


A′

k+1

(h)

Then by definition 61,

R

u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x),

∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

}

��
~

ρ

⊆ R

u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,
∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

α:x∈X Y (x)

k+1

}

��
~

ρ

By lemma 12,R
u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x),

∃y ∈ Y (x). P ′′p (x, ~x, z) ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

}

��
~

ρ
†

⊆

R
u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,
∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

α:x∈X Y (x)

k+1

}

��
~

ρ
†

Then, by lemma 16,

u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x),

∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

}

��
~

ρ

⊆

u

ww
va

∀x ∈ X,~x ∈
−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,
∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

α:x∈X Y (x)

k+1

}

��
~

ρ
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Thus, by definition 52 and CMono,

∃z ∈ Z. a

∀x ∈ X,~x ∈
−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x),

∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

v ∃z ∈ Z. a

∀x ∈ X,~x ∈
−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,
∃y ∈ Y (x). P ′′p (x, ~x, z, y) ∗

(
tkα(y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

α:x∈X Y (x)

k+1

Lemma 105 (UpdateRegion).

A

x ∈ X,~x ∈
−→
X.

〈Pp | Ir(tkα(~e, x)) ∗ P (x, ~x),

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y) |
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)
〉A
k

v

A

x ∈ X,~x ∈
−→
X.〈Pp | tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y) |
(
tkα(~e, y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

) 〉
α:x∈X Y (x),A

k+1

Proof.

A

x ∈ X,~x ∈
−→
X.〈Pp | Ir(tkα(~e, x)) ∗ P (x, ~x),

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y) |
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)〉
A

k

≡ by definition 56

∃pp. a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), Pp ∧ pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀x ∈ X,~x ∈

−→
X. pp ∗ Ir(tkα(~e, x)) ∗ P (x, ~x), p′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x)

)A
k

;Ap′p

t ∃x ∈ X, (y, z) ∈ Y (x)× Z, p′′p. a

pp ∗ Ir(t
k
α(~e, x)) ∗ P (x, ~x),

p′′p ∗
(
Ir(t

k
α(~e, y)) ∗Q1(x, ~x, z, y)

)
∨
(
Ir(t

k
α(~e, x)) ∗Q2(x, ~x, z)

)

A

k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(x, ~x, z, y)

)A
k

·p′′p
·pp

v by lemma 103, lemma 104, Cons, RLevel, AContext, CMono

for the recursive function, then RIEq,AContext,Frame,Cons and CMono, for

the first step, with A′ = α : x ∈ X  Q(x),A
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∃pp. a
(
∀x ∈ X,~x ∈

−→
X.Pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, Pp ∧ pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �

)A′

k+1
;

µA. λPp. ∃p′p. a
(
∀x ∈ X,~x ∈

−→
X. pp ∗ tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �, p′p ∗ Ir(tkα(~e, x)) ∗ P (x, ~x) ∗ α Z⇒ �

)A′

k+1
;Ap′p

t ∃x ∈ X, (y, z) ∈ Y (x)× Z, p′′p.

a

pp ∗ Ir(t
k
α(~e, x)) ∗ P (x, ~x),

p′′p ∗
(
tkα(~e, z) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~x, z) ∗ α Z⇒ �

)

A′

k+1

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A′

k+1
;Bp′′′p

t a
(
p′′p, Qp(x, ~x, z, y)

)A′

k+1

·p′′p
·pp

≡ by definition 56

A

x ∈ X,~x ∈
−→
X.

〈Pp | tkα(~e, x) ∗ P (x, ~x) ∗ α Z⇒ �,

E

(y, z) ∈ Y (x)× Z.Qp(x, ~x, z, y) |
(
tkα(~e, y) ∗Q1(x, ~x, z, y) ∗ α Z⇒ (x, y)

)
∨
(
tkα(~e, x) ∗Q2(x, ~xz) ∗ α Z⇒ �

) 〉
α:x∈X Y (x),A

k+1

Lemma 106 (OpenRegion).

A
x ∈ X,~x ∈

−→
X.
〈
Pp | Ir(tkα(~e, x)) ∗ P (x, ~x),

E
~y ∈
−→
Y .Qp(~x, ~y) | Ir(tkα(~e, x)) ∗Q(x, ~x, ~y)

〉A
k

≡

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ P (x, ~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | tkα(~e, x) ∗Q(x, ~x, ~y)

〉A
k+1

Proof. By definition 56, RIEq, RLevel and CMono.

Lemma 107 (UseAtomic).

A

x ∈ X,~x ∈
−→
X.
〈
Pp | Ir(tkα(~e, x)) ∗ P (x, ~x) ∗ [G(~e ′)]α ,

E

~y ∈
−→
Y .Qp(~x, ~y) | Ir(tkα(~e, f(x))) ∗Q(x, ~x, ~y)

〉A
k

≡

A

x ∈ X,~x ∈
−→
X.
〈
Pp | tkα(~e, x) ∗ P (x, ~x) ∗ [G(~e ′)]α ,

E

~y ∈
−→
Y .Qp(~x, ~y) | tkα(~e, f(x)) ∗Q(x, ~x, ~y)

〉A
k+1

Proof. By definition 56, RIEq,Frame for the first step, and RUEq, RIEq, RLevel for the recursive

function, and CMono.

Lemma 108 (AFrame).

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∗R′ | P (~x) ∗R(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∗R′ | Q(~x, ~y) ∗R(~x, ~y)

〉A
k

Proof. By definition 56, Frame and CMono.
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Lemma 109 (AWeaken1).

A

~x ∈
−→
X.
〈
Pp | P ′ ∗ P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q′(~x, ~y) ∗Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∗ P ′ | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∗Q′(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. By definition 56, Frame and CMono.

Lemma 110 (Primitive).

a
(
∀~x ∈

−→
X.Pp ∗ P (~x), ∃~y ∈

−→
Y .Qp(~x, ~y) ∗Q(~x, ~y)

)A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. Trivial, using Mumble and Ind.

Lemma 111 (AEElim).

A

x ∈ X,~x ∈
−→
X.
〈
Pp | P (x, ~x),

E

~y ∈
−→
Y . Pp(x, ~x, ~y) | Q(x, ~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | ∃x ∈ X.P (x, ~x),

E

~y ∈
−→
Y .∃x ∈ X.Pp(x, ~x, ~y) | ∃x ∈ X.Q(x, ~x, ~y)

〉A
k

Proof. By EPElim and CMono.

Lemma 112 (EAAtom). If x 6∈ free(Pp) ∪ free(P ) and y 6∈ free(Pp) ∪ free(P ), then

∃y.∃x.
A

~x ∈
−→
X.
〈
Pp | P (~x),

E
~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

≡

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y, ~y ∈
−→
Y .Qp(~x, y, ~y) | ∃x.Q(~x, y, ~y)

〉A
k

Proof. By definition 56, EPAtom and CMono.

Lemma 113 (AStutter).

A

~x ∈
−→
X.
〈
Pp | P (~x), P ′p | P (~x)

〉A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. First,

A

~x ∈
−→
X.
〈
Pp | P (~x), P ′p | P (~x)

〉A
k

;

≡ by definition 56

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X.∃p′′p. a

(
pp ∗ P (~x), p′′p ∗ P (~x)

)A
k

;

µB. λp′′p. ∃p′′′p . a
(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, P

′
p

)A
k

·p′′p
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· pp
v by Frame, UElim, EElim and CMono

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X.∃p′′p. a

(
pp ∗ P (~x), p′′p ∗ P (~x)

)A
k

;

µB. λp′′p. ∃~x ∈
−→
X.∃p′′′p . a

(
∀~x. p′′p ∗ P (~x), p′′′p ∗ P (~x)

)A
k

;Bp′′′p

t a
(
∀~x ∈

−→
X. p′′p ∗ P (~x), P ′p ∗ P (~x)

)A
k

·p′′p
· pp

v by AChoiceComm, AChoiceElim, UnrollR and CMono

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t µB. λp′′p. ∃~x ∈
−→
X.∃p′′′p . a

(
p′′p ∗ P (~x), p′′′p ∗ P (~x)

)A
k

;Bp′′′p

t a
(
∀~x ∈

−→
X. p′′p ∗ P (~x), P ′p ∗ P (~x)

)A
k

·p′′p
· pp

v by Ind, for premiss: α-conversion, EPElim, EElim, AChoiceElim and UnrollR

∃pp. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃~x ∈
−→
X.∃p′p. a

(
pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t a
(
∀~x ∈

−→
X. pp ∗ P (~x), P ′p ∗ P (~x)

)A
k

· pp

Then,

A

~x ∈
−→
X.
〈
Pp | P (~x), P ′p | P (~x)

〉A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v by CMono

∃p. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃~x ∈
−→
X. ∃p′p. a

(
pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t a
(
∀~x ∈

−→
X. pp ∗ P (~x), P ′p ∗ P (~x)

)A
k

· pp;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

≡ by AChoiceComm and RecSeq

∃p. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;
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µA. λpp. ∃~x ∈
−→
X. ∃p′p. a

(
pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t a
(
∀~x ∈

−→
X. pp ∗ P (~x), P ′p ∗ P (~x)

)A
k

;

A

~x ∈
−→
X.
〈
P ′p | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

· pp
v by lemma 101 and CMono

∃p. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃~x ∈
−→
X. ∃p′p. a

(
pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t

A

~x ∈
−→
X.
〈
pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

· pp
v by Ind, for premiss: lemma 101, CMono and AChoiceEq, Stutter and definition 56

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Lemma 114 (AMumble).

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x), P ′p | P ′(~x)

〉A
k

;

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. By Mumble steps in definition 56, create the recursive function for

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

. Then, apply RecSeq.

Lemma 115 (ADisj).

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
t

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∨ P ′p | P (~x) ∨ P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∨Q′p(~x, ~y) | Q(~x, ~y) ∨Q′(~x, ~y)

〉A
k

Proof. First we observe the following:

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
v

∃pp, p′′p. a
(
∀~x ∈

−→
X.Pp ∗ P (~x), Pp ∧ pp ∗ P (~x)

)A
k

;

µA. λpp. ∃p′p. a
(
∀~x ∈

−→
X. pp ∗ P (~x), p′p ∗ P (~x)

)A
k

;Ap′p

t ∃~x ∈
−→
X, ~y ∈

−→
Y . a

(
pp ∗ P (~x), p′′p ∗Q(~x, ~y)

)A
k

·pp;
µB. λp′′p. ∃p′′′p . a

(
p′′p, p

′′′
p

)A
k

;Bp′′′p

t a
(
p′′p, Qp(~x, ~y)

)A
k

·p′′p

Each recursive function above is structurally similar to the recursive function of a Hoare specification

statement according to lemma 7. Thus we proceed as in lemma 126.
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Lemma 116 (AConj).

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k
u

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp ∧ P ′p | P (~x) ∧ P ′(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) ∧Q′p(~x, ~y) | Q(~x, ~y) ∧Q′(~x, ~y)

〉A
k

Proof. Similarly to lemma 115.

