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Abstract
We introduce a trusted infrastructure for the symbolic analysis of modern event-driven Web applica-
tions. This infrastructure consists of reference implementations of the DOM Core Level 1, DOM UI
Events, JavaScript Promises and the JavaScript async/await APIs, all underpinned by a simple
Core Event Semantics which is sufficiently expressive to describe the event models underlying these
APIs. Our reference implementations are trustworthy in that three follow the appropriate standards
line-by-line and all are thoroughly tested against the official test-suites, passing all the applicable
tests. Using the Core Event Semantics and the reference implementations, we develop JaVerT.Click,
a symbolic execution tool for JavaScript that, for the first time, supports reasoning about JavaScript
programs that use multiple event-related APIs. We demonstrate the viability of JaVerT.Click by
proving both the presence and absence of bugs in real-world JavaScript code.
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1 Introduction

Event-driven programming lies at the core of modern Web applications, facilitated by a variety
of APIs, such as DOM UI Events [53], JavaScript (JS) Promises [7] and Web Workers [52],
each of which comes with its own event model and idiosyncrasies. There has been work on
formalising and reasoning about some of these event models: e.g., Rajani et al. [29] have
given a formal semantics of DOM UI Events, instrumented to disallow insecure information
flows; Lerner at al. [19] have given a formal model and have proven several meta-properties
of the DOM Event Dispatch algorithm; and Madsen et al. [22] have developed a calculus for
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28:2 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

Figure 1 Infrastructure of JaVerT.Click

reasoning about JS promises. In each case, the work targets a specific API and its associated
event model, and it is not apparent how the work can be extended to include other APIs.

We introduce a trusted infrastructure for the symbolic analysis of modern event-driven
Web applications which, we believe for the first time, supports reasoning about code that uses
multiple event-related APIs within a single, unified formalism. This infrastructure comprises:
1. a Core Event Semantics, which identifies the fundamental building blocks underpinning the

event models of widely-used APIs, and which is formalised and implemented parametrically,
assuming an underlying language L (§2); and

2. trusted JS reference implementations of DOM Core Level 1, DOM UI Events, JS promises,
and the JS async/await (§3-4), the APIs that we target in this paper.

Our infrastructure can readily be added on top of existing symbolic analysis tools; in this
paper, we connect it to JaVerT 2.0 [13], a state-of-the-art symbolic analysis tool for JS,
creating JaVerT.Click, the first symbolic analysis tool that can reason about JS programs that
use multiple event-related APIs. We use JaVerT.Click to analyse cash [55] and p−map [35],
two real-world JS libraries that interact with the targeted APIs, finding bugs in both and
establishing bounded correctness of several important properties for cash.

The infrastructure of JaVerT.Click is illustrated in Figure 1. JaVerT.Click is built on
top of JaVerT 2.0 [13], which supports three types of analysis: whole-program symbolic
testing, verification, and automatic compositional testing based on bi-abduction; in this
paper, we focus only on symbolic testing. The symbolic execution engine of JaVerT 2.0
works on JSIL, a simple intermediate language that can be instantiated with either the
concrete or symbolic memory model of JS. JSIL comes with a correctness result that states
that its symbolic testing has no false positives. JaVerT 2.0 targets the strict mode of the
ECMAScript 5 standard (ES5 Strict), and comes with: JS-2-JSIL, a trusted compiler from
ES5 Strict to JSIL which preserves the memory model and the semantics line-by-line, and is
tested using the official Test262 test suite [6]; and the JS-2-JSIL runtime, which provides
JSIL implementations of the ES5 Strict internal and built-in functions.

Our reference implementations are all written in ES5 Strict and get compiled to JSIL
using JS-2-JSIL as part of JaVerT.Click. These implementations are trusted in that all except
that of JS async/await (cf. §4.2) follow the API standards line-by-line and all are thoroughly
tested against the official test suites, passing all the applicable tests. During the testing, we
have discovered coverage gaps in the test suites of DOM Core Level 1 and UI Events and
created additional tests to fill these gaps. Our choice to use JS as the API implementation
language enables us to directly build on our previous JS analysis, simplifies implementations
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of promises and async/await, which rely on JS for some of their functionality, and makes
the implementations easily reusable by other symbolic analysis tools for JS.

As our programs of interest use JS features beyond ES5 Strict, such as async/await and
anonymous lambda-functions, we introduce a transpilation step from ES6+ Strict to ES5
Strict. This transpiled program and the compiled API reference implementations are then
compiled to JSIL using the JS-2-JSIL compiler. The resulting JSIL code, together with the
JS-2-JSIL runtime, is passed to the Core Event Semantics instantiated with either the JSIL
concrete semantics (for testing) or the JSIL symbolic semantics (for analysis). Assuming
correctness of the underlying language (e.g. JSIL), we give a general correctness result for
the Core Event Semantics, proving that it has no false positives.

We apply JaVerT.Click to real-world JS code that calls the APIs studied in this paper (§5).
In particular, we provide comprehensive symbolic testing of the events module of the cash
library [55], a widely-used alternative for jQuery, which makes heavy use of DOM UI Events.
We create a symbolic test suite for the events module with 100% line coverage, establishing
bounded correctness of several important properties of the module, such as: ‘a handler can
be executed for a given event if and only if it has been previously registered for that event’,
and also discovering two subtle, previously unknown bugs. We also symbolically test the
small, yet widely-used, p−map library [35], which uses JS promises and async/await to
provide an extra layer of functionality on top of JS promises. We achieve 100% line coverage,
discovering one bug. All discovered bugs have been reported and have since been fixed.

We believe that our infrastructure can straightforwardly be extended to support other
event-driven Web APIs, such as File [51], postMessage [54], and Web Workers [52]. This would
require a trusted JS reference implementation of the target API and, possibly, an extension
of the Core Event Semantics with primitives that handle new types of event behaviour.

2 Core Event Semantics

Our ultimate goal is to develop a formalism within which one could reason symbolically
about all event-related APIs. In this paper, we take an important step towards this goal by
distilling the essence of three fundamental, complex such APIs—DOM UI events, JS promises,
and JS async/await—into a minimal Core Event Semantics (onward: Event Semantics)
that is easily extensible with support for further APIs. We define the Event Semantics
parametrically, as a layer on top of the semantics of a given underlying language (L), thus
focussing only on event-related details and filtering out any clutter potentially introduced by
the L-semantics. The Event Semantics interacts with the L-semantics by exposing a set of
labels, which correspond to the fundamental operations underpinning the targeted APIs, such
as event handler registration/deregistration and synchronous/asynchronous event dispatch.
In this section, we first define the main concepts of the Event Semantics and explain the
intuition behind them (§2.1), and then present the concrete (§2.2) and symbolic (§2.3) Event
Semantics, connected with an appropriate correctness result.

2.1 Main Concepts of the Event Semantics
The main concepts of our Event Semantics are given in Figure 2. The Event Semantics
inherits its values, v ∈ V , from the corresponding L-semantics: for example, if the L-semantics
is concrete, these values will be concrete; analogously, if it is symbolic, they will be symbolic.
In the meta-theory, we assume that the L-values contain: a distinguished set of unique event
types, e ∈ E , intuitively corresponding to, for example, click or focus in the DOM; and a
distinguished set of unique function identifiers, f ∈ F . In the implementation, we represent
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28:4 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

Values Event Types Function Ids Handler Registers L-Confs Conf. Preds
v ∈ V e ∈ E ⊂ V f ∈ F ⊂ V h ∈ H : E ⇀ F c ∈ C p ∈ P : C → B

Event Labels
` ∈ L := addHdlr〈e, f〉 | remHdlr〈e, f〉 | sDispatch〈e, v〉 | aDispatch〈e, v〉 | schedule〈f, v〉 | await〈v, p〉

Continuations Continuation Queues E-Configurations
κ ∈ K := (f, v) | (c, p) q ∈ Q : K ω ∈ Ω : C ×H×Q

Figure 2 Main Concepts of the Event Semantics

both as strings. For simplicity, we onward refer to event types as events. Our modelling
of events is guided by the DOM, in the sense that each event is associated with a list of
handlers: that is, the functions that should be executed when that event is triggered; this
information is kept by the Event Semantics in handler registers, h ∈ H.

The Event Semantics, expectedly, needs to be aware of the configurations of the underlying
language (L-configurations), c ∈ C, but sees them as a black box and interacts with them
only through an interface, presented shortly. It does assume that an L-configuration can be
divided into: a store component, describing the variable store of L; and a heap component,
describing the heap on which L-execution operates; and a control flow component, describing
how the L-execution is to proceed. For example, a concrete JSIL configuration, 〈ρ, µ,m, cs, i〉,
consists of: a variable store ρ (the store component); a memory µ and a metadata table m
(the heap component); and a call stack cs for capturing nested function calls and the index
of the next command to be executed, i (the control flow component). A symbolic JSIL
configuration also includes a path condition, π, which is part of the control flow component.
An L-configuration is final iff it cannot be executed further in the L-semantics. To model
correctly the synchronous dispatch of the DOM and the asynchronous wait of the JS await,
we also require boolean predicates on L-configurations, p ∈ P.

The L-semantics communicates with the Event Semantics via event labels, ` ∈ L, which
represent the fundamental operations (primitives) through which we capture the behaviour
of our targeted APIs. In particular, addHdlr and remHdlr, respectively, allow us to add and
remove handlers for a given event, whereas sDispatch and aDispatch, respectively, allow us to
dispatch events either synchronously (corresponding to the DOM programmatic dispatch) or
asynchronously (corresponding to a user event, such as clicking a button on a Web page).
These four labels are used in the modelling of DOM UI Events (cf. 3.2). Additionally, we
support asynchronous computation scheduling via the schedule label, required for JS promises
(cf. 4.1), and an asynchronous wait via the await label, required for JS await (cf. 4.2).

All three targeted APIs work with an underlying queue of computations: for the DOM,
this queue is implicitly formed by event dispatch; for JavaScript promises and async/await,
this queue is the job queue of JavaScript. We model these queues as a unified continuation
queue, q ∈ Q, which is, essentially, a list of continuations, κ ∈ K, which describe how the
execution of the Event Semantics is to proceed. We consider two types of continuations:
handler-continuations and yield-continuations. A handler-continuation is a pair, (f, v),
essentially stating that the handler f is be to be executed with argument v. When an event
is dispatched via sDispatch or aDispatch, the respective handler-continuations are put in the
handler queue. A yield-continuation is a pair, (c, p), stating that the L-configuration c has
been suspended and can be re-activated once the predicate p holds.

Finally, the Event Semantics configurations, (E-configurations), ω ∈ Ω, consist of: an
L-configuration; a handler register; and a continuation queue.
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Using the Event Semantics in JavaScript. Our JS reference implementations of the event-
related APIs interact with the Event Semantics via JS wrapper functions, one per event
label; we denote, for example, the wrapper function of the addHdlr label by __addHdlr,
and the others analogously. Calls to these wrapper functions are meant to be intercepted
by the underlying JavaScript implementation, which is then supposed to construct the
corresponding label and pass it on to the Event Semantics. In JaVerT.Click, these wrapper
functions resolve to JSIL functions with dedicated identifiers, the calls to which are then
intercepted appropriately by the JSIL semantics. This approach, however, is independent of
JaVerT.Click: any other implementation of JavaScript and of our Event Semantics can re-use
our reference implementations, as long as these wrapper functions are properly intercepted.

Example. Below, we give a simple JavaScript example of how our Event Semantics can
be used in JaVerT.Click (left), together with parts of its execution trace (right). In the
E-configurations shown in the trace, we focus on the handler register and continuation queue,
both of which are initially empty, and omit the details of the JSIL-configuration c.

First, in lines 1-9, we declare a variable person and two functions: h1, which initialises
person, and h2, which prints out its name. Next, in lines 11-12, we add h1 and h2 as handlers
for the ′init′ and ′print′ events, respectively, by using the wrapper function __addHdlr,
exposed globally by the Event Semantics. This is recorded appropriately in the handler
register, which then does not change for the remainder of the execution (denoted by −||− in
the diagram). Next, in lines 14-15, we declare e1 and e2 to be two symbolic events (strings),
using the symbStr() function of JaVerT.Click. Finally, we dispatch e1 asynchronously (line
17) and e2 synchronously (line 18), using the appropriate wrapper functions. Intuitively,
in an asynchronous dispatch, the related handlers (here, any handlers for e1) are added
to the back of the current continuation queue (here, an empty continuation queue), to be
executed after all of the previously scheduled continuations are completed. In contrast, in
a synchronous dispatch, the current computation is suspended and the related handlers
(here, any handlers for e2) are added to the front of the continuation queue (which now
contains the handlers for e1), to be executed immediately, followed by the remainder of the
suspended current computation (which is empty, as the synchronous dispatch is at the end
of the program, and is thus omitted from the diagram).

Given that the events are symbolic, the two dispatches will cause the execution of

1 var person;
2

3 function h1() {
4 person = {name:'Mary'}
5 }
6

7 function h2() {
8 console.log(person.name)
9 }

10

11 __addHdlr('init', h1)
12 __addHdlr('print', h2)
13

14 var e1 = symbStr()
15 var e2 = symbStr()
16

17 __aDispatch(e1)
18 __sDispatch(e2)
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JaVerT.Click to branch; there are four relevant cases, as illustrated in the diagram. First,
if e1 equals ′print′ and e2 equals ′init′, the continuation queue after the dispatches will
contain h1 followed by h2, meaning that the execution will terminate successfully and ′Mary′

will be printed to the console. However, if e2 equals ′print′ (meaning that h2 will be put in
the front of the continuation queue by the synchronous dispatch) or if e1 equals ′print′ and
e2 has no associated handlers (meaning that h2 will be put in the back of the continuation
queue by the asynchronous dispatch, but will be the only function in that queue), the
execution will throw a native JavaScript type error, as h2 will attempt to read the ′name′

property of person, which will not have been initialised. Finally, in all other cases, the
execution will terminate successfully, but with no output to the console.

Parametricity of the Event Semantics. As illustrated in Figure 1, the Event Semantics
is implemented parametrically, as a layer on top of a given L-semantics. Since a unified
presentation that reflects the implementation precisely would take up considerable space, we
choose to present the concrete (§2.2) and the symbolic (§2.3) Event Semantics separately.

2.2 Concrete Event Semantics
A concrete Event Semantics is built on top of a concrete L-semantics. It interacts with
L-configurations via an interface that consists of six functions: assume, suspend, initialConf,
isFinal, mergeConfs, and splitReturn; we describe these functions abstractly on their first use,
and illustrate how some of them work in JSIL. The Event Semantics also uses the following
auxiliary relations: (1) add handler, AH(h, e, f), for extending the handler register h with
the handler f for an event e; (2) remove handler, RH(h, e, f), for removing the handler f for
e from h; (3) find handlers, FH(h, e), for obtaining the handlers associated with e in h; and
(4) continue with, CWL(c, κ), for updating the L-configuration c so that the continuation κ
can be executed. We first give the formal definitions of these auxiliary relations, using
function notation as they are deterministic in the concrete case. We write ++ to denote list
concatenation; ho(e) to denote h(e) if it is defined, and the empty list otherwise; and l \ f to
denote the list obtained from the list l by removing all occurrences of f .

Concrete Event Semantics: Auxiliary Relations

Add Handler
AH(h, e, f) ,

h [e 7→ ho(e)++[f ]]

Find Handler
FH(h, e) , ho(e)

CW-Handler-Cont.
CWL(c, (f, v)) , L.initialConf(c, (f, v))

Remove Handler

RH(h, e, f) ,

{
h [e 7→ h(e) \ f ] , if e ∈ dom(h)
h, otherwise

CW-Yield-Cont.
p(c) = True

CWL(c, (c′, p)) , L.mergeConfs(c, c′)

These definitions are all straightforward except CWL.When given a handler-continuation,
κ = (f, v), CWL sets up the execution of the handler f with argument v by using the initialConf
function of the L-semantics interface, which returns an the L-configuration consisting of the
the heap component of c and the control flow and store components set up to execute only
the function f with argument v. When given a yield-continuation, κ = (c′, p), CWL requires
the predicate p to hold for the current L-configuration c, in which case it merges the two
configurations using the mergeConfs(c, c′) function of the L-semantics interface, which returns
a configuration that consists of the heap component of c and the control flow and store
components of c′; in particular, in JSIL, given c = 〈ρ, µ,m, cs, i〉 and c′ = 〈ρ′, µ′,m′, cs′, i′〉,
we would have that mergeConfs(c, c′) = 〈ρ′, µ,m, cs′, i′〉.



G. Sampaio, J. Fragoso Santos, P. Maksimović, P. Gardner 28:7

We now give the concrete Event Semantics transitions, which are of the form ω ;α
E(L) ω

′,
where ω and ω′, respectively, are the configurations before and after the computed step,
and α is an environment action. Environment actions are used to model events triggered
by the environment, such as user UI-events and network events. They have the grammar
α ::= · | (e, v), where · represents no environment action and (e, v) represents the triggering
of the event e with value v. For clarity, we elide · in the transitions.

Concrete Event Semantics: 〈c, h, q〉;α
E(L) 〈c′, h′, q′〉

Language Transition
c ;L c

′

〈c, h, q〉;E(L) 〈c′, h, q〉

Add Handler
c ;`

L c
′ ` = addHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,AH(h, e, f), q〉

Remove Handler
c ;`

L c
′ ` = remHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,RH(h, e, f), q〉

Synchronous Dispatch
c ;`

L c
′ ` = sDispatch〈e, v〉 [fi |n0 ] = FH(h, e)

q′ = [(fi, [e, v]) |ni=0] c′′ = L.suspend(c′)
〈c, h, q〉;E(L) 〈c′′, h, q′ ++[(c′, (λc.True))]++q〉

Asynchronous Dispatch
c ;`

L c
′ ` = aDispatch〈e, v〉

[fi |n0 ] = FH(h, e) q′ = [(fi, [e, v]) |ni=0]
〈c, h, q〉;E(L) 〈c′, h, q++q′〉

Schedule
c ;`

L c
′ ` = schedule〈f, v〉
q′ = q++[(f, v)]

〈c, h, q〉;E(L) 〈c′, h, q′〉

Await
c ;`

L c
′ ` = await〈v, p〉

(cr, ca) = L.splitReturn(c′, v)
〈c, h, q〉;E(L) 〈cr, h, q++[(ca, p)]〉

Environment Dispatch
[fi |n0 ] = FH(h, e)
q′ = [(fi, [e, v]) |ni=0]

〈c, h, q〉;(e,v)
E(L) 〈c, h, q++q′〉

Continuation-Success
L.isFinal(c) q = κ : q′

〈c, h, q〉;E(L) 〈CWL(c, κ), h, q′〉

Continuation-Failure
L.isFinal(c) q = κ : q′ (c, κ) 6∈ dom(CWL)

〈c, h, q〉;E(L) 〈c, h, q′++[κ]〉

The first seven rules rely on a transition of the L-semantics, updating the current L-
configuration with the one generated by the L-transition and using the generated label to
determine which event-related action is to be performed, if any. The first three rules are
straightforward; we describe the remaining four below:

[Synchronous Dispatch] When the L-semantics generates the label sDispatch〈e, v〉, the Event
Semantics first creates a handler-continuation for each handler associated with e, together
with a yield continuation, (c′, (λc.True)). These continuations are then all added to the
front of the continuation queue, ensuring that the handlers will be executed in order, after
which the current computation will be retaken unconditionally, given [CW-Yield-Cont.].
Lastly, the Event Semantics uses the suspend(c′) function of the L-semantics, which
returns the configuration that is the same as c′ but marked as final, to construct a final
configuration c′′, which, given [Continuation-Success], means that the execution of c′

will stop and the first handler will be executed next.
[Asynchronous Dispatch] When the L-semantics generates the label aDispatch〈e, v〉, the

Event Semantics proceeds similarly to [Synchronous Dispatch], but the continuations
are added to the back of the continuation queue rather than to the front, meaning that
the handlers will still be executed in order, but at some point in the future.

[Schedule] The L-semantics generates the label schedule〈f, v〉; the Event Semantics creates
a handler-continuation (f, v) for the given function with the given arguments and places
it at the back of the continuation queue.

[Await] When the L-semantics generates the label await〈v, p〉, the Event Semantics creates
the return configuration, cr, and the await configuration, ca via the splitReturn function
of the L-semantics interface, which constructs: cr from c by setting up the control flow
component as if the currently executing function, f , returned the value v; and ca from c by
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setting up the control flow component to only contain the remainder of the execution of f .
It then schedules the remainder of the computation of the currently executing function
to be completed asynchronously once p holds, and continues the current computation as
if the currently executing function had returned the value v.

The remaining three transitions do not rely on the L-semantics. In the [Environment
Dispatch] case, the environment generates the label (e, v), and the Event Semantics behaves
as for [Asynchronous Dispatch], except that the resulting L-configuration does not change. If
the current active configuration is final (as checked by the isFinal(c) function of the L-semantics
interface, which returns true if c is final, and false otherwise), the Event Semantics tries to
create a new configuration for the execution of the continuation at the front of the continuation
queue. If this is possible, the execution proceeds ([Continuation-Success]); otherwise, that
continuation is demoted to the back of the continuation queue ([Continuation-Failure]).

2.3 Symbolic Event Semantics
Symbolic execution [2, 3, 4] is a program analysis technique that systematically explores all
possible executions of the given program up to a bound, by executing the program on symbolic
values instead of concrete ones. For each execution path, symbolic execution constructs a
first-order quantifier-free formula, called a path condition, which accumulates the constraints
on the symbolic inputs that direct the execution along that path. Here, we describe a
symbolic version of the Event Semantics introduced in §2.2, obtained by lifting the concrete
event semantics to the symbolic level, following well-established approaches [44, 43, 12].

We assume that L has a symbolic semantics with symbolic values, v̂ ∈ V̂, built using
symbolic variables, x̂ ∈ X̂ . The concepts introduced in §2.1 are defined as in Figure 2, but for
symbolic instead of concrete values, and are annotated with ˆ to be distinguishable from their
concrete counterparts; e.g., we have: symbolic events, ê ∈ Ê ⊂ V̂; symbolic handler registers,
ĥ ∈ Ĥ, mapping symbolic events to lists of function identifiers; and symbolic configurations,
ω̂ ∈ Ω̂, comprising a symbolic L-configuration, ĉ ∈ Ĉf , a symbolic handler register, and a
symbolic continuation queue, q̂ ∈ Q̂. We also assume that every symbolic L-configuration ĉ
contains a boolean symbolic value, π ∈ Π ⊂ V̂, to which we refer as the path condition of ĉ.

The symbolic Event Semantics, like the concrete, uses the L-semantics interface and
the four auxiliary relations introduced in §2.2. When executed symbolically, however, the
auxiliary relations that operate on handler registers (AH, RH, and FH) may branch. To
account for this branching, we pair each outcome with a constraint describing the conditions
under which the outcome is valid. The formal definitions are given below; we omit the
definition of the RH relation, as it is analogous to that of AH.

Symbolic Event Semantics: Auxiliary Relations

Add Handler - Found
ê′ ∈ dom(ĥ) ĥ′ = ĥ

[
ê′ 7→ ĥ(ê′)++[f ]

]
AH(ĥ, ê, f) ; (ĥ′, ê = ê′)

Add Handler - Not Found
ĥ′ = ĥ [ê 7→ [f ]]

AH(ĥ, ê, f) ; (ĥ′, ê 6∈ dom(ĥ))

Find Handler - Found
ê′ ∈ dom(ĥ)

FH(ĥ, ê) ; (ĥ(ê′), ê = ê′)

Find Handler - Not Found
FH(ĥ, ê) ; ([], ê 6∈ dom(ĥ))

An excerpt of the symbolic Event Semantics is given below. We focus on the representative
rules different from their concrete counterparts, highlighting the differences in grey . These
differences are introduced by the above-discussed branching of the auxiliary relations; in
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particular, every time an auxiliary relation is used, the constraint it generates must be added
to the current path condition using the assume(ĉ, π) function of the L-semantics interface,
which returns the symbolic L-configuration obtained by extending the path condition of ĉ
with the formula π if such an extension is satisfiable, and is undefined otherwise.

Symbolic Event Semantics (excerpt): 〈ĉ, ĥ, q̂〉;α̂
Ê(L) 〈ĉ

′, ĥ′, q̂′〉

Add Handler
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= addHdlr〈ê, f〉
AH(ĥ, ê, f) ; (ĥ′, π) ĉ′′ = L.assume(ĉ′, π)

〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ
′′, ĥ′, q̂〉

Environment Dispatch
FH(ĥ, ê) ; ([fi |n0 ], π) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′ = L.assume(ĉ, π)
〈ĉ, ĥ, q̂〉;(ê,v̂)

Ê(L)
〈ĉ′, ĥ, q̂++q̂′〉

Synchronous Dispatch
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= sDispatch〈ê, v̂〉
FH((ĥ, ê)) ; (([fi |n0 ], π)) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′′ = L.assume(ĉ′, π) ĉ′′′ = L.suspend(ĉ′′)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′′, ĥ, q̂′ ++[(ĉ′′, (λĉ.True))]++q̂〉

Asynchronous Dispatch
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= aDispatch〈ê, v̂〉
FH(ĥ, ê) ; ([fi |n0 ], π) q̂′ = [(fi, [ê, v̂]) |ni=0]

ĉ′′ = L.assume(ĉ′, π)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′, ĥ, q̂++q̂′〉

Correctness. To establish the correctness of the symbolic Event Semantics w.r.t the concrete
Event Semantics, we first relate the corresponding configurations using symbolic environments,
ε : X̂ ⇀ V, which map symbolic variables to concrete values, while preserving types.
Given a symbolic environment ε, we write Iε(v̂) to denote the interpretation of v̂ under ε,
with the key case being that of symbolic variables: Iε(x̂) = ε(x̂). We extend Iε to all
other concepts defined in Figure 2 component-wise, overloading notation: for example,
Iε(〈ĉ, ĥ, q̂〉) , 〈Iε(ĉ), Iε(ĥ), Iε(q̂)〉. We assume that interpretation is preserved by the
functions of the L-semantics interface; for example, that L.isFinal(ĉ)⇔ L.isFinal(Iε(ĉ)).

We define the models of a symbolic L-configuration ĉ under the path condition π as the
set of all concrete configurations obtained via interpretations of ĉ that satisfy π and their
accompanying symbolic environments: Mπ(ĉ) = {(ε, Iε(ĉ)) | Iε(π) = True}. We extend this
notion to symbolic labels, environment actions, and E-configurations, overloading notation.

The correctness of the Event Semantics relies on the correctness of the L-semantics. A
given symbolic L-semantics is correct w.r.t. a given concrete L-semantics, as formalised in
Definition 1, if every symbolic trace: (1) over-approximates all concrete traces that follow
its execution path and whose initial concrete L-configuration is over-approximated by the
initial symbolic L-configuration (Directed Soundness); and (2) has at least one concretisation
(Directed Completeness). Directed Completeness, in particular, guarantees the absence of
false-positive bug-reports: if a bug happens symbolically, then it must also happen concretely.

I Definition 1 (Correctness Criteria - Symbolic L-Semantics).

L-Directed-Soundness
ĉ ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′)) ∧ (ε, c) ∈Mπ(ĉ) ∧ c ;`
L c

′

=⇒ (ε, c′) ∈Mπ(ĉ′) ∧ (ε, `) ∈Mπ(ˆ̀)

L-Directed-Completeness
ĉ ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′))
∧ (ε, c) ∈Mπ(ĉ)

=⇒ ∃ `, c′. c ;`
L c

′

Theorem 2 states that if the symbolic L-semantics is correct, then so is the obtained
Event Semantics. To precisely identify the concrete traces that follow the same path as the
symbolic trace, in Theorem 2 we only pick concretisations of the initial symbolic state that
satisfy the final path condition (π = pc(ω̂′)).
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I Theorem 2 (Correctness of the Symbolic Event Semantics).

E-Directed-Soundness
ω̂ ;α̂

Ê(L) ω̂
′ ∧ π = pc(ω̂′) ∧ (ε, ω) ∈Mπ(ω̂)

∧ (ε, α) ∈Mπ(α̂) ∧ ω ;α
E(L) ω

′

=⇒ (ε, ω′) ∈Mπ(ω̂′)

E-Directed-Completeness
ω̂ ;α̂

Ê(L) ω̂
′ ∧ π = pc(ω̂′)

∧ (ε, ω) ∈Mπ(ω̂)
=⇒ ∃α, ω′. ω ;α

E(L) ω
′

We actually prove a stronger result, analogous to that given in Definition 1, with
π ⇒ pc(ω̂′), from which the presented result trivially follows. The proof is done by case
analysis on the symbolic rules for the Event Semantics, and can be found integrally in [31].

3 The DOM API

The Document Object Model (DOM) [53] is an API through which the code executing in the
browser can interact with the Web page displayed to the user. Initially designed as a simple
XML/HTML inspect-update library, the DOM has been substantially extended over the
last twenty years and now includes a wide variety of features, such as specialised traversals,
events, abstract views, and cascading style sheets. To cope with this growing complexity, the
DOM API has been organised as a collection of smaller APIs, each targeting a specific set
of features. Recently, the most relevant of these APIs, Core Levels 1-3 [47, 49], have been
unified in a single all-encompassing DOM API, called the DOM Living Standard [53], which
defines a “platform-neutral model for events, aborting activities, and node-trees”. The DOM
Living Standard is inspired by the ECMAScript standard [7]. It is written as if it were the
pseudo-code of a DOM implementation, describing each DOM method operationally and
detailing each evaluation step. This approach, unlike the previous declarative one [47, 48, 49],
facilitates new reference implementations tightly connected to the text of the standard.

In this section, we present our JavaScript reference implementations of two DOM APIs:
DOM Core Level 1 [47], which describes a range of operations for inspecting and updating
XML/HTML documents (§3.1); and DOM UI Events [53], which describes the event model
of the DOM (§3.2). For the latter, we describe in detail its connection to the Event
Semantics. Importantly, both reference implementations are trustworthy: they closely follow
the specifications of their corresponding methods as per the DOM Living Standard, as
illustrated in this section; and they were thoroughly tested against the appropriate official
test suites, as shown in §5. They, therefore, constitute a reliable representation of the DOM,
which is useful for analysing Web programs that interact with the DOM API.

3.1 DOM Core Level 1
The DOM Core Level 1 API [47] is the first version of the DOM API. It describes how
XML/HTML documents are internally represented as DOM trees and defines a range of
methods for manipulating these trees. DOM trees comprise several different types of DOM
nodes and are subject to a number of topological constraints restricting the ways in which
these nodes can form a valid DOM tree. For instance, the root node of every DOM tree
must have type Document and can have at most one child of type Element. Elements, on
the other hand, can have multiple child nodes of different types, such as Text and Element.

The DOM standard defines interfaces describing the structure of every type of DOM
node in an object-oriented style. For every node type, the standard specifies the fields and
methods exposed by the nodes of that type. Furthermore, as in standard OO languages,
each node type might inherit from another node type; for instance, every Element node is
also a Node, meaning that it exposes all fields and methods defined in the Node interface.
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interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(DOMString name);
void setAttribute(DOMString name, DOMString value) raises (DOMException);
void removeAttribute(DOMString name) raises (DOMException);
Attr getAttributeNode(DOMString name);
Attr setAttributeNode(Attr newAttr) raises (DOMException);
Attr removeAttributeNode(Attr oldAttr) raises (DOMException);
NodeList getElementsByTagName(DOMString name);
void normalize();

};

Figure 3 DOM Element interface (top) and the respective JavaScript object graph (bottom)

We implement the DOM Core Level 1 API in JavaScript (ES5 Strict), encoding DOM
objects as JS objects. In particular, each type of DOM node is mapped to the JS constructor
function in charge of creating the nodes of that type. Also, we emulate class-based inheritance,
which is used to describe DOM nodes in the standard, using the prototype inheritance of JS,
by storing the methods shared by all nodes of a given type in their (shared) prototype.

In the following, we describe our implementations of the Element and NodeList inter-
faces, which showcase, respectively, how our implementation follows the standard, and how
JavaScript enables us to write an elegant implementation of DOM live collections.

Element Interface. In Figure 3, we show the Element interface written in IDL (Interface
Description Language) as in the standard (top) and a fragment of its corresponding object
graph from our JavaScript implementation (bottom). The standard states that Element
inherits from Node, meaning that all objects of type Element expose the methods and fields
of Node objects. Additionally, every Element object exposes a field tagName and the methods
getAttribute, setAttribute, removeAttribute, getAttributeNode, setAttributeNode,
removeAttributeNode, getElementsByTagName, and normalize.

In the JavaScript object graph, besides exposing the property tagName, all Element
objects directly define the properties corresponding to the fields of the Node interface (e.g.
nodeName, ownerDocument, etc). The methods of the Element interface are stored in the
object ElemProto, the prototype of all Element objects, and the Node methods are stored in
NodeProto, which is the prototype of ElemProto.

NodeList Interface. The NodeList interface describes the so-called DOM live collections.
A live collection is a special data structure defined in the DOM API that automatically reflects
changes that occur in its associated document. For instance, the getElementsByTagName
method from the above-mentioned Element interface returns a live collection containing the
DOM nodes that match the supplied tag name. Working with live collections is error-prone
and requires particular attention. Consider, for example, the following program:

var divs = body.getElementsByTagName("div");
for (var i = 0; i < divs.length; i++)

{ body.appendChild(document.createElement("div")) }
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This program iterates over the initial collection of div nodes in the DOM tree rooted at body.
On each iteration, it creates a new div node and inserts it into the original tree. However, this
new div is also inserted into the live collection divs, whose length automatically increases
by one, causing the program to loop forever.

The NodeList interface defines the field length, for obtaining the length of a node list,
and the method item(i) for accessing its i-th element. In JavaScript, we implement node
lists lazily in that we recompute the contents of a given node list every time it is inspected.
This we achieve by extending NodeList objects with an internal compute function, used
to compute its contents. We call compute at every invocation of the item method, and
associate the length property of every node list with a JavaScript getter that also calls
compute before checking the the length of the corresponding node list. As an optimisation,
we cache computed live collections by associating each node list with a unique identifier and
maintaining a global array of computed node lists. However, whenever there is any update
to the DOM tree, all cached live collections are invalidated and will be re-computed the next
time they are inspected.

3.2 DOM UI Events
The DOM UI Events API [53] describes the DOM event model. In particular, it provides
the mechanism for programmers to register event listeners, and explains how these listeners
are collected and executed every time a DOM event gets triggered either by the environment
(for example, via user events and browser events) or programatically.

At the core of the UI Events API is the DOM Dispatch algorithm, which precisely
describes the process of collecting and executing event listeners every time a DOM event gets
triggered. The DOM Living standard includes the pseudo-code of the Dispatch algorithm,
detailing all the steps that are performed when dispatching a DOM event ([53], §2.9). It is a
complex algorithm that relies on a number of auxiliary functions, which, in turn, are also
described operationally and often rely on other auxiliary functions themselves.

In the following, we describe our implementation of the DOM Dispatch, demonstrate
that this implementation follows the pseudo-code of the standard line-by-line, and describe
in detail how it is connected to the Event Semantics.

DOM Dispatch. We explain the DOM Dispatch algorithm via an example given in Figure 4,
which shows a DOM tree of an HTML page with an element dv containing two buttons, bt1
and bt2, and illustrates the steps taken by Dispatch when the user clicks on bt1. Coarsely,
Dispatch first determines the propagation path of the triggered event, i.e. the list of DOM
nodes connecting the element on which the event was triggered to the root of the DOM
document, in this case [bt1, dv, bd, htm, doc]. Then, it executes the handlers registered along
that propagation path during three consecutive phases: (1) the capture phase, where the
event is propagated from the root of the document, doc, to the target, bt1; (2) the target
phase, where the event is processed at the target, bt1; and (3) the bubble phase, where the
event is propagated back to the root. During each phase, Dispatch executes the handlers
attached to the current node if they were registered for the current event and phase. The
DOM API method for registering handlers, addEventListener(type, handler, useCapture),
allows the programmer to specify if a given handler is to be executed in the capture phase or
the bubble phase through the useCapture boolean; by default, handlers get executed in the
target phase. Importantly, the propagation path is computed only once, before the handlers
are executed, meaning that even if their execution alter the propagation path, those changes
will not be taken into account by the Dispatch algorithm.
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Figure 4 DOM Dispatch Phases

Below, we present our JavaScript (ES5 Strict) implementation of the Dispatch algorithm.
In the standard, Dispatch is presented as a monolithic 56-line function that is difficult
to understand. We instead structure it into seven auxiliary functions, each following the
corresponding pseudo-code of the standard line-by-line.

1 function Dispatch(event, target, flags) {
2 var relatedTarget = retarget(event.relatedTarget, target);
3 var touchTargets = getTouchTargets(event, target);
4 var actTarget = isActivationTarget(event);
5 updatePropagationPath(event, target, relatedTarget, touchTargets, actTarget);
6 captureAndTarget(event, flags)
7 if (event.bubbles) { bubble(event, flags) }
8 clear(event);
9 return !event.canceled

10 }

The Dispatch algorithm receives as input: the Event object that represents the triggered
event; the Node object on which the event was triggered; and optional flags used to identify
a target/event requiring special treatment. The algorithm then proceeds as follows:

1. Call retarget to determine the related target of the triggered event. Some events are
associated with two targets: the main target, supplied as the argument of Dispatch; and
the related target, determined by retarget. For instance, mouseout, an event triggered
when the user moves the mouse from one node to another, has two targets: the node at
which the mouse originally was (main), and the node to which it moved (related).

2. Call getTouchTargets to obtain the list of touch targets associated with the triggered
event. Events involving interactions between the user and a touching surface can be
associated with a variable number of targets (e.g., due to the user placing multiple fingers
on the surface), called touch targets.

3. Call isActivationTarget to check if the event has an associated activation behaviour.
For instance, when a click event is triggered on a hyperlink, the browser should open a
window with the corresponding URL.

4. Call updatePropagationPath to the determine the propagation path of the event.
5. Call captureAndTarget to execute the capture and target phases.
6. Call bubble to execute the bubble phase if the result of inspecting the property bubbles

of the event object is true.
7. Call clear to reset some of the properties of the event object to null.
8. Return a boolean indicating if the activation behaviour of the event was not cancelled.

When no activation behaviour is defined, the algorithm returns true.

Using the Event Semantics. In related works [19, 29], the DOM Dispatch is either baked
into the formalism, which then becomes complex, and/or not fully faithful to the standard.
We take a novel, substantially different approach that allows us both to keep the Event
Semantics simple and to represent rigorously all of the details of the DOM Dispatch. In
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particular, we store information about DOM handlers directly in their associated Element
nodes in the JavaScript heap, implement the Dispatch fully in JavaScript, and only use the
Event Semantics to: (1) register the Dispatch function as the handler of all DOM events
using the addHdlr primitive; and (2) dispatch programmatic DOM events synchronously using
the sDispatch primitive. The former effectively means that any time a DOM event (e.g. click
or focus), is triggered, either synchronously or asynchronously, the DOM Dispatch function
itself is scheduled for execution by the Event Semantics. It is then the job of this function,
rather than the Event Semantics, to traverse the DOM tree, starting at the node where the
event was triggered, and execute the user-register handlers in the appropriate order.

Below, we show our implementation of the dispatchEvent function, used to model
programmatic dispatch of DOM events. This function calls the Event Semantics synchronous
dispatch wrapper, __sDispatch, in line 4. The behaviour of the sDispatch primitive, as
given in §2, precisely captures the programmatic DOM event dispatch as per the standard,
where the associated event handlers are meant to be executed immediately.

1 function dispatchEvent(event, flags) {
2 if (event.dispatch || !event.initialized) { throw new DOMException(INVALID_STATE_ERR) };
3 event.isTrusted = false; event.target = this;
4 return __sDispatch(event, this, flags)
5 }

Line-by-Line Closeness. We demonstrate that our JavaScript implementation follows the
DOM UI Events standard line-by-line by appealing to the code of the innerInvoke function,
given below. The innerInvoke function is one of the auxiliary functions used by the
Dispatch algorithm. It is used to execute the listeners for a given event during all three
phases of the Dispatch algorithm. We illustrate the line-by-line closeness by inlining in
comments, for each line of code, its corresponding line in the standard.

1 function innerInvoke (event, listeners, phase, legacyOutputDidListenersThrowFlag) {
2 var found = false; // 1. Let found be false.
3 for (var i = 0; i < listeners.length; i++) { // 2. For each listener in listeners...
4 if (listener.removed) continue; // ...whose removed is false:
5 // 2.1. If event's type attribute value is not listener's type, then continue.
6 if (event.type !== listener.type) continue;
7 // 2.2. Set found to true.
8 found = true;
9 // 2.3. If phase is "capturing" and listener's capture is false, then continue.

10 if ((phase === "capturing") && (listener.capture === false)) continue;
11 // 2.4. If phase is "bubbling" and listener's capture is true, then continue.
12 if ((phase === "bubbling") && (listener.capture === true)) continue;
13 // 2.5. If listener's once is true, then remove listener from event's currentTarget

attribute value's event listener list.↪→

14 if (listener.once === true) event.currentTarget.removeListener(listener);
15 ...
16 // 2.10. Call a user object's operation with listener's callback, "handleEvent",

event, and event's currentTarget attribute value.↪→

17 execCallBack(listener.handleEvent, "handleEvent", event, event.currentTarget);
18 ...
19 // 2.13. If event's stop immediate propagation flag is set, then return found.
20 if (event.stopImmediatePropagation === true) return found;
21 }
22 return found; // 3. Return found
23 }

DOM Event Model and the JavaScript Semantics. The interaction between the DOM
Dispatch algorithm and the JavaScript semantics may trigger unexpected behaviours if not
properly engineered. Consider, for instance, the following function to be used as a handler:
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function h(ev) { Object.defineProperty(ev, "bubbles", { get: malicious }) }

If the programmer registers h as an event handler and that event is triggered, the function
malicious will be implicitly called when the Dispatch algorithm tries to resolve the value of
the property bubbles after the execution of the target phase, because bubbles is an accessor
property (it does not contain a value, but instead getter/setter functions that are executed on
property access/update) and malicious is its getter. This behaviour is actually disallowed
by the DOM standard, which defines the bubbles attribute as read-only, but is exhibited by
the DOM engines of Chrome, Edge, Firefox, and Safari. Our reference implementation does
not suffer from this problem as we define read-only attributes as non-writable on creation.

4 JavaScript Promises and async/await

Promises were introduced into JavaScript (JS) in the 6th version of the standard [8], in
response to the increasing popularity and usefulness of various, often incompatible, custom-
made libraries for asynchronous computation. Their addition provided clarity and security to
JS developers; in fact, the official Promises API has greatly simplified the creation, combina-
tion, and chaining of asynchronous computations, eliminating the so-called callback hell of
multiple nested callbacks [14], which is extremely difficult to understand and reason about.

A JS Promise, in essence, is the reification of an asynchronous computation that was
either already settled in the past or still remains to be settled in the future. A promise can
be settled successfully, in which case we say that it is resolved (the standard also uses the
term fulfilled), or unsuccessfully, in which case we say that it is rejected. If a promise has not
been yet settled, we say that it is pending.

Promises are often used together with the JS async/await API. This API introduces
asynchronous functions, inside of which one can await on a promise to be fulfilled before
proceeding with the current computation. The key point of asynchronous functions is that
they do not block the execution of their caller function when their execution gets suspended
on an await; instead, the control is immediately transferred to the caller function, which
continues with the execution as if the asynchronous function had simply returned.

This section describes our reference implementations of the JS Promises and async/await
APIs, as described in sections 25.6, 25.7, and 6.2.3.1 of the 9th version of the ECMAScript
standard [9]. Analogously to the DOM reference implementations, these APIs: are imple-
mented directly in JS (ES5 Strict), with the Promises implementation following the standard
line-by-line; are thoroughly tested against the latest version of the official ECMAScript test
suite [6] (cf. §5); and make use of their dedicated Event Semantics primitives (cf. §2).

4.1 Promises API
At the core of the Promises API is the promise constructor, Promise, which is used for
creating new promises. This constructor receives as input an executor function, which
captures the computation to be performed asynchronously. Executor functions have two
arguments: a function resolve for stating that the corresponding promise has been resolved,
and a function reject for stating that it has been rejected. Until one of these functions is
called, the corresponding promise is left pending. Consider the following example:

function f(v) { console.log(v) };
var p = new Promise( (resolve, reject) => {

document.getElementById("dv").addEventListener("click", () => { resolve(1) } )
});
p.then(f); console.log(2)
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Figure 5 Promises Object Graph

This program creates a promise p, whose executor function registers the function that
resolves the promise as the handler for the click event on the DOM element with identifier dv.
This means that p will only get resolved after the user clicks on that DOM element. Afterwards,
the program uses the then function of the Promises API to register a fulfill reaction on
the promise p, meaning that when/if p gets resolved, the function f will be scheduled for
execution with the argument with which p was resolved (in this case, 1). Reactions are
scheduled in a first-in-first-out manner every time the current computation terminates or
yields control. Hence, the program above will always output the string 21 to the console,
regardless of how quickly the user is able to click on the DOM element in question.

Besides the constructor Promise and the method then, the Promises API provides several
other functions for creating, combining, and chaining promises together. The behaviour of
these functions/methods is thoroughly described in the ECMAScript standard in pseudo-code.
This pseudo-code relies on numerous JavaScript internal functions, whose definitions in the
ECMAScript standard are also operational, intricate, and intertwined.

The structure of Promise objects is also fairly complex. We illustrate this by giving, in
Figure 5, the object graph associated with the promise p of the example after the execution
of the then method, but before the promise gets settled. Each Promise object keeps track
of its current state, reactions to be triggered when the promise is resolved/rejected, and
its result, in its internal properties __State, __FulfillReactions, __RejectReactions,
and __Result, respectively. In this case, the promise p is in the “pending” state and
its result is undefined, as it has not been yet resolved. Observe that f is registered to
execute after p using the then function in the example; it is not stored directly as a fulfil
reaction. Instead, there is a promise reaction, r, which, in addition to keeping track of f in
its __Handler property, also holds, in its __Capability field, a promise capability c, which
keeps track of the promise on whose settlement f should be executed (c.__Promise), and the
resolve and reject functions given to the executor function of that promise (c.__Resolve
and c.__Reject). In the example, the promise capability c contains the promise p and the
internal resolve and reject algorithms of the standard.

Using the Event Semantics. Our reference implementation of JS promises interacts with
the Event Semantics when triggering Promise reactions for a promise that got settled; this is
done by the TriggerPromiseReactions function. This function is given as input an array of
promise reactions and the value with which their corresponding promise was settled (either
resolved or rejected). It then iterates over the elements of the array and, for each element,
uses the internal function PromiseReactionJob to create an anonymous function that will
essentially call the handler of the given reaction with the provided value. This anonymous
function is then scheduled for execution directly using the wrapper function of the schedule
primitive of the Event Semantics, as highlighted in line 5 of the following code.
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1 function TriggerPromiseReactions (reactions, argument) {
2 if (!reactions) return undefined;
3 for (var i = 0; i < reactions.length; i++) {
4 var reactionJob = PromiseReactionJob (reactions[i], argument);
5 __schedule(reactionJob);
6 }
7 }

Note that the Event Semantics schedule primitive, as defined in §2, adds the given handler
to the end of the continuation queue. This is consistent with the behaviour of JS Promises
described in the standard, