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Abstract. A key difficulty in verifying shared-memory concurrent pro-
grams is reasoning compositionally about each thread in isolation. Existing
verification techniques for fine-grained concurrency typically require rea-
soning about either the entire shared state or disjoint parts of the shared
state, impeding compositionality. This paper introduces the program logic
CoLoSL, where each thread is verified with respect to its subjective view
of the global shared state. This subjective view describes only that part of
the state accessed by the thread. Subjective views may arbitrarily overlap
with each other, and expand and contract depending on the resource
required by the thread. This flexibility gives rise to small specifications
and, hence, more compositional reasoning for concurrent programs. We
demonstrate our reasoning on a range of examples, including a concurrent
computation of a spanning tree of a graph.

1 Introduction

A key difficulty in verifying properties of fine-grained concurrent programs is being
able to reason compositionally about each thread in isolation, even though in
reality the correctness of the whole system is the collaborative result of intricately
intertwined actions of the threads. Such compositional reasoning is essential for:
verifying large concurrent systems, since it allows them to be verified component-
wise; verifying library code and incomplete programs, since one does not need to
know about the context of execution; and replicating a programmer’s intuition
about why their implementations are correct, since their informal arguments are
typically kept local and do not bring the whole system into the reasoning.

Rely-guarantee [16] and various combinations of rely-guarantee and separation
logic reasoning [26,9,10,7,23,3] achieve compositional reasoning for increasingly
difficult inter-thread interactions. However, we believe that, despite substantial
progress, there are many examples where the specifications and proofs are not as
concise as they might be; they are either too coarse or too contrived. We explore
a different approach, introducing the program logic CoLoSL, using which we
can give small specifications and proofs which correspond to the programmer’s
intuition of what shared resource is required by the thread.

Small specifications were emphasised in the work of O’Hearn, Reynolds and
Yang on separation logic [19]. The original separation logic [21,15] achieves local,
compositional reasoning for sequential heap-manipulating programs by splitting
the heap into disjoint heaplets for describing the local resources required by a
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program. Compositionality then rests on two powerful mechanisms: a program
can be specified using only those resources that it actually accesses; and this
specification can be simply reused in any context that contains these resources. By
making the specification as small as possible, we can ensure that it can be reused
in a large set of possible contexts using the frame rule. This plays an important
role in achieving scalable compositional reasoning, as each block of code can be
proved in isolation and its small specification reused in larger contexts.

Concurrent separation logic extends this compositional reasoning to concurrent
programs using the disjoint concurrency rule, where individual threads use both
local resources private to the thread as well as static shared resources, which can
be accessed by all threads through critical sections. Since then, there have been
many extensions combining rely-guarantee reasoning with ideas from concurrent
separation logic to reason about fine-grained concurrency: RGSep [26] introduced
local resource and shared disjoint regions which are stable with respect to a static
interference relation stating how the current thread and the environment can
affect the region; CAP [7] and its extensions [24,23,3] in addition abstract the
regions. This work has achieved substantial success; see the related work section
for more details. Yet, we believe these approaches are not always able to provide
small specifications for concurrent programs, impeding compositionality.

The problem is due to the rigid nature of the shared disjoint regions and
their static interference, which limits how we can work with a concurrent data
structure. A disjoint region typically either describes the entire data structure
such as a linked list, or contains individual components of the data structure
such as the nodes of a linked list. However, threads may have shared access
to arbitrary parts of the data structure, which cannot be directly expressed in
the reasoning. The interference associated with the region is static in that it is
defined when the region is created and is fixed throughout its entire lifetime.
However, threads having access to parts of a shared region need only know about
the interference on those parts. In addition, it is not always possible to predict all
future interactions associated with a shared region at the time of creation. Just
as the original separation logic uses the frame rule to obtain small specifications
for the local state, we seek an analogous framing mechanism on both the shared
resource and its interference to obtain small specifications of the shared state.

For example, consider a linked list consisting of n+1 nodes accessed concur-
rently by n threads where the ith thread requires access to the ith and (i+1)st
nodes. Current approaches cannot provide a small specification for each thread
which captures just these two shared nodes and their interference.1 Now consider
a program whose threads manipulate subgraphs of a graph, such as a recursive
concurrent spanning tree algorithm. Current approaches cannot give small specifi-
cations capturing just the subgraph manipulated by each thread due to intrinsic,
unspecified sharing between subgraphs. Finally, consider a concurrent set imple-
mentation. In CoLoSL it is possible to describe the interference associated with
a new element as it is added to the set. The interference on new elements need

1 In [13], similar problems were encountered in an attempt to provide small specifications
for a doubly-linked list implementation of a concurrent tree.
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not be the same as before and may only be known at the time they are added.
Existing approaches cannot accommodate such dynamic interference relations.

This paper introduces the program logic CoLoSL, which stands for Concurrent
Local Subjective Logic. CoLoSL’s semantic model is based on one global shared
state, and each thread is verified with respect to its partial subjective view of
this state. Each subjective (personalised) view comprises an assertion which
describes parts of the shared global resource used by a thread, and an interference
relation which describes how the thread and the environment may affect these
parts. Subjective views may arbitrarily overlap with each other, with both their
resources and interference expanding and contracting in accordance with what
is required by the thread. Interestingly, this sometimes requires rewriting the
interference relation so that the interference on the smaller state captures the
same information as the interference on the bigger state. This expansion and
contraction of subjective views provides small specifications for individual threads
and local reasoning about a thread’s shared state.

We demonstrate CoLoSL reasoning on a range of examples. The first example
in §2 is Dijkstra’s token ring mutual exclusion algorithm [5]. Regardless of the
size of the ring, we are able to give a small specification to each thread in isolation
such that each proof only mentions resources associated with two of its neighbours.
This means that the proof can be largely reused when the implementation of the
ring is changed to allow dynamic spawning of new participants. In §4, we study
two further examples. The first is a concurrent spanning tree algorithm for graphs,
where threads are recursively spawned on potentially overlapping subgraphs. We
demonstrate that the flexible, overlapping subjective views of CoLoSL are just
what we need. The second is a concurrent set module implemented using a
hand-over-hand list-locking algorithm. Our CoLoSL reasoning for this set module
improves on CAP reasoning [7] in that our small specifications can be dynamically
extended to include other behaviour in future whereas the static CAP interference
must predict all behaviour from the start.

Most of the technical details have been left out due to space constraints, and
are provided in the accompanying technical report [20].

Related work Jones’ rely-guarantee reasoning [16] provided a breakthrough in
compositional reasoning about concurrent programs. It described permitted
interferences between threads using global rely and guarantee relations on one
global shared state. This work is compositional in the sense that the guarantee of
one thread is the rely of another. However, O’Hearn [18] demonstrated that, for
concurrent reasoning to scale, it is important to work with small specifications
based on local state and shared state rather than working with one global state.
In particular, he introduced concurrent separation logic based on thread-local
state and static invariants for the shared state.

Since then, there has been much recent work on compositional reasoning
about fine-grained concurrent algorithms. RGSep [26] combined rely-guarantee
reasoning with separation logic, with the state split into thread-local state
and disjoint shared regions, and global rely-guarantee relations providing the
interference on these regions. Deny-guarantee extends rely-guarantee and RGSep
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with permissions that can turn pieces of interference on or off during the proof
of a program, as would be typically needed in a programming language with fork
and join constructs instead of statically-scoped parallel composition. This has
influenced the capabilities of CAP. CAP reasoning [7] increased compositionality
by, instead of the global rely-guarantee relations, having static interference
relations associated with the disjoint shared regions and capabilities in the
local state for dynamically controlling the permitted interference, and concurrent
abstract predicates for hiding implementation details. Several program logics have
adapted this work to incorporate more abstraction [25], higher-order features [23]
and more flexible capabilities [3]. We believe that all this work has limited
compositional reasoning in the sense that it is only possible to frame off local
state and unused shared regions. It is not possible to frame within regions nor
frame inside the interference relations. (It is, of course, possible to weaken the
region assertion by the logical implication P ›Q⇒ P › true, but this is not the
same as being able to shrink regions and their interference to just work with P .)

Meanwhile, a different breakthrough in compositionality came from Feng’s
local rely-guarantee (LRG) reasoning [10]. The LRG model comprises one global
shared state, with assertions describing disjoint but flexible parts of this state
and rely-guarantee relations determining how the thread and environment can
affect these partial states. With LRG, it is possible to frame off disjoint parts
of shared state and their associated disjoint rely-guarantee relations, but, as
noted by its author, the strong disjointness restrictions make this approach only
applicable for disjoint modules in the code. We took significant inspiration from
LRG, combining the flexibility of the LRG approach with our subjective views
to reason locally about overlapping shared states.

Finally, Fine-grained Concurrent Separation Logic (FCSL) [17] of Nanevski
et al. explores a different notion of region called concurroids. Like the regions
in CAP, concurroids describe disjoint pieces of shared state together with their
static interference. It is therefore not possible to frame within concurroids. The
term “subjectivity” in FCSL refers to the fact that, unlike CAP, concurroids
have three parts: the “joint” part; and the disjoint “self” and “other” parts.
Although FCSL did not influence CoLoSL, it does highlight an interesting point
regarding resource transfer between regions: in CAP, communication between
regions is achieved indirectly via the local state; in FCSL, communication between
concurroids is achieved directly through dangling external transitions; and, in
CoLoSL, communication between compatible subjective views can be achieved
by merging the two views.

2 Informal Development

We sketch a proof of an implementation of Dijkstra’s token ring mutual exclu-
sion algorithm, which pioneered self-stabilising distributed algorithms [5]. Our
proof highlights the main reasoning principles of CoLoSL and results in small
specifications for each participant in the ring. Besides their concision, we show
how small specifications are robust against non-trivial changes to the program.
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Figure 1: Main reasoning principles and rules of CoLoSL.

The algorithm assumes a network of n+1 machines arranged in a ring, with a
designated master machine and n slave machines. Each machine maintains a local
counter and has access to the value of its left neighbour’s counter; the state of the
system consists of all n+1 counters. Starting in an arbitrary state, the network
eventually stabilises to legitimate states [4], with the following global property:
in the ith legitimate state, machines 0 to i−1 (machine 0 being the master) have
some value v+1, and all others have value v. In the ith legitimate state, only the
ith machine (indicated by • below) can make progress: it increments its counter
by 1 and takes the system to the next legitimate state (i+1 modn+1). For a ring
at address x, the ith legitimate state is depicted below (for both i > 0 and i = 0).

x x+1 x+i−1 x+i x+n

v+1 v+1 · · · v+1 v • · · · v

x x+1 x+n

v • v · · · v

In [20], we outline a proof of the token ring’s self-stabilisation phase, which
shows that the system always converges to a legitimate state. We also provide
a proof of the token ring as a mutual exclusion mechanism, where a machine
holding • may gain ownership of a shared resource. For simplicity, here we focus
on the case where the token ring is in the 0th legitimate state, with all counters
holding value 0. Our proof makes use of the CoLoSL principles laid out in Fig.
1, together with the usual concurrency rule of separation logic [18] and the
rule of semantic consequence from the views framework [6]. We introduce them
informally as needed, and discuss them in more detail in §3.

CoLoSL introduces a new assertion
�� ��P I

called a subjective view, which
comprises a subjective assertion P describing a part of the global shared state
and an interference assertion I characterising how this partial shared state
may be changed by the thread or the environment. Similar to the interference
assertions of CAP [7], I declares actions of the form [a] : Q ; R, where a
thread in possession of the [a] capability in its local state may carry out its
transition and update parts of the shared state satisfying Q to a state satisfying
R. Assertions in Hoare triples must be stable with respect to the interference
from the environment: that is, robust with respect to the interference assertion I.

Consider the program ring(x) defined in Fig. 2 which represents a token ring
with n+1 machines. It is written in pseudo-code resembling C with additional
constructs for concurrency: atomic sections 〈 〉 which declare that code behaves
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r ing (x )

//
{
x ⇀⇁ x › [mx] › [sx+1] › · · · › [sx+n] ›

�� ��n ⇀⇁ n › x 7→ 0 › x+1 7→ 0 › · · · › x+n 7→ 0
I

}
{ master ( x ) || s l av e (x+1) || · · · || s l av e (x+n ) ;

} //
{
x ⇀⇁ x › [mx] › [sx+1] › · · · › [sx+n] ›

�� ��n ⇀⇁ n › x 7→ 10 › x+1 7→ 10 › · · · › x+n 7→ 10
I

}
master ( x )

//

{
x ⇀⇁ x › [mx] ›�� ��n ⇀⇁ n › x 7→ 0 › x+n 7→ 0

M′x

}
{ while (*x != 10)

//


x ⇀⇁ x › [mx] ›�� ��n ⇀⇁ n › ∃v. x 7→ v ›

(x+n 7→ v ∨ x+n 7→ v−1)
M′x


{ 〈 i f (*x == *(x+n ) )

*x = *x + 1 ; 〉 }

} //


x ⇀⇁ x › [mx] ›�� ��n ⇀⇁ n › x 7→ 10 ›

(x+n 7→ 10 ∨ x+n 7→ 9)
M′x



s l av e (x )

//

{
x ⇀⇁ x › [sx] ›�� ��x 7→ 0 › (x−1 7→ 0 ∨ x−1 7→ 1)

S′x

}
{ while (*x != 10)

//


x ⇀⇁ x › [sx] ›�� ��∃v. x 7→ v ›

(x−1 7→ v ∨ x−1 7→ v+1)
S′x


{ 〈 i f (*x != *(x - 1 ) )

*x = *(x - 1 ) ; 〉 }

} //


x ⇀⇁ x › [sx] ›�� ��x 7→ 10 ›

(x−1 7→ 10 ∨ x−1 7→ 11)
S′x


sx , [sx]: ∃v. x 7→ v › x−1 7→ v+1 ; x 7→ v+1 › x−1 7→ v+1

s′x , [sx]: ∃v. x+1 7→ v › x 7→ v › x−1 7→ v+1 ; x+1 7→ v › x 7→ v+1 › x−1 7→ v+1

mx , [mx]: ∃v, n. n ⇀⇁ n › x 7→ v › x+n 7→ v ; n ⇀⇁ n › x 7→ v+1 › x+n 7→ v

m′x , [mx]: ∃v, n. n ⇀⇁ n › x+1 7→ v › x 7→ v › x+n 7→ v ;
n ⇀⇁ n › x+1 7→ v › x 7→ v+1 › x+n 7→ v

l′x , [sx]:∃v, n. n ⇀⇁ n › x 7→ v+1 › x+n 7→ v › x+n−1 7→ v+1 ;
n ⇀⇁ n › x 7→ v+1 › x+n 7→ v+1 › x+n−1 7→ v+1

I , {mx, sx+1, . . . , sx+n} M ′x , {mx, l
′
x} F ′x , {sx,m′x−1} S′x , {sx, s′x−1}

Figure 2: A proof sketch of the token ring in CoLoSL. Assertions in lines starting
with // describe the local state and the subjective shared state at the relevant
program points. The proof of slave(x) applies to all slaves expect the first one
(called the foreman) in the parallel composition, where S′x is replaced by F ′x.

atomically; and parallel composition ‖ which spawns threads then waits until
they complete. In our example, the n+1 threads run in parallel until all counters
reach value 10. While the implementation of all the slave threads are identical, we
shall see that the proof of the first slave in the ring (at x+1) is slightly different
from the others. We henceforth refer to the first slave thread as the foreman. Let
us proceed with the proof of the other slaves.

Proof of the slaves Let us temporarily forget about the proof outline of Fig. 2
and attempt to prove slave(x) in isolation, in the spirit of local reasoning. Since
slave(x) inspects the value of its counter pointed to by x and compares it against
the counter at x-1 (its left neighbour in the ring), a tempting precondition for
slave(x) would be one describing just these two locations, e.g.

x ⇀⇁ x › [sx] ›
�� ��x 7→ 0 › (x−1 7→ 0 ∨ x−1 7→ 1)

Sx
Sx = {sx, sx−1}

The above assertion comprises: a) a variable assertion stating that the thread
locally owns variable x with value x (using the variables-as-resource model [1]);
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b) a capability [sx] that allows it to perform the associated sx action (see below);
and c) a subjective view of the shared state: x points to 0, and x−1, its left
neighbour, points to either 0 or 1 since it might already have incremented its
own counter. The › connective used between assertions is that of separation logic
and means that the assertions describe disjoint pieces of state. The interference
assertion associated with the subjective view is captured by Sx and consists of
two actions: sx and sx−1, where sx represents an increment of the contents of x
under the condition that its value is one less than the value at address x−1 (see
Fig. 2). Since the current thread owns [sx] locally, only it can perform sx. On
the other hand, the capability [sx−1] is not locally owned, thus the environment
could potentially perform the associated action whenever its precondition (on
the left-hand side of ;) is satisfied. Upon closer inspection, since this subjective
view says nothing of the value of the cell at address x−2, sx−1 could potentially
always fire. The assertion is thus not stable: nothing prevents the counter at x−1
from incrementing beyond value 1. A weaker, stable assertion is thus:

x ⇀⇁ x › [sx] ›
�� ��∃v. x 7→ 0 › x−1 7→ v

Sx

Fortunately, we can do better and obtain a stronger small precondition. Let
us first step back and think again at the level of the whole algorithm. As the
programmer knows, the situation above cannot happen as x−2 can only be at
most one ahead of x itself. We can thus replace Sx by S′x and give a stronger
stable precondition that captures just what we want, as in Fig. 2. The proof of
slave(x) is now relatively straightforward. By inspection (or using the rules of
§3.3), the invariant of the while loop and the postcondition are also stable. The
atomic section temporarily “opens the box” to perform action sx then “closes
back the box”, and preserves the invariant. The final postcondition of slave(x)
follows from the invariant and the boolean expression of the loop.

Proof of the master and foreman The proof sketches of the master and foreman
threads given in Fig. 2 are analogous. As the first slave, the foreman has to
account for interference from the master instead of another slave. Moreover, the
master and its associated action mx have access to variable n holding the current
size of the ring, since they depend on the value of the counter at address x+ n.

Proof of the ring The precondition of ring(x) states that it owns all capabilities,
which will be distributed amongst the n+1 threads; the global variable n ⇀⇁ n is
shared, as are all n+1 counters, initialised to 0. The interference I associated
with the subjective view consists of the actions of the n+1 threads. Because
ring(x) has a global view of the state of the ring (and moreover all capabilities
are held locally), the sx+i actions are enough to guarantee stability.

Let us write
�� ��P I

for this initial subjective view. This assertion may be freely
duplicated using the Copy principle of Fig. 1 and each thread is given a copy
together with the appropriate capability using the usual Par rule of concurrent
separation logic. For instance, the thread running slave(x+i), for i > 1, gets
[sx+i] ›

�� ��P I
. This assertion does not match the precondition of slave(x+i) just
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yet. Using the principles of Fig. 1, we can weaken the assertion as such:�� ��P I

(Shift)⇒
�� ��P (I\{sx+i−1})∪{s′x+i−1}

(Forget)⇒
�� ��x+i−1 7→ 0 › x+i 7→ 0

(I\{sx+i−1})∪{s′x+i−1}
(Shift)⇒

�� ��x+i−1 7→ 0 › x+i 7→ 0 {s′x+i−1,sx+i}
(Weaken)⇒

�� ��x+i 7→ 0 › (x+i−1 7→ 0 ∨ x+i−1 7→ 1)
{s′x+i−1,sx+i}

We start by exchanging the action sx+i−1 of I for the stronger action s′x+i−1 using
the Shift principle. In general, Shift allows us to replace I with any interference
assertion I ′ that has the same observable effect as far as the subjective assertion
P is concerned (written I vP I ′). In this instance, the actions sx+i−1 and s′x+i−1
have the same effect according to P , as discussed in the proof of slave(x). As such,
rewriting sx+i−1 as s′x+i−1 merely reflects stronger knowledge about how x+i and
x+i−2 are related through x+i−1. In particular, I vP (I \ {sx+i−1})∪{s′x+i−1}
as required.

Next, because subjective views only describe parts of the shared state, we
can use the Forget principle to obtain a weaker view of the shared state, in
this case a view that ignores all cells in the ring except for those at addresses
x+i−1 and x+i. With all other cells out of the subjective view, their actions
no longer have observable effects on the assertion, since they leave x+i−1 and
x+i unchanged. We can thus apply the Shift principle again to frame off those
actions and obtain S′x+i = {s′x+i−1, sx+i}.

Finally, we weaken the resulting subjective view so that it is stable with
respect to S′x+i, i.e. preserved by those of its actions that the environment may
perform (here, s′x+i−1). This yields the precondition of slave(x+i) as in Fig. 2.
The preconditions of the master and foreman threads can be derived analogously.

Once all threads have completed their operations, we join up their post-
conditions using the Merge principle, which embodies a crucial feature of
CoLoSL: different subjective views overlap. The overlapping conjunction ∪› be-
tween two assertions means that the two assertions describe potentially over-
lapping pieces of state. In particular, A › B ⇒ A ∪› B and A ∧ B ⇒ A ∪› B.
This connective has been used in the past to reason about sharing in data
structures [22,11,14]. Since ∨ distributes over ∪›, the subjective view simplifies to�� ��x 7→ 10 › x+1 7→ 10 › · · · › x+n 7→ 10

I′
where I ′ = M ′x∪F ′x+1∪S′x+2∪· · ·∪S′x+n.

Finally, since I ′ vn⇀⇁n›x 7→10›x+17→10›···›x+n 7→10 I, we get the postcondition of
ring(x) by the Shift principle. This concludes our CoLoSL proof of ring(x).

Small specifications and proof reuse Our expansion and contraction of subjective
views, in particular with the shifting of interference assertions at key places,
enables us to confine the specification and verification of each thread to just the
resources they need. Such small specifications make proofs robust against changes
to each thread’s environment, and provide more opportunities for proof reuse.

For instance, let us now add a thread that dynamically grows the ring by
spawning extra slaves to the parallel composition of ring(x) (the details can be
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found in [20]). When the ring has n+1 machines, we use the Extend principle
as follows to add a new slave (at x+n+1) to the shared state with the associated
interference relation and capability.2

(x+n+1) 7→ v
(Extend)

V ∃sx+n+1. [sx+n+1] ›
�� ��x+n+1 7→ v {sx+n+1}

Here, the view shift [6] (or repartitioning [7]) P V Q means that an instrumented
(logical) state satisfying P may be changed to Q as long as the underlying machine
state does not change. In particular, (P ⇒ Q) ⇒ (P V Q). The point is that
our proof changes only minimally to accommodate the new program: the proof
of master(x) accounts for new interference on n ⇀⇁ n since the environment can
grow the ring, hence mutate n; the proofs of other threads can be directly reused.

In contrast, in existing CAP-like approaches [7,3], both n ⇀⇁ n and the global
interference relation are observed by all threads. As such, with the above extension,
the global interference relation needs to change (to include the interference on
n ⇀⇁ n), and the proofs of both master and slave threads need to be adapted.

3 CoLoSL

We now give a more formal overview of how to use CoLoSL for program ver-
ification, eschewing some details of the semantics for lack of space, while still
providing enough ingredients to carry program proofs. We describe the underlying
model of CoLoSL, give the semantics of CoLoSL assertions, then present proof
rules to reduce the various obligations typically encountered in proofs (namely,
the side-conditions of Shift and Extend, and stability checks) to classical
separation logic entailments that, in particular, do not mention subjective views.

3.1 CoLoSL worlds

A world is a triple (l, g, I) where l and g are logical states and I is an action model.
The local logical state (or local state) l represents the locally owned resources
of a thread, in the standard separation logic sense, while the global logical state
(or shared state) g represents shared resources. The action model I records all
possible interferences on the shared state.

Logical states have two components: one describes machine states (e.g. stacks
and heaps); the other represents capabilities. The latter are inspired by the
capabilities in CAP [7]: a thread in possession of a given capability is allowed to
perform the associated actions (as prescribed by the action model component of
each world, defined below), while any capability not owned by a thread means
that the environment can perform the action. This can be seen as a unified

2 Unlike CAP [7] and as in iCAP [23], we do not provide an explicit unsharing
mechanism to claim back shared resources. Instead, this can be simply encoded as
an action of the form ›j∈J [aj ]:P ; ›j∈J [aj ]: a thread holding ›j∈J [aj ] can move
the shared resource P into its local state in exchange for the associated capabilities.
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treatment of the rely and guarantee relations in rely-guarantee reasoning [16]:
a capability fully owned (resp. fully not owned) during the entire lifetime of a
thread represents its guarantee (resp. its rely), while a partially-owned capability
means that the corresponding action is both in the rely and the guarantee.
Capabilities go beyond the rely-guarantee model [9]; in particular, they may be
transferred between a thread and its environment just like any other resource to
temporarily block or enable certain actions. See the presentation of CAP [7] and
deny-guarantee [9] for further details and motivation.

In general, each component of a logical state is taken from an arbitrary
separation algebra [2] (i.e. a cancellative, partial commutative monoid) that
satisfies the cross-split property3[8] (this is needed for ∪› to be associative [14]).
As we demonstrate in the examples of §4, our programs often call for a more
complex model of machine states and capabilities than that presented here. For
instance, we may need our capabilities to be fractionally owned, where ownership
of a fraction of a capability grants the right to perform the action to both
the thread and the environment, while a fully-owned capability by the thread
denies the right to the environment to perform the associated action. For ease of
presentation, the focus of this paper is on the standard stack and heap model for
machine states, and finite sets of tokens (which are simple names) for capabilities.
We assume a set of program values Val, as well as infinite disjoint sets PVar, Loc,
and Token of program variables, memory locations, and tokens, respectively.

Definition 1 (Logical states). A logical state is a tuple ((σ, h), κ) ∈ LState,
also written (σ, h, κ), of a finite partial stack σ ∈ Stack associating program
variables with values, a heap h ∈ Heap associating heap locations with values,
and a capability κ ∈ K:

Stack , PVar ⇀fin Val Heap , Loc⇀fin Val M , Stack× Heap

K , Pfin(Token) LState ,M×K

The local and global logical states of a world are always compatible: they can
be composed with one another. This captures the intuition that locally-owned
resources are disjoint from shared resources. The composition of logical states is
defined component-wise as disjoint function union ] over stacks and heaps, and
disjoint set union ] on capabilities.

Definition 2 (Logical state composition). The composition of logical states
◦ : LState× LState⇀ LState is defined as:

((σ, h), κ) ◦ ((σ′, h′), κ′) , ((σ ] σ′, h ] h′), κ ] κ′)

We write l to range over arbitrary logical states or just local states, and g to
range over logical states representing global shared states. The empty logical state

3 A monoid (A,+,1) satisfies the cross-split property iff, for all a, b, c, d ∈ A, if
a + b = c + d, there exists x, y, z, w ∈ A s.t. a = x + y, b = z + w, c = x + z and
d = y + w.
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(∅, ∅, ∅) is written 0L. We write l1 ≤ l2 when there exists l such that l ◦ l1 = l2,
and write l2 − l1 to denote the unique such l (by cancellativity) when it exists.
When l1 ◦ l2 is defined, we say that l1 and l2 are compatible and write l1 ] l2.

An action is a triple (p, q, c) of logical states where p and q are the action pre-
and post-states describing how the shared state is modified by the action; and c is
the action catalyst. An action catalyst has to be present for the action to take effect,
but is left unchanged by the action. It is maximal in the sense that no further, non-
empty catalyst c′ can be found, which we write p⊥q: ∀l. l ≤ p∧l ≤ q =⇒ l = 0L.4

For instance, as we shall shortly see, sx in Fig. 2 will be interpreted as the set
of actions S = {av,((∅, {` : v}, ∅), (∅, {` : v+1}, ∅), (∅, {`−1 : v+1}, ∅)) | v ∈ N},
where ` is the value of x in the current logical environment.

An action model is a partial function from capabilities to sets of actions. It
corresponds to the semantic interpretation of an interference assertion.

Definition 3 (Action models). The set Action of actions, ranged over by a,
and the set AMod of action models, ranged over by I, are defined as:

Action , LState× LState× LState AMod , K⇀ P (Action)

Worlds are triples (l, g, I) ∈ LState× LState× AMod that satisfy several well-
formedness conditions: the local and shared states are compatible; the capabilities
owned by l and g are in the domain of I; and actions in I are confined to g
(written g c© I). An action a = (p, q, c) is confined to g if and only if, whenever
it is enabled (p ◦ c agrees with g), then its pre-state p is contained in g (p ≤ g).
We motivate the need for the confinement condition in §3.3.

Definition 4 (Well-formedness). A triple (l, g, I) ∈ LState× LState× AMod
is well-formed, written wf (l, g, I), iff l ] g, lκ ∪ gκ ⊆

⋃
dom(I) and g c© I.

Definition 5 (Worlds). The set World of worlds consists of all well-formed
triples:

World , {w ∈ LState× LState× AMod | wf (w)}

Finally, the composition of two worlds is defined when their local states are
compatible, their global shared states and action models are the same, and the
resulting tuple is well-formed.

Definition 6 (World composition). The composition of worlds, • : World×
World⇀World, is defined as:

(l, g, I) • (l′, g′, I′) ,

{
(l ◦ l′, g, I) if g = g′, and I = I′, and wf((l ◦ l′, g, I))
undefined otherwise

4 Alternatively, the catalyst could be computed a posteriori for each action. However,
we often need to isolate the part of the state that is modified by an action, hence our
technical choice of recording the catalyst in the model.
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3.2 CoLoSL Assertions

Our assertion language extends separation logic with subjective views and capa-
bility assertions.

CoLoSL is parametric in the assertions of machine states and capabilities,
and can be instantiated with any assertion language over machine states M
and capabilities K. In this paper, we use standard heap and stack assertions for
machine state assertions, and single token assertions of the form [a] for capability
assertions where a ∈ Token. We write [A] as a shorthand for ›a∈A[a]. We assume
an infinite set LVar of logical variables, disjoint from PVar.

Definition 7 (Assertion syntax). Given x ∈ LVar, x ∈ PVar, and a ∈ Token,
the assertions of CoLoSL, Assn, are described by the grammars below:

LAssn 3 p, q ::= false | E1 = E2 | emp | x ⇀⇁ E | E1 7→ E2 | [E]
| p ∨ q | ¬p | ∃x. p | p › q | p ∪› q | p −−#› q

Assn 3 P,Q ::= p | ∃x. P | P ∨Q | P ›Q | P ∪› Q |
�� ��P I

I ::= ∅ | {[A]: ∃x̄. P ; Q} ∪ I E ::= x | a | E1 + E2 | · · ·

The syntax and semantics of local assertions LAssn are as in standard separa-
tion logic with variables-as-resource [1].5 Local assertions are interpreted over a
world’s local state. The empty local state 0L is denoted by emp. The assertion
x ⇀⇁ E denotes a singleton stack where x has value E. Similarly, E1 7→ E2 is true
of the singleton heap where only address E1 is allocated and has value E2. The
capability assertion [E] is true of the singleton capability {a} if E evaluates to a.
The separating conjunction p › q is true when the local state can be split into
two according to ◦ such that one state satisfies p and the other satisfies q. The
overlapping conjunction p ∪› q is true when the local state can be split three-ways
according to ◦, such that the ◦-composition of the first two states satisfies p and
the ◦-composition of the last two satisfy q [14,12,22]. Septraction (or existential
magic wand) p −−#› q is true when there exists a local state satisfying p that
can be ◦-composed with the current one to yield a state satisfying q. The usual
predicates and connectives have their standard classical meaning.

As in RGSep [26], our assertions Assn are defined on top of local assertions. For
simplicity, assertions do not include negation nor septraction. The interpretation
of assertions is a simple lift from that of local assertions, with the exception of the
subjective view

�� ��P I
. First, an interference assertion I describes actions enabled

by a given capability, in the form of a pre- and postcondition. A subjective view�� ��P I
is then true of (l, g, I) when l = 0L and a subjective state s can be found

in the global shared state g (i.e. g = s ◦ r for some r), such that s satisfies P ,
and I and I agree given the decomposition s and r, written I↓ (s, r, JIKι), in the
following sense:

1. every action in I is reflected in I;

5 Note in particular that expressions E do not allow program variables: they can only
appear on the left-hand side of x ⇀⇁ E.
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2. every action in I that has a visible effect on s is reflected in I;
3. the above holds after any number of actions in I takes place.

Thus, given a world (l, g, I) and a subjective view
�� ��P I

, P describes a subjective
state s that is a part of g and I describes all parts of I concerning s, while I

describes the overall interference on g. We refer to the above agreement between
the action model and the subjective view as the action model closure property.
We omit its formal definition for lack of space.

The semantics of CoLoSL assertions is given by a forcing relation w, ι � P
between a world w, a logical environment ι ∈ LEnv, and an assertion P . We use
two auxiliary forcing relations. The first one l, ι �SL p interprets local assertions
p ∈ LAssn in the usual separation logic sense over a logical state l. The second
one s, ι �g,I P interprets assertions P ∈ Assn over a subjective state s that is part
of the global shared state g, subject to the action model I. This second relation is
needed to deal with the nesting of subjective views.6 Since logical connectives are
interpreted uniformly in all cases, we write �† for any of the three satisfaction
relations, u for elements of either World or LState, and • for either • or ◦, as
appropriate.

Definition 8 (Assertion semantics). Given a logical environment ι : LVar→
Val, the semantics of CoLoSL assertions is defined below, using the semantics of
interference assertions J.K(.) : LEnv→ AMod also defined below:

(l, g, I), ι � p iff l, ι �SL p
(l, g, I), ι �

�� ��P I
iff l = 0L and ∃s, r. g = s ◦ r and s, ι �g,I P and I↓ (s, r, JIKι)

s, ι �g,I p iff s, ι �SL p
s, ι �g,I

�� ��P I
iff (s, g, I), ι �

�� ��P I
u, ι �† ∃x. P iff ∃v. u, [ι | x : v] �† P
u, ι �† P ∨Q iff u, ι �† P or u, ι �† Q
u, ι �† P1 › P2 iff ∃u1, u2. u = u1 • u2 and u1, ι �† P1 and u2, ι �† P2

u, ι �† P1 ∪› P2 iff ∃u′, u1, u2. u = u′ • u1 • u2 and
u′ • u1, ι �† P1 and u′ • u2, ι �† P2

l, ι �SL false never
l, ι �SL emp iff l = 0L

l, ι �SL E1 = E2 iff JE1Kι = JE2Kι
l, ι �SL x ⇀⇁ E iff l = ({x : JEKι}, ∅, ∅)
l, ι �SL E1 7→ E2 iff l = (∅, {JE1Kι : JE2Kι}, ∅)
l, ι �SL [E] iff l = (∅, ∅, {JEKι})
l, ι �SL ¬p iff l, ι 6�SL p
l, ι �SL p −−#› q iff ∃l′. l′, ι �SL p and l ] l′ and l ◦ l′, ι �SL q

JIKι(A) ,

{
(p, q, c)

[A]:∃x̄. P ; Q ∈ I ∧ p⊥ q ∧ ∃v̄, I, r, r′. c = r ◦ r′ ∧
p ◦ r, [ι | x̄ : v̄] �p◦c,I P ∧ q ◦ r, [ι | x̄ : v̄] �q◦c,I Q

}
6 This presentation with several forcing relations differs from the usual CAP presenta-

tion [7], where assertions are first interpreted over worlds that are not necessarily
well-formed, and then cut down to well-formed ones. The advantage of our presenta-
tion is that the semantics of assertions is compositional, e.g. the semantics of P ›Q
follows directly from the semantics of P and Q.
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Note that, as in the CAP family [7,23,3], CoLoSL cannot ensure that proved
programs do not leak memory. This is because of the following property of
the semantics with respect to the shared state (sometimes called “intuitionistic
semantics” [21]): if (l, g, I), ι � P then (l, g ◦ g′, I), ι � P .

Five of the principles of Fig. 1 are direct consequences of the semantics.

Lemma 1. The CoLoSL reasoning principles Forget, Merge, Shift, Weaken,
and Copy are valid.

Proof (sketch). The cases of Weaken and Copy are straightforward. For For-
get, Merge, and Shift, we note in [20] that action model closure is preserved by
picking a smaller subjective state, taking the union of subjective states and their
interference assertions, and shifting the interference assertion, respectively. ut

3.3 Reducing CoLoSL principles to separation logic entailments

We turn to the remaining two principles, Extend and Shift, and to the stability
of assertions. These involve reasoning outside our assertion language, potentially
requiring semantic reasoning in the model. Fortunately, it is enough to work
with a partial axiomatisation for all three conditions to verify our examples.
In this section, we give cut-down versions of these rules for a fragment of the
CoLoSL assertion language where the nesting of subjective views is not permitted
and interference assertions cannot mention subjective views. This restriction is
easily lifted: assertions with nested boxes can always be flatten into logically
equivalent assertions with no nesting; and interference assertions mentioning
other subjective views in their actions may be rewritten into ones that do not.
See [20] for the full details.

Confinement The soundness of CoLoSL hinges on the fact that, given a world
(l, g, I), the action model I contains all actions that could possibly affect the
shared state g. This was captured by a well-formedness condition in the definition
of worlds (Def. 5) as g c© I, stipulating that the actions in I are confined to the
shared state g. It is also possible to extend g at any time. Any part l′ of the local
state can migrate to the shared state under a new set of actions I′, yielding a new
shared state g ◦ l′ and action model I ∪ I′. This migration is only permitted if
l′ c© I′. This confinement condition means that the extension does not invalidate
the views of the threads.

The technical definition of confinement of an action model on a logical state is
given in the technical report [20]. Intuitively, it means that, whenever an action
a = (p, q, c) of I′ is enabled, the pre-state p must be a substate of l′. It is possible
for some of the catalyst c to lie outside l′, since the fact that it does not change
during the course of the action means that it will not have an effect on the views
of other threads. For example, recall the interpretation of sx given by S just
before Def. 3. The action a0 = ((∅, {` : 0}, ∅), (∅, {` : 1}, ∅), (∅, {`−1 : 1}, ∅)) ∈ S is
confined to the logical state l0 = (∅, {` : 0}, ∅) because l0 is the first component of
the action, and state (∅, {`−1 : 0}, ∅) because it is incompatible with the action,
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P ` f f � I

P c© I

∀ ([A]:∃x̄. p; q) ∈ I. f � {[A]: ∃x̄. p; q}
f � I

f ∪› p `SL false

f�{[A]:∃x̄. p; q}

p `SL p′ › r q `SL q′ › r exact(r) f � {[A]: ∃x̄. p′ ; q′}
f � {[A]: ∃x̄. p; q}

(p −−#› f) › q `SL f f⇔
∨
i∈J fi (precise (fi) ∧ fi ∪› p `SL fi for i ∈ J)

f � {[A]: ∃x̄. p; q}

Figure 3: Selected confinement and local fencing rules. We assume that variables
in x̄ do not appear free in f , and in fi for any i.

but not state (∅, {`−1 : 1}, ∅) because the action can potentially affect address
`. The definition of confinement also requires that all states resulting from the
successive application of actions in I′ themselves confine all actions in I′. For
instance, we also require that l1 = (∅, {` : 1}, ∅) resulting from the application of
a0 on l0, l2 = (∅, {` : 2}, ∅) resulting from the application of a1 on l1, and so forth,
all confine the actions in S. Inspired by the LRG approach [10], we achieve this
by first finding a set that is invariant under all actions in I′ (called a fence), then
checking the confinement condition for each action. We provide the technical
details of confinement in [20].

For our examples, it is in fact enough to work with confinement in the logic.
We lift the notion of confinement to assertions, and write P c© I when the set of
states described by P confines the actions of interface assertion I. In the logic,
the shared state can be extended by the resources in P under the interference
assertion I via the Extend principle, which requires that P c© I be established.

Fig. 3 presents a set of rules which reduces P c© I to a series of entailments
in ordinary separation logic. As expressed by the first rule, P c© I holds if there
is a weaker local assertion f that acts as a local fence for I, written f � I. This
relation states that f must be invariant under all actions of I and must confine
the actions in f . In [20], we show that it is always possible to weaken an arbitrary
assertion into a local assertion. This fencing condition is checked for each action
in I (see the second rule). For each action [A]:∃x̄. p ; q, the three remaining
rules of the figure may apply. In the first of these rules, the action cannot possibly
fire, because its precondition does not agree with f : no state satisfying f may be
extended such that a subpart satisfies p. The second of these rules allows us to
trim a neutral part r (corresponding to a part of the catalyst in the interpretation
of this action) of an action [A]:∃x̄. p; q appearing both in p and q. This only
applies when r is exact, i.e. satisfied by at most one logical state:7 the part of the
state denoted by r is then uniquely determined and left unchanged by the action.
The last rule finally reduces local fencing to entailment checking, provided the
fence f can be expressed as a disjunction of precise assertions, i.e. assertions

7 exact(p) , ∀ι, l1, l2. l1, ι �SL p and l2, ι �SL p implies l1 = l2
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P ` f I vf I ′

I vP I ′ I vf I
f � I ∪ I1 I1 vf I2

I ∪ I1 vf I ∪ I2

p `SL p′ › r q `SL q′ › r exact(r) f ⊥ p′

{[A]: ∃x̄. p; q} vf ∅
(p −−#› (f ∪› p)) › q `SL false

{[A] : ∃x̄. p; q} vf ∅

f ∪› p `SL
∨
i∈J f ∪› (p › ri) exact(ri) for i ∈ J

{[A]:∃x̄. p; q} ≡f
⋃
i∈J {[A]:∃x̄. p › ri ; q › ri}

⋃
i∈K,j∈J{[A] :∃x̄. pi;qj} ≡true

{
[A] : ∃x̄.

∨
i∈K pi;

∨
j∈J qj

}
true � I

∀[A] : ∃x̄. p; q ∈ I. f � {[A] : ∃x̄. p; q}
f � I

p⊥ q (p −−#› (f ∪› p)) › q `SL f
f � {[A]: ∃x̄. p; q}

f ⊥ p
f � {[A]: ∃x̄. p; q}

p `SL p′ › r q `SL q′ › r exact(r) f�{[A]: ∃x̄. p′ ; q′}
f � {[A]: ∃x̄. p; q}

Figure 4: Selected action shifting rules. We write I ≡f I ′ for I vf I ′ ∧ I ′ vf I,
and p⊥ q to denote that states satisfying p and q have empty intersections. We
assume that variables in x̄ do not appear free in f .

satisfied by at most one substate of each logical state.8 The first premise states
that f is invariant under the action [A]:∃x̄. p; q, similar to the way that RGSep
encodes stability checks as separation logic entailments. Informally, it reads: for
any state in f , remove a part satisfying p, add a state satisfying q, and the result
should still be in f . The third premise checks the confinement condition: given a
state in local assertion fi (l1 ◦ l2 � fi), and a state in p (l2 ◦ l3 � p with l1 and l3
disjoint), the combined state (l1 ◦ l2 ◦ l3) must also be in fi. Hence, by precision
of fi, we have l1 ◦ l2 ◦ l3 = l1 ◦ l2, i.e. l2 ◦ l3 ≤ l1 ◦ l2 as required.

Shifting and fencing Fig. 4 presents a partial axiomatisation of the shifting
condition I vP I ′ required by the Shift principle. As with confinement, we
omit the direct semantic definition. Intuitively, the relation I vP I ′ means that
interference assertion I can be replaced by I ′, because I and I ′ describe the same
interference with respect to the states described by P . The first rule weakens the
shifting condition from assertions to local fence assertions. The third rule reduces
the shifting judgement I ∪ I1 vf I ∪ I2 to the simpler I1 vf I2, provided that
f is invariant with respect to I ∪ I1, written f � I ∪ I1. This invariant fencing
condition is necessary: I1 vf I2 only states that I1 and I2 have the same effect
with respect to f ; f � I ∪ I1 states that f is an invariant of the shared state
under the combined interferences of I and I1.

The next two rules describe situations where it is impossible to apply the
action to f : when the precondition of the action is entirely outside f ; or when

8 precise (p) , ∀ι, l, l1, l2. l1 ≤ l, l2 ≤ l, l1, ι �SL p, and l2, ι �SL p implies l1 = l2
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the postcondition is incompatible with that part of f not associated with the
precondition. The notation p⊥ q asserts that states described by p and q have
empty intersections : whenever l1, ι �SL p and l2, ι �SL q, we have l1⊥ l2 as defined
in §3.1. This is expressible in standard separation logic as follows:

p⊥ q ⇔ p `SL ¬ (true › (¬emp ∧ (true −−#› q)))

The next rule is a shifting equivalence that uses the knowledge embodied by
f of all the possible states that the subjective shared state may be in to rewrite
an action into an equivalent one. More precisely, if whenever the precondition
p of the action agrees with f then one of the ri’s is also true, then adding ri
as a neutral part of the action produces the same behaviour. We can use this
rule (with the single r0 = x 7→ v) to justify the shiftings of §2. The fact that the
ri’s are exact guarantees that no piece of state in ri is mutated by the “larger”
action. In general, it may not be the case that a single exact assertion can be
added, but it may be the case that a disjunction of exact facts holds. The last
shifting equivalence is straightforward.

The last five rules partially axiomatise the fencing relation f � I. Most are
similar to those for local fencing f � I. The first two state that true fences any
interference assertion, and fencing can be checked per action. The last one states
that, as for local fencing, neutral parts of actions may be ignored. The one before
that states that, contrarily to local fencing, actions are allowed to have effects
outside of the fence. If the action precondition does not intersect with the fence,
then its effect is entirely outside the fence and the action may be ignored.

Let us now focus on the third of these rules, which states that whenever p
and q do not intersect in an action [A]:∃x̄. p; q (e.g. when their common parts
have been removed using the last rule), then the application of the action must
preserve the fence f . Contrarily to the case of local fencing, the action is allowed
to act partly outside of f , hence the state on which the action is applied is f ∪› p.
However, the whole of the postcondition q of the action is then added, and the
resulting state must still be in f . One might instead have expected that only
parts of the resulting state need to be represented in f , to mimic the relationship
between f and p (and indeed, this is all that is required for stability, as we shall
see next). However, we do need the full q. Recall that shifting asserts that two
interference assertions have the same effect even after an arbitrary number of
steps. Doing otherwise would be unsound because there would be no guarantee
that I accounts for all possible actions on that part of q that would be discarded,
since it would not be part of f . Hence, we could end up with a new interference
assertion I ′ that breaks the original action model closure property. Finally, the
reason why p and q must not intersect stems from similar considerations. If p and
q had a non-empty intersection c, such that c is not part of f , then this would
force the fence to account for c which would prevent us from forgetting actions
associated with it using shifting. For instance, it would make it impossible to
forget actions as we do in §2.

Stability Fig. 5 partially axiomatises the stability of assertions of the form
∃x̄. p › ›i∈J

�� ��qi Ii . We work with a more restricted form of assertions than our
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Stable(p)

Stable(P )

Stable(∃x. P )

∀j ∈ J. Stable(qj , Ij , p,
⋃
›i∈J qi)

Stable(p › ›i∈J
�� ��qi

Ii
)

∀[A]:∃x̄. p1;p2∈I. Stable(q, {[A]: ∃x̄. p1 ; p2}, p, r)
Stable(q, I, p, r)

[A] › p › r `SL false

Stable(q, {[A]:∃x̄. p1 ; p2}, p, r)

p › (r ∪› p1) `SL false

Stable(q, {[A]:∃x̄. p1 ; p2}, p, r)
(p1 −−#› (q ∪› p1)) › p2 `SL q › true

Stable(q, {[A]: ∃x̄. p1 ; p2}, p, r)

Figure 5: Selected rules for stability checks. We assume that variables in x̄ do
not appear free in p, q, and r.

two previous axiomatisations for simplicity; see [20] for the general case. The
first two rules state that local assertions are always stable and existentials can be
eliminated. The next rule states that checking the stability of p › ›i∈J

�� ��qi Ii boils

down to establishing, for each local assertion qj for j ∈ J , that the four-place
predicate Stable(qj , Ij , p,

⋃
›i∈J qi) holds: this means that qi is stable under the

interference assertion Ii, a local context p, and a shared context made of the
∪›-combination of all the subjective assertions (including qj). In turn, checking
this fact reduces to checking stability for each action of Ij . The last three rules
deal with checking stability for a single action, in a similar way to the fencing
rules above.

The first of these rules is unfamiliar. Unlike fencing, stability checking for
assertions only has to be checked against actions for which the environment may
have the capability. If the capability required by the action cannot exist separately
from those held by the assertion (that is, those in p › r) then the environment
cannot possibly own the capability to perform the action. Similarly, an action
whose precondition is incompatible with the assertion p › r cannot possibly fire,
as stated by the next rule. The last rule checks that q is preserved by the effect
of an action. Again, there is a crucial difference with the corresponding check for
fencing: in p2, the action may bring in some newly-shared state, hence the result
q › true; but the Forget rule allows us to immediately discard it, if appropriate.

Proof reuse Note that, once the local fencing judgement f � I has been estab-
lished, it automatically establishes the weaker fencing judgement f � I, which in
turn implies that f is stable under I. Also, fencing is preserved by action shifting.
These observations provide the admissible rules:

f � I

f � I

p � I

Stable(
�� ��p I

)

f � I I vf I ′

f � I ′

The other directions are not valid in general: fencing lacks the confinement
condition required by local fencing; stability of p under I may omit part of the
state resulting from an action application to re-establish p, which is not allowed
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in fencing; and a fence f for a smaller interference assertion need not be a fence
for a larger interference assertion.

3.4 Soundness

We prove the soundness of CoLoSL, parametrised by the underlying models of
machine states (M) and capabilities (K). We appeal to the general soundness
result of the views framework, providing parameters such as the reification
function in Def. 9 and proving lemmas required to make the result hold.

The main part of the proof establishes the soundness of the following rule for
atomic commands, where `SL represents standard sequential separation logic:

`SL {p} C {q} P V{p}{q} Q

` {P} 〈C〉 {Q} Atom

This rule is present in logics arising from CAP [7,23]. For CoLoSL, the repar-
titioning P V{p}{q} Q holds if, from any world (l, g, I) satisfying P , whenever
parts of l ◦ g satisfies p then substituting that part for any other satisfying q
will yield a state l′ ◦ g′ such that there exists I′ such that (l′, g′, I′) satisfies Q.
Moreover, the passage from (l, g, I) to (l′, g′, I′) can be achieved via a succession
of valid updates from I and valid extension steps. The details can be found in
the accompanying technical report [20].

Semantic validity of Hoare triples depends on the definition of an operational
semantics C,m →* C′,m′, where m,m′ ∈ M, and a reification function that
relates a CoLoSL world to a concrete machine state.

Definition 9 (Reification). The reification, b.cW : World→M is defined as:

b((σl, hl, κl), (σg, hg, κg), I)cW , (σl ] σg, hl ] hg)

Definition 10 (Valid triple). A triple is valid, written � {P} C {Q}, if and
only if, for all ι ∈ LEnv, w ∈World and m,m′ ∈M,

(w, ι � P and C, bwcW →
∗ skip,m′) implies ∃w′. w′, ι � Q and m′ = bw′cW

Theorem 1 (Soundness). If `{P} C {Q} then �{P} C {Q}.

4 Examples

4.1 Concurrent Spanning Tree

Programs manipulating arbitrary graphs present a significant challenge for compo-
sitional reasoning, because deep, unspecified sharing between different components
of a graph results in changes to one subgraph affecting other subgraphs pointing
into it. This makes it hard to reason about updates to each subgraph in isolation.
In a concurrent setting, this difficulty is compounded by the fact that threads
working on different parts of the graph may affect each other in ways that are
difficult to reason about locally to each subgraph. Using a concurrent spanning
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tree algorithm, we demonstrate that CoLoSL reasoning might be just the right
approach, as subjective views naturally provide arbitrary overlapping views of the
shared state where interferences can be naturally tailored to a given subjective
view. With CoLoSL, we have achieved local reasoning about the shared state for
this challenging program.

Our example, presented in Fig. 8, operates on a directed binary graph (hence-
forth simply graph): that is, a directed graph where each node has at most two
successors, called its left and right children. The program concurrently computes
an in-place spanning tree of the graph (i.e. a tree that covers all nodes of the
graphs from a given root), as follows: each time a new node is encountered, two
new threads are created that each prune the edges of its left and right children
recursively. A mark bit is associated with each node to keep track of which nodes
have already been visited. Each thread returns whether it marked the node it was
called on itself or whether somebody else did. In the latter case, the parent thread
removes the link from its own root node to the corresponding child. Intuitively,
it is allowed to do so because the child has already been reached via some other
path in the graph since it was marked by another thread.

We will prove that, given a shared graph as input, the program always returns
a tree, i.e. all sharing and cycles have been appropriately removed. Pleasingly,
the CoLoSL specification captures just the subgraph manipulated by the thread,
instead of the whole graph.

To reason about this program, following [14] we use two representations of
graphs. The first is a mathematical representation γ = (V,E) where V is a finite
set of vertices and E : V → (V ] {null})× (V ] {null}) is a function associating
each vertex with at most two successors, where null denotes the absence of a child.
We write n ∈ γ for n ∈ V , γ(n) for E(n) which also assumes n ∈ γ, n;γ n

′ for
n′ ∈ γ(n), and ;∗γ for the reflexive and transitive closure of ;γ .

Mathematical graphs are connected to their in-memory representations by a
predicate graph (x, γ) shown in Fig. 6, denoting a spatial (in-heap) graph rooted
at address x corresponding to the mathematical graph γ. This predicate uses the
overlapping conjunction to account for potential sharing between the left and
right children and for potential cycles in the graph. Each vertex is represented as
three consecutive cells in the heap tracking the mark bit and the addresses of the
left and right subgraphs. We write x 7→ m, l, r for x 7→ m › x+ 1 7→ l › x+ 2 7→ r,
and x.l and x.r for x+1 and x+2, respectively. When vertex x is in the unmarked
state U (x, l, r), the whole cell x 7→ 0, l, r resides in the shared state. In the marked
state M (x), only x 7→ 1 is owned. In both cases, the shared state also contains
the left and right subgraphs represented by G (l, γ) and G (r, γ).

To understand the difference in ownership between U (x, l, r) and M (x), let
us look at the interference associated with the graph, which is the union of
interferences pertaining each vertex in the graph. For each vertex n ∈ γ, the
only permitted action is that of marking n. (For simplicity, this action does not
require any capability.) When changing the mark field of n from 0 to 1, the
current thread also claims ownership of its left and right pointers. Indeed, we
observe that other threads need not access the children of n once they see that
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graph (x, γ) ,
�� ��G (x, γ)

Iγ
Iγ ,

⋃
n∈γ

I(n) I(n) , {[∅] : ∃l, r.U (n, l, r) ; M (n)}

G (x, γ) , (x = null ∧ emp) ∨ ∃l, r. γ(x) = (l, r) ∧
(U (x, l, r) ∨M (x)) ∪› G (l, γ) ∪› G (r, γ)

U (x, l, r) , x 7→ 0, l, r

M (x) , x 7→ 1

Figure 6: Globally-shared graph predicate.

g (x, γ) , (x = null ∧ emp) ∨ ∃l, r. γ(x) = (l, r) ∧�� ��U (x, l, r) ∨M (x)
I(x)

› g (l, γ) › g (r, γ)

t (x, γ) , (x = null ∧ emp) ∨ (∃l, r. γ(x) = (l, r) ∧ ∃l′∈{l, null}, r′∈{r, null}.�� ��M (x)
I(x)

› x.l 7→ l′ › t (l′, γ) › x.r 7→ r′ › t (r′, γ))

Figure 7: Locally-shared graph predicate.

it has already been marked. The atomic CAS (compare-and-swap) instruction
prevents two threads from concurrently marking the same node and claiming
ownership of the same resource.

The graph (x, γ) predicate defined in Fig. 6 is a global subjective view of the
graph that contains all vertices and the interference associated with γ. However,
our spanning tree algorithm operates locally as it is called upon recursively for
each node. That is, for each span(n) call (where n ∈ γ), the footprint of the call
is limited to the subgraph rooted at n. Moreover, in order to reason about the
concurrent recursive calls span(x-> l ) || span(x->r), we need to split the state
into two using ›, pass each constituent state to the relevant thread and ›-combine
the resulting states, as required by the Par rule. We thus conduct our proof
with respect to a local description of the graph, g (x, γ) as defined in Fig. 7. The
definition of the g (x, γ) predicate is similar to that of

�� ��G (x, γ)
Iγ

except that

the single view
�� ��G (x, γ)

Iγ
has been broken down into individual views for each

vertex n reachable from x. Moreover, the interference assertion of each local view
concerning a vertex n ∈ γ has been shifted from Iγ to I(n) so as to reflect only
those actions that affect n.

The t (x, γ) predicate, also given in Fig. 7, represents a tree rooted at x, as
is standard in separation logic [21], and consists, once fully unfolded, of one
subjective view for each vertex n reachable from x in γ. The assertion of the
subjective view for x reflects the fact that x has been marked, and its left and
right pointers have been claimed by the marking thread and moved into its local
state. The vertex l′ addressed by the left pointer of x corresponds to either the
initial value l prior to marking, or to null when l has more than one predecessor
and has been marked by another thread.

Our goal is to prove that the following specification holds using the global
graph predicate:

{graph (x, γ)} b = span(x) {(b = 0 ∧ emp) ∨ (b = 1 ∧ t (x, γ))} (1)
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b = span (x ) //{g (x, γ)}
{ //{(x = null ∧ emp) ∨ (∃l, r. γ(x) = (l, r) ∧

�� ��U (x, l, r) ∨M (x)
I(x)

› g (l, γ) › g (r, γ))}

i f ( x == nu l l ) {
//{x = null ∧ emp}
//{t (x, γ)}
return 1 ;

}//
{
∃l, r. γ(x) = (l, r) ∧

�� ��U (x, l, r) ∨M (x)
I(x)

› g (l, γ) › g (r, γ)
}

r e s = 〈 CAS(x , 0 , 1) 〉 ;

//

{
∃l, r. γ(x) = (l, r) ∧

�� ��M (x)
I(x)

› g (l, γ) › g (r, γ) ›(
(res = 0 ∧ emp) ∨

(
res = 1 ∧ x.l 7→ l › x.r 7→ r

)) }

//

{
(res = 0 ∧ emp)∨

(
res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧�� ��M (x)

I(x)
› g (l, γ) › g (r, γ) › x.l 7→ l › x.r 7→ r

)}
i f ( r e s ) {

//
{
res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧

�� ��M (x)
I(x)

› g (l, γ) › g (r, γ) › x.l 7→ l › x.r 7→ r
}

//{g (l, γ)} //{g (r, γ)}
b1 = span(x->l); b2 = span(x->r);
//{(b1 = 0 ∧ emp) ∨ (b1 = 1 ∧ t (l, γ))} //{(b2 = 0 ∧ emp) ∨ (b2 = 1 ∧ t (r, γ))}

//

{
res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧

�� ��M (x)
I(x)

› x.l 7→ l › x.r 7→ r ›

((b1 = 0 ∧ emp) ∨ (b1 = 1 ∧ t (l, γ))) › ((b2 = 0 ∧ emp) ∨ (b2 = 1 ∧ t (r, γ)))

}
i f ( ! b1 ) { x -> l = nu l l ; }
i f ( ! b2 ) { x ->r = nu l l ; }

//

{
res = 1 ∧ ∃l, r. γ(x) = (l, r) ∧

�� ��M (x)
I(x)

›

∃l′ ∈ {l, null}. x.l 7→ l′ › t
(
l′, γ

)
› ∃r′ ∈ {r, null}. x.r 7→ r′ › t

(
r′, γ

)}
//
{
res = 1 ∧ t (x, γ)

}
} //

{
(res = 0 ∧ emp) ∨ (res = 1 ∧ t (x, γ))

}
return r e s ;

} //
{
(b = 0 ∧ emp) ∨ (b = 1 ∧ t (x, γ))

}
Figure 8: Code and proof sketch of the concurrent spanning tree program. We
omit the obvious variables as resource assertions.

This is achieved below by giving a proof of the analogous specification using
the local graph predicate in Fig. 8, and demonstrating that the global graph
specification implies the local one using the principles of CoLoSL from Fig. 1. The
proof sketched in Fig. 8 is mostly straightforward. One subtlety is the consequence
step just before the second if statement. There, we first distribute the shared
state

�� ��M (x)
I(x)

› g (l, γ) › g (r, γ) over the disjunction, then use the fact that it

implies emp to discard it in the left disjunct. This proof demonstrates that our
CoLoSL reasoning really is compositional, in the sense that we are doing local
reasoning on the shared state (the subgraphs).

Let us show how to derive the specification (1) from the one obtained in Fig. 8.
We introduce the iterative star operator~; when iterating over the empty set,
it denotes emp by convention (needed below, when x is null). We define

P (x, γ) , ~
x;∗γn

∃l, r. γ(n) = (l, r) ∧ (U (n, l, r) ∨M (n))

Q(x, γ) , ~
x;∗γn

∃l, r. γ(n) = (l, r) ∧
�� ��U (n, l, r) ∨M (n)

I(n)
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From the definitions of G (x, γ) and g (x, γ), one can show that

graph (x, γ) ⇐⇒
�� ��P (x, γ)

Iγ
g (x, γ) ⇐⇒ Q(x, γ)

The specification (1) then follows from Consq, Fig. 8, and the derivation below:

graph (x, γ)
(Copy)⇒ ~

x;∗γn

�� ��P (x, γ)
Iγ

(Forget)⇒ ~
x;∗γn

(
∃l, r. γ(n) = (l, r) ∧

�� ��U (n, l, r) ∨M (n)
Iγ

)
(Shift)⇒ ~

x;∗γn

(
∃l, r. γ(n) = (l, r) ∧

�� ��U (n, l, r) ∨M (n)
I(n)

)
def⇐⇒ g (x, γ)

4.2 Set Module

Finally, we give a pictorial description of our reasoning about a concurrent set
module implemented as a singly-linked list. We compare our CoLoSL reasoning
with the original CAP reasoning of [7], demonstrating that our CoLoSL reasoning
provides more concise proofs using our local reasoning about shared state.

Consider the following diagram which illustrates the CAP set predicate of [7]:

v1 v2 v3 . . .
x y z

› ~
(x,y)/∈S
~
v

[U(x, y, v)] › ~
(x,y)∈S

∃w. ~
v 6=w

[U(x, y, v)]

s

Ix∪Iy∪Iz∪···

The set is represented as a sorted singly-linked list with no duplicate elements.
The list starts at address x with value v1, points to the next element at address
y with value v2, and so forth. Hereafter, we write node (x, v, y) to denote a node
at address x, with value v and successor y.

All nodes of the list reside in a single shared region labelled s and the interfer-
ence on the list is the combined interference associated with each constituent node.
Each node at a given address x is associated with a set of update capabilities of
the form [U(x, y, v)] for all possible addresses y and all possible values v. This is
to capture all potential successor addresses y and all potential values v that may
be stored at address x. In order to modify a node, a thread can acquire the lock
associated with the node and subsequently claim the relevant update capability.

Since in CAP the capabilities associated with a region can only be generated
upon its creation, the shared region is required to keep track of all possible
update capabilities [U(x, y, v)] associated with all addresses x (including those
not currently in the domain of the list), all addresses y and all values v. At any
one point, given node (x, v, y), the only update capability that can be claimed
by a thread (through locking) is the one that reflects its current status, namely
[U(x, y, v)]. As a result, an auxiliary mathematical set S is used to track those
nodes of the list that are currently locked and thus infer which [U] capabilities
have been claimed. The distribution of update capabilities is captured by the two
assertions written as the infinite multiplicative star operator ~. The first part of
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the assertion states that given any node at address x with successor y, if it is not
locked, i.e. (x, y) 6∈ S, then all of its update capabilities of the form [U(x, y, v)]
lie in the shared region for all values v. Dually, if it is locked, i.e. (x, y) ∈ S, then
the update capabilities for all values v but one (w 6= v) are in the shared region.

This CAP set predicate is unnecessarily complicated. It is counter-intuitive to
have to account for the capabilities associated with addresses not in the domain
of the list. Moreover, each thread observes all nodes in the list and thus needs to
account for their associated interference.

TaDA [3] took the first steps towards addressing the above shortcomings of
the CAP approach. TaDA regions are parametric in the separation algebra of
capabilities (called guards). As such, one can choose a more suitable algebra to
axiomatise the desired behaviour of capabilities. While TaDA’s approach is much
cleaner than that of CAP, it nevertheless requires the foresight of specifying
all desired interference associated with the region upon its creation. As such,
interference specifications are static and cannot be extended with new behaviour
even when the existing resources are left untouched. On the other hand, as well
as being parametric in its capability separation algebra, the dynamic subjective
views of CoLoSL provide local reasoning about the shared resource and its
interference.

We proceed with the CoLoSL proof of the set implementation. Recall from
§3 that CoLoSL is parametric in the separation algebra of capabilities. We thus
instantiate it with a heap-like capability separation algebra that is stateful and
demonstrate that this allows for a more concise proof.

We specify the set predicate as the ›-composition of subjective views associated
each node in the singly-linked list as illustrated by:

[x.N→y] › v1
x

Ix
› [y.N→z] › v2

y

Iy
› [z.N→ . . . ] › v3

z

Iz
› · · ·

The interference on each subjective view is limited to the node in question.
Associated with each node at address x is a “next” capability [x.N→y] that
tracks its successor y. This is analogous to the [U(x, y, v)] capability of CAP and
we shortly demonstrate how it is utilised in our reasoning.

Since CoLoSL allows for dynamic extension of the shared state, we do not need
to account for capabilities associated with all addresses. Instead, fresh capabilities
are generated dynamically as needed. We demonstrate this by giving a reasoning
outline of the add(v′) method that adds value v′ to the set by inserting it in the
sorted list. Suppose v2 < v′ < v3, and thus a new node w with value v′ is to be
inserted after node y. The operating thread proceeds by traversing the list by
hand-over-hand locking until it reaches node y. It then locks y and claims its
next pointer and moves it to its local state, as allowed by Iy. Subsequently, the
shared state is extended by the resources associated with the new node and its
associated capabilities ([w.N→z]) are generated on the fly as illustrated by:

[x.N→y] › v1
x

Ix
› [y.N→z] › v2

y

Iy
› [w.N→z] › v′

w

Iw
› [z.N→ . . . ] › v3

z

Iz
› · · ·
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Since the locking thread holds the next pointer of y in its local state, it modifies
it to point to the new node w. It then unlocks y and returns its next pointer to
the shared state. When inserting a new node between y and z, the associated
interference assertion Iy allows y to be unlocked only if it has been directed to a
new node whose successor is z. As such, the unlocking thread must demonstrate
that the new node w does indeed point to z. In order to establish this, we use
the Merge principle to combine the subjective views of y and w as follows:

[x.N→y] › v1
x

Ix
› [y.N→z] › v2

y
› [w.N→z] › v′

w

Iy ∪ Iw
› [z.N→ . . . ] › v3

z

Iz
› · · ·

Finally, y is unlocked; its next pointer is returned to the shared state and its
next capability is modified to reflect its new successor. Using the Copy, Forget
and Shift principles in order, we obtain the set predicate with w inserted.

[x.N→y] › v1
x

Ix
› [y.N→w] › v2

y

Iy
› [w.N→z] › v′

w

Iw
› [z.N→ . . . ] › v3

z

Iz
› · · ·

We can reason about the remove operation in a similar fashion. The dynamic
extension afforded by the Extend principle allows us to generate new capabilities
only when needed and thus gives way to a concise proof. Moreover, rather than
having a distinct capability to modify the element at address x, for each possible
successor address y (as with [U(x, y, v)] in CAP), we appeal to a single capability
of the form [x.N→y] that is modified to [x.N→y′] whenever x’s successor changes
from y to y′. Lastly, using the reasoning principles of Merge, Forget, Shift
and Copy, we can grow and shrink our subjective views as needed. This means
that, at any one point, we only view the relevant parts of the shared state. The
technical details can be found in [20].

Concluding Remarks We have introduced CoLoSL, a new program logic for
reasoning locally about the shared state. We focus on subjective views, which
expand and contract to provide a flexible treatment of both the shared resource
and its interference. However, CoLoSL is still young, and lacks many features of
its various cousins. There are many interesting ideas present in the literature: e.g.
abstract states governed by state transition systems [25]; higher-order reason-
ing [23]; and abstract atomicity [3]. All these ideas require further investigation.
Here, our aim was to simply introduce subjective views as a fundamental new
way of underpinning such reasoning.
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