Lemma 117 (ACons). If Pp ⇒ P ′p, and ∀~x ∈
−→
X.P (~x) ⇒ P ′(~x), and ∀~x ∈

−→
X, ~y ∈

−→
Y .Q′p(~x, ~y) ⇒

Qp(~x, ~y), and ∀~x ∈
−→
X.Q′(~x, ~y)⇒ Q(~x, ~y), then

A

~x ∈
−→
X.
〈
P ′p | P ′(~x),

E

~y ∈
−→
Y .Q′p(~x, ~y) | Q′(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

Proof. By definition 56, Cons and CMono.

Lemma 118 (Subst1). If f : X ′ → X, then

A

x ∈ X,~x ∈
−→
X.
〈
Pp | P (~x),

E

y ∈ Y (x), ~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

x′ ∈ X ′, ~x ∈
−→
X.
〈
Pp | P (f(x′), ~x),

E

y ∈ Y (f(x′)), ~y ∈
−→
Y .Qp(f(x′), y, ~y) | Q(f(x′), y, ~y)

〉A
k

Proof. Directly from the premiss and definition 56.

Lemma 119 (Subst2). If fx : Y ′(x)→ Y (x), then

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y′ ∈
−−−→
Y ′(x), ~y ∈

−→
Y .Qp(~x, fx(y′), ~y) | Q(~x, fx(y′), ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

y ∈ Y (x), ~y ∈
−→
Y .Qp(~x, y, ~y) | Q(~x, y, ~y)

〉A
k

Proof. Directly from the premiss and definition 56.

Lemma 120 (ARLevel). If k1 ≤ k2, then

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k1

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k2

Proof. By RLevel on definition 56.

Lemma 121 (AAContext). If α 6∈ A, then

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉A
k

v

A

~x ∈
−→
X.
〈
Pp | P (~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y)

〉α:x∈X Y (x),A

k

Proof. By AContext on definition 56.

Lemma 122 (EElimHoare Proof). The EElimHoare refinement law holds.
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Proof. By definition 57, AChoiceComm, CMono, UnrollR, EElim, EAChoiceDst.

B.5. Proofs of Hoare-Statement Refinement Laws

Lemma 123 (Seq). If φ v I ` {P, R}Ak and ψ v I ` {R, Q}Ak , then φ;ψ v I ` {P, Q}Ak .

Proof. Follows directly from the premisses, definition 57, AStutter and CMono.

Lemma 124.
I ` {P, Q}Ak ≡ ∃p. a(P ∗ I, P ∧ p ∗ I)Ak ;

µA.λp. ∃p′. a(p ∗ I, p′ ∗ I)Ak ;Ap′

t a(p ∗ I, Q ∗ I)Ak
·p

Proof. Similarly to lemma 7.

Lemma 125 (Disjunction). If φ v I ` {P1, Q1}Ak and ψ v I ` {P2, Q2}Ak , then

φ t ψ v I ` {P1 ∨ P2, Q1 ∨Q2}Ak .

Proof.

φ t ψ v by CMono

I ` {P1, Q1}Ak t I ` {P2, Q2}Ak
v by lemma 124, lemma 6, FApplyElimRec, AChoiceComm and CMono(

a(P1 ∗ I, Q1 ∗ I)Ak
t ∃p′. a(P1 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1}Ak

)
t

(
a(P2 ∗ I, Q2 ∗ I)Ak
t ∃p′. a(P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q2}Ak

)
v by AChoiceAssoc, EAChoiceDst and CMono

a(P1 ∗ I, Q1 ∗ I)Ak t a(P2 ∗ I, Q2 ∗ I)Ak

t ∃p′.
(
a(P1 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1}Ak

)
t
(
a(P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q2}Ak

)
v by PDisjunction, Cons and CMono

a(P1 ∨ P2 ∗ I, Q1 ∨Q2 ∗ I)Ak

t ∃p′.
(
a(P1 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1}Ak

)
t
(
a(P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q2}Ak

)
v by HCons and CMono

a(P1 ∨ P2 ∗ I, Q1 ∨Q2 ∗ I)Ak

t ∃p′.
(
a(P1 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1 ∨Q2}Ak

)
t
(
a(P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1 ∨Q2}Ak

)
v by AChoiceDstR and CMono

a(P1 ∨ P2 ∗ I, Q1 ∨Q2 ∗ I)Ak

t ∃p′.
(
a(P1 ∗ I, p′ ∗ I)Ak t a(P2 ∗ I, p′ ∗ I)Ak

)
; I ` {p′, Q1 ∨Q2}Ak

v by PDisjunction, Cons and CMono

a(P1 ∨ P2 ∗ I, Q1 ∨Q2 ∗ I)Ak
t ∃p′. a(P1 ∨ P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1 ∨Q2}Ak
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v by AChoiceComm, FApplyElimRec, lemma 6 and lemma 124

I ` {P1 ∨ P2, Q1 ∨Q2}Ak

Lemma 126 (Conjunction). If φ v I ` {P1, Q1}Ak and ψ v I ` {P2, Q2}Ak , then

φ u ψ v I ` {P1 ∧ P2, Q1 ∧Q2}Ak .

Proof. Similarly to lemma 127.

Lemma 127 (Parallel). If φ v I ` {P1, Q1}Ak and ψ v I ` {P2, Q2}Ak , then

φ ‖ ψ v I ` {P1 ∗ P2, Q1 ∗Q2}Ak .

Proof. First we show the following:

I ` {P1 ∗ P2, Q1 ∗Q2}Ak
≡ by lemma 124 and lemma 6

a(P1 ∗ P2 ∗ I, Q1 ∗Q2 ∗ I)Ak
t ∃p′. a(P1 ∗ P2 ∗ I, p′ ∗ I)Ak ; I ` {p′, Q1 ∗Q2}Ak

w by AChoiceElim

a(P1 ∗ P2 ∗ I, Q1 ∗Q2 ∗ I)Ak

≡ by Stutter and Ind

∃p. a(P1 ∗ P2 ∗ I, (P1 ∗ P2) ∧ p ∗ I)Ak ;(
µA. λp. a(p ∗ I, Q1 ∗Q2 ∗ I)Ak tAp

)
p

Next, for the recursive function derived above:

a(P1 ∗ P2 ∗ I, Q1 ∗Q2 ∗ I)Ak t
(
I ` {P1, Q1}Ak ‖ I ` {P1, Q2}Ak

)
w by AChoiceElim

I ` {P1, Q1}Ak ‖ I ` {P1, Q2}Ak

Thus, by Ind and Trans:

I ` {P1, Q1}Ak ‖ I ` {P1, Q2}Ak v I ` {P1 ∗ P2, Q1 ∗Q2}Ak

The result follows by the premisses, CMono and Trans.

Lemma 128 (HFrame). I ` {P, Q}Ak v I ` {P ∗R, Q ∗R}
A
k
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Proof. By definition 57, AFrame and CMono.

Lemma 129 (EElimHoare).

EElimHoare

I ` {P, Q}Ak v I ` {∃y. P, ∃y.Q}
A
k

Proof. By definitions 57 and 56, EPElim and CMono.

Lemma 130 (EHAtom). If x 6∈ free(P ) ∪ free(I), then

∃x. I ` {P, Q}Ak ≡ I ` {P, ∃x.Q}
A
k

Proof. By definition 57 and EAAtom.

Lemma 131 (AWeaken2 Proof).

A

~x ∈
−→
X.
〈
Pp | P (~x) ∗ I(~x),

E

~y ∈
−→
Y .Qp(~x, ~y) | Q(~x, ~y) ∗ I(~x)

〉A
k

v ∃~x ∈
−→
X. I(~x) `

{
Pp ∗ P (~x), ∃~y ∈

−→
Y .Qp(~x, ~y) ∗Q(~x, ~y)

}A
k

Proof. Direct, by definition 57 and AWeaken1.

Lemma 132 (HCons). If P ⇒ P ′ and Q′ ⇒ Q, then I ` {P ′, Q′}Ak v I ` {P, Q}
A
k .

Proof. By definition 57 and ACons.

Lemma 133 (HRLevel). If k1 ≤ k2, then {P, Q}Ak1 v {P, Q}
A
k2

.

Proof. By definition 57 and ARLevel.

Lemma 134 (HAContext). If α 6∈ A, then {P, Q}Ak v {P, Q}
α:x∈X Y (x),A
k .

Proof. By definition 57 and AAContext.
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C. Fault-Tolerant Views Framework

C.1. General Framework and Soundness

We construct a general reasoning framework about host failures on top of the Views framework [35].

The framework encodes program logic judgements with fault-conditions, s ` {p}C {q}, into judge-

ments of the Views’ framework program logic. Then, soundness of our framework depends on sound-

ness of the encoded logic and on properties required by the encoding itself.

The framework’s construction follows the same structure as that of Views, even sharing exactly the

same parameters in some cases. We will be explicit as to with which parameters we instantiate the

underlying Views framework.

Parameter 1 (Atomic Commands). A set of (syntactic) atomic commands Atom, ranged over by a.

This is directly passed into Views as the same parameter (parameter A).

Here, the word “atomic” is used in the sense of “primitive”. These commands inhibit a primitive

programming language, which includes parallel composition, C1||C2, non-deterministic choice, C1+C2,

iteration, C∗, and sequential composition C1;C2. Traditional control flow structures of imperative

programming languages, such as if− then− else and while loops, can be encoded into this basic

language by combining the primitives with additional atomic commands.

Parameter 2 (Volatile Machine States). Assume a set of volatile machine states, Volatile, ranged

over by v. There is an exceptional host-failed state,  ∈ Volatile, which represents the effect of a

host failure on the volatile state.

Parameter 3 (Durable Machine States). Assume a set of durable machine states, Durable, ranged

over by d.

Definition 64 (Machine States). The set of machine states, S, ranged over by s, is defined as:

S = Volatile×Durable

This is passed into Views as the “machine states” parameter (parameter B).

Parameter 4 (Interpretation of Atomic Commands). Assume a function [[−]] : Atom → S → P(S)

that associates each atomic command with a non-determistic state transformer. (Where necessary, we

lift non-deterministic state transformers to sets of states.)

This is directly passed into Views as the same parameter (parameter C).

The following two properties, are properties of our host failure reasoning framework and not of

Views. They are essential to prove soundness of the logic’s inference rules based on the rules of the

Views program logic.
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Property 1 (Host Failure). For every a ∈ Atom, (v, d) ∈ dom([[a]]) with v 6=  

∃d′ ∈ Durable. (  , d) ∈ [[a]]((v, d))

This property ensures that every atomic command will (potentially) host-fail if starting in a non-

host-failed state. Thus, any program made up of such atomic commands will non-deterministically

experience a host-failure at any point in time.

Property 2 (Host Failure Propagation). For every a ∈ Atom, d ∈ Durable

[[a]]((  , d)) =
{

(  , d)
}

This property ensures that once a host-failure occurs, any subsequent atomic command is forced to

remain in a host-failed state.

Parameter 5 (Volatile and Durable Views). Assume a volatile view monoid (Viewv, ∗v, uv) and a

durable view monoid (Viewd, ∗d, ud), where  6∈ Viewv. The view monoid (View, ∗, u) is defined as

the product lifting of the volatile and durable view monoids.

Definition 65 (View Monoid Encoding). Let (View

 ,v
, ∗

 ,v
, uv) be the view monoid where, View

 ,v
=

Viewv ∪
{

 

}
and for every p, q ∈ View

 ,v

p ∗

 ,v
q =

  if p =  ∨ q =  

p ∗v q otherwise

The view monoid (View

 

, ∗

 

, u

 

) is defined as the product lifting of the view monoids View

 ,v
and

Viewd.

This is passed on to Views as the “views commutative semi-group” parameter (parameter D). To

avoid confusion from this point forwards, we refer to views as elements of the carrier set of the monoid,

and to Views as the Views framework.

Parameter 6 (Volatile and Durable Reification). Assume the volatile view reification function T−Uv :

Viewv → P(Volatile). Assume the durable view reification function T−Ud : Viewd → P(Durable).

Definition 66 (Reification Encoding). The reification function T−U

 

: View

 

→ P(S) is defined by:

T(pv, pd)U  

=

TpvUv × TpdUd if pv 6=  {

 

}
× TpdUd otherwise

Definition 66 is passed on to Views as the “reification” parameter (parameter F).

In order to encode the concept that a command may execute normally or may experience a host-

failure, we require a notion of disjunction for the views of definition 65. Following is the formal

definition as a parameter, and the associated properties required by Views.

Parameter 7 (Disjunction). Assume a function
∨

: (I → View) → View satisfying the following

properties:
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• Join Distributivity: p ∗
∨
i∈I qi =

∨
i∈I(p ∗ qi)

• Join Morphism: T
∨
i∈I piU =

⋃
i∈ITpiU

Definition 67 (Disjunction Encoding). The function
∨

 

: (I → View

 

) → View

 

that extends
∨

s.t. for every i ∈ I, j ∈ J with pi =  and pj 6=  ∨

 ,k∈I∪J

pk =
{

 

}
∪
∨
j∈J

pj

By the properties of set union and join distributivity and morphism of
∨

,
∨

 

also satisfies join dis-

tributivity and morphism.

This is passed on to Views as the “view combination” parameter (parameter N).

We associate axioms with each atomic command.

Parameter 8 (Axiomatisation). Assume a set of axioms Axioms ⊆ Viewd×View×Atom×View.

Definition 68 (Axiomatisation Encoding). For every (s, p, a, q) ∈ Axioms, (p, a, q∨(  , s)) ∈ Axioms

 

.

This is passed on to View as the “axiomatisation” parameter (parameter E).

Definition 69 (Entailment). The entailment relation �⊆ View×View, is defined by:

p � q
def⇐⇒ ∃s. (s, p, id, q) ∈ Axioms

The entailment relation �d⊆ Viewd ×Viewd, is defined by:

d � d′
def⇐⇒ ∃s, v, v′. (s, (v, d), id, (v′, d′)) ∈ Axioms

Parameter 9 (Recovery programs). A function recovers : Comm → Comm associating programs

to recovery programs. The function must be such that: ∀CR ∈ codom(Comm). recovers(CR) = CR.

That is, the recovery of a recovery is the same recovery.

Lemma 135 (Host Failure Propagation Axiom). The following axiom holds in the program logic of

View

 

: {
(  , s)

}
C
{

(  , s)
}

Proof. From property 2, for all a ∈ Atom, ((  , s), a, (  , s)) ∈ Axioms

 

. The conclusion follows by

induction on C.

Next we define how judgements of our program logic are encoded into Views judgements, define

the rules of our logic and justify them by using the encoding and Views proof rules. We distinguish

between the rules of our logic and rules of Views by pre-pending V in the name of a Views proof rule.

Definition 70 (Program Logic). Judgements are of the form: s ` {p}C {q}, where p, q ∈ View,

s ∈ Viewd and C ∈ Comm, and are encoded in views as {p}C
{
q ∨ (  , s)

}
. The proof rules for these

judgements and their justification are as follows:

Axiom

(s, p, a, q) ∈ Axioms

s ` {p} a {q}
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Proof. From the axiom encoding (def 68) and the axiom rule of the Views program logic.

Frame

s ` {p}C {q}

s ∗d rd ` {p ∗ (rv, rd)}C {q ∗ (rv, rd)}

Proof. Assume the premiss holds. The premiss is encoded in Views as:

{p}C
{
q ∨ (  , s)

}
Then, apply the frame rule of the views program logic with frame (rv, rd) (note rv 6=  ):

VFrame

{p}C
{
q ∨ (  , s)

}{
p ∗

 

(rv, rd)
}
C
{
q ∨ (  , s) ∗  (rv, rd)

}
From the conclusion we have: {

p ∗

 

(rv, rd)
}
C
{
q ∨ (  , s) ∗  (rv, rd)

}
⇐⇒{

p ∗

 

(rv, rd)
}
C
{

(q ∗

 

(rv, rd)) ∨ ((  , s) ∗  (rv, rd))
}

⇐⇒{
p ∗

 

(rv, rd)
}
C
{

(q ∗

 

(rv, rd)) ∨ (  ∗  ,v rv, s ∗d rd)
}

⇐⇒{
p ∗

 

(rv, rd)
}
C
{

(q ∗

 

(rv, rd)) ∨ (  , s ∗d rd)
}

⇐⇒

{p ∗ (rv, rd)}C
{

(q ∗ (rv, rd)) ∨ (  , s ∗d rd)
}

⇐⇒

s ∗d rd ` {p ∗ (rv, rd)}C {q ∗ (rv, rd)}

which is the conclusion of our frame rule.

s ` {p} skip {p}

Proof. From the encoding of s ` {p} skip {p} and application of the Views rule for skip.

Choice

s ` {p}C1 {q} s ` {p}C2 {q}

s ` {p}C1 + C2 {q}
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Proof. Assume the premisses hold. The premisses are encoded into views as:

{p}C1

{
q ∨ (  , s)

}
and {p}C2

{
q ∨ (  , s)

}
Applying the Views rule for C1+C2 we get the conclusion {p}C1 + C2

{
q ∨ (  , s)

}
which is the encoding

of the conclusion of our rule.

Iter

s ` {p}C {p}

s ` {p}C∗ {p}

Proof. Assume the premiss holds. The premiss is encoded as {p}C
{
p ∨ (  , s)

}
. Then,

p �

 

p ∨ (  , s)

{p}C
{
p ∨ (  , s)

} {
(  , s)

}
C
{

(  , s)
}{

p ∨ (  , s)
}
C
{
p ∨ (  , s)

} VDisj

{
p ∨ (  , s)

}
C∗
{
p ∨ (  , s)

} VIter

{p}C∗
{
p ∨ (  , s)

} VCons

The final conclusion in the derivation is the encoding of the conclusion of our rule.

Seq

s ` {p}C1 {r} s ` {r}C2 {q}

s ` {p}C1;C2 {q}

Proof. Assume the premisses hold. They are encoded as {p}C
{
r ∨ (  , s)

}
and {r}C

{
q ∨ (  , s)

}
.

Then,

{p}C1

{
r ∨ (  , s)

} VDisj
{r}C2

{
q ∨ (  , s)

} {
(  , s)

}
C2

{
(  , s)

}{
r ∨ (  , s)

}
C2

{
q ∨ (  , s)

}
{p}C1;C2

{
q ∨ (  , s)

} VSeq

The final conclusion in the derivation is the encoding of the conclusion of our rule.

Para

s1 ` {p1}C1 {q1} s2 ` {p2}C2 {q2} q1 = (v1, d1) q2 = (v2, d2)

(s1 ∗d s2) ∨ (s1 ∗d d2) ∨ (s2 ∗d d1) ` {p1 ∗ p2}C1 ‖ C2 {q1 ∗ q2}

Proof. Assume the premisses hold. The premisses are encoded as:
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{p1}C1

{
q1 ∨ (  , s1)

}
and {p2}C2

{
q2 ∨ (  , s2)

}
. Then,

{p1}C1

{
q1 ∨ (  , s1)

}
{p2}C2

{
q2 ∨ (  , s2)

}{
p1 ∗ p2

}
C1 ‖ C2{

(q1 ∨ (  , s1)) ∗ (q2 ∨ (  , s2))
}

VPara

q1 = (v1, d1) q2 = (v2, d2)

{p1 ∗ p2}C1 ‖ C2

{
(q1 ∗ q2) ∨ (  , (s1 ∗d s2) ∨ (s1 ∗d d2) ∨ (s2 ∗d d1))

} VCons-post

The final conclusion in the derivation is the encoding of the conclusion of our rule.

Cons-pre

p � p′ s `
{
p′
}
C {q}

s ` {p}C {q}

Cons-post

q′ � q s ` {p}C
{
q′
}

s ` {p}C {q}

Cons-fault

s′ � s s′ ` {p}C {q}

s ` {p}C {q}

Proof. The first rule is justified by the Views encoding and applying precondition strengthening. The

second and third rules is justified by the Views encoding and applying postcondition weakening.

Disj

∀i ∈ I. s ` {pi}C {q}

s `
{∨
{pi}i∈I

}
C {q}

Proof. The rule is justified by encoding the premiss and conclusions and the disjunction rule of Views.

Recovery-Abstraction

s ` {(pv, pd)}C {(qv, qd)} s ` {(uv, s)}CR
{

(q′v, r)
}

CR recovers C

r ` {(pv, pd)} [C] {(qv, qd)}

Proof. First we encode [C] as follows:

[C] , C; (norm+ ((pf∅;CR)+;norm; pf

 

))

where C+ , C;C∗ and pf∅, norm, pf  

are commands (not available to clients) with the following
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axiomatic semantics:

{
p ∨ (  , s)

}
norm {p}{

p ∨ (  , s)
}
pf∅ {(uv, s)}

{(v, d)} pf

 

{
(  , d)

}
Note that because the commands are not available to the client, as in they are only used within the

encoding into Views, properties 1 and 2 can be ignored.

Assume the premisses hold. The first two premisses are encoded as:

{(pv, pd)}C
{

(qv, qd) ∨ (  , s)
}

{(uv, s)}CR
{

(q′v, r) ∨ (  , s)
}

Then, we have the following derivations:{
(qv, qd) ∨ (  , s)

}
norm {(qv, qd)} (qv, qd) � (qv, qd) ∨ (  , r){

(qv, qd) ∨ (  , s)
}
norm

{
(qv, qd) ∨ (  , r)

} VCons-post

{
(q′v, r) ∨ (  , s)

}
norm

{
(q′v, r)

}
{

(q′v, r)
}
pf

 

{
(  , r)

}
(  , r) �  

(qv, qd) ∨ (  , r){
(q′v, r)

}
pf

 

{
(qv, qd) ∨ (  , r)

} VCons-post

{
(q′v, r) ∨ (  , s)

}
norm; pf

 

{
(qv, qd) ∨ (  , r)

} VSeq

{
(q′v, r) ∨ (  , s)

}
pf∅ {(uv, s)} {(uv, s)}CR

{
(q′v, r) ∨ (  , s)

}{
(q′v, r) ∨ (  , s)

}
pf∅;CR

{
(q′v, r) ∨ (  , s)

} VSeq

{
(q′v, r) ∨ (  , s)

}
(pf∅;CR)∗

{
(q′v, r) ∨ (  , s)

} VIter

{
(qv, qd) ∨ (  , s)

}
pf∅ {(uv, s)}

{(uv, s)}CR
{

(q′v, r) ∨ (  , s)
}{

(qv, qd) ∨ (  , s)
}

pf∅;CR{
(q′v, r) ∨ (  , s)

}
VSeq

{
(q′v, r) ∨ (  , s)

}
(pf∅;CR)∗

{
(q′v, r) ∨ (  , s)

}{
(qv, qd) ∨ (  , s)

}
(pf∅;CR); (pf∅;CR)∗

{
(q′v, r) ∨ (  , s)

} VSeq

{
(qv, qd) ∨ (  , s)

}
(pf∅;CR)+

{
(q′v, r) ∨ (  , s)

} C+
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{
(qv, qd) ∨ (  , s)

}
(pf∅;CR)+

{
(q′v, r) ∨ (  , s)

} {
(q′v, r) ∨ (  , s)

}
norm; pf

 

{
(qv, qd) ∨ (  , r)

}
{

(qv, qd) ∨ (  , s)
}

(pf∅;CR)+; (norm; pf

 

)
{

(qv, qd) ∨ (  , r)
} VSeq

{
(qv, qd) ∨ (  , s)

}
norm

{
(qv, qd) ∨ (  , r)

}{
(qv, qd) ∨ (  , s)

}
(pf∅;CR)+;norm; pf

 

{
(qv, qd) ∨ (  , r)

}
{

(qv, qd) ∨ (  , s)
}
norm+ ((pf∅;CR)+;norm; pf

 

)
{

(qv, qd) ∨ (  , r)
} VChoice

{(pv, pd)}C
{

(qv, qd) ∨ (  , s)
}{

(qv, qd) ∨ (  , s)
}
norm+ ((pf∅;CR)+;norm; pf

 

)
{

(qv, qd) ∨ (  , r)
}

{(pv, pd)}C; (norm+ ((pf∅;CR)+;norm; pf
 

))
{

(qv, qd) ∨ (  , r)
} VSeq

{(pv, pd)} [C]
{

(qv, qd) ∨ (  , r)
} [C]

The final conclusion in the derivation is the encoding of the conclusion of our rule.

When properties 1 and 2 hold, then the soundness of our program logic depends on the soundness of

its encoding in Views. This is established by the “axiom soundness” property of Views (property G)

for the encoded axioms of definition 68. When all the parameters of the framework are instantiated

and the aforementioned three properties established, then the following theorem holds.

Theorem 7 (Soundness). If the judgement s ` {p}C {q} is derivable in the program logic, then if we

run the program C from state reified from view p, then C will either not terminate, or terminate in

state reified from view q, or a host failure will occur destroying any volatile state and the remaining

durable state (after potential recoveries) will reify from s.

C.2. FTCSL

We now encode FTCSL into the general framework. The encoding is based on using pairs of volatile

and durable views to account for local state and the shared resource invariant. Let Volatile be the

volatile machine states (parameter 2) and Durable be the durable machine states (parameter 3).

Let (Viewv, ∗v, uv) and (Viewd, ∗d, ud) be (disjoint concurrent separation logic) volatile and durable

view monoids respectively.

Definition 71 (FTCSL Volatile and Durable Views). The FTCSL volatile view monoid is:

((Viewv ×Viewv) ] {⊥} , ∗cv, ucv)
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where ucv = (uv, uv), and

(p, i) ∗cv (q, j) =


(p ∗v q, i) if i = j ∨ j = uv

(p ∗v q, j) if i = uv

⊥ otherwise

Similarly, the FTCSL durable view monoid is:

((Viewd ×Viewd) ] {⊥} , ∗cd, ucd)

where ucd = (ud, ud), and

(p, i) ∗cd (p, j) =


(p ∗d q, i) if i = j ∨ j = ud

(p ∗d q, j) if i = ud

⊥ otherwise

We instantiate parameter 5 using the definition above.

Let T−Uv and T−Ud be volatile and durable reifications for Viewv and Viewd respectively.

Definition 72 (FTCSL Volatile and Durable Reification). FTCSL volatile reification is defined as:

T(p, i)Ucv = Tp ∗v iUv T⊥Ucv = ∅

Similarly, FTCSL durable reification is defined as:

T(p, i)Ucd = Tp ∗d iUd T⊥Ucd = ∅

We instantiate parameter 6 with the definition above.

Definition 73 (FTCSL Program Logic). Judgements of FTCSL are of the form:

(jv, jd) ; s ` {(pv, pd)}C {(qv, qd)}

FTCSL judgements are encoded in the general framework as:

(s, jd) ` {((pv, jv), (pd, jd))}C {((qv, jv), (qd, jd))}

The rules of FTCSL are given in figure 9.4 (written using assertions). Sequence, consequence,

frame, parallel and recovery abstraction rules are justified directly by the respective rules of the general

program logic (definition 70) and the judgement encoding.

The atomic rule, written using views, is:

(uv, ud) ; (pd ∗d jd) ∨ (qd ∗d jd) ` {(pv ∗v jv, pd ∗d jd)}C {(qv ∗v jv, qd ∗d jd)}

(jv, jd) ; pd ∨ qd ` {(pv, pd)} 〈C〉 {(qv, qd)}
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Proof. Assume the premiss holds. The premiss is encoded into the general judgement as:

((pd ∗d jd) ∨ (qd ∗d jd), ud) ` {(((pv ∗v jv), uv), ((pd ∗d jd), ud))}C {(((qv ∗v jv), uv), ((qd ∗d jd), ud))}

By the reifications of definition 72, it is clear that:

T(pv ∗v jv, iv)Ucv = T(pv, iv ∗v jv)Ucv
T(pd ∗d jd, id)Ucd = T(pd, id ∗d jd)Ucd

This means, that by moving views between the resource invariant and the local state does not change

the underlying machine states. We use this to justify the following axioms:

((pd ∗d jd), id) ` {(((pv ∗v jv), iv), ((pd ∗d jd), id))} id {((pv, (iv ∗v jv)), (pd, (id ∗d jd)))}

(pd, (id ∗d jd)) ` {((pv, (iv ∗ jv)), (pd, (id ∗d jd)))} id {(((pv ∗v jv), iv), ((pd ∗d jd), id))}

(jd, pd ∨ qd) ` {(uv, (ud, (pd ∗d qd) ∨ (qd ∗d jd)))} id {(uv, (jd, pd ∨ qd))}

The axioms justify the following entailments:

((pv, jv), (pd, jd)) � (((pv ∗v jv), uv), ((pd ∗d jd), ud))

(((qv ∗v jv), uv), ((qd ∗d jd), ud)) � ((qv, jv), (qd, jd))

(ud, (pd ∗d jd) ∨ (qd ∗d jd)) �d (pd ∨ qd, jd)

Then, we apply the consequence rules:

(ud, (pd ∗d jd) ∨ (qd ∗d jd)) `

{
(((pv ∗v jv), uv), ((qd ∗d jd), ud))

}
C{

(((qv ∗v jv), uv), ((qd ∗d jd), ud))
}

((pv, jv), (pd, jd)) � (((pv ∗v jv), uv), ((pd ∗d jd), ud))
(((qv ∗v jv), uv), ((qd ∗d jd), ud)) � ((qv, jv), (qd, jd))

(ud, (pd ∗d jd) ∨ (qd ∗d jd)) �d (pd ∨ qd, jd)

(pd ∨ qd, jd) ` {((pv, jv), (pd, jd))} 〈C〉 {((qv, jv), (qd, jd))}
Cons-pre,post,fault

The conclusion of the above derivation is the encoding of the atomic rule’s conclusion.

Next, the share rule, written using views, is:

(jv ∗v rv, jd ∗d rd) ; s ` {(pv, pd)}C {(qv, qd)}

(jv, jd) ; s ` {(pv ∗v rv, pd ∗d rd)}C {(qv ∗v rv, qd ∗d rd)}

Proof. Assume the premiss holds. The premiss is encoded into FTV as:

(s, jd ∗d rd) ` {((pv, jv ∗v rv), (pd, jd ∗d rd))}C {((qv, jv ∗v rv), (qd, jd ∗d rd))}
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By the same argument as in the atomic rule, the following entailments hold:

((pv ∗v rv, jv), (pd ∗d rd, jd)) � ((pv, jv ∗v rv), (pd, jd ∗d rd))

((qv, jv ∗v rv), (qd, jd ∗d rd)) � ((qv ∗v rv, jv), (qd ∗d rd, jd))

(s, jd ∗d rd) �d (s ∗d rd, jd)

Then, by application of the consequence rules:

(s, jd ∗d rd) ` {((pv, jv ∗v rv), (pd, jd ∗d rd))}C {((qv, jv ∗v rv), (qd, jd ∗d rd))}
((pv ∗v rv, jv), (pd ∗d rd, jd)) � ((pv, jv ∗v rv), (pd, jd ∗d rd))

((qv, jv ∗v rv), (qd, jd ∗d rd)) � ((qv ∗v rv, jv), (qd ∗d rd, jd))(s, jd ∗d rd) �d (s ∗d rd, jd)

(s ∗d rd, jd) ` {((pv ∗v rv, jv), (pd ∗d rd, jd))}C {((qv ∗v rv, jv), (qd ∗d rd, jd))}
Cons-pre,post

The conclusion of the above derivation is the encoding of the atomic rule’s conclusion.

Given the parameters to the general framework described here, including disjunction (parameter 7)

and recovery programs 9, and with the required properties established, we justify soundness of FTCSL

by the soundness of the general framework.

Theorem 8 (FTCSL Soundness). If the judgement (jv, jd) ; s ` {(pv, pd)}C {(qv, qd)} is derivable

in the program logic, then if we run the program C from an initial state that is reified from view

(pv ∗v jv, pd ∗d jd), then C will either not terminate, or it will terminate in a state reified from view

(qv ∗v jv, qd ∗d jd), or a host failure will occur destroying any volatile state and remaining durable state

(after potential recoveries) will reify from s ∗d jd. The view (jv, jd) is preserved by every step of C.
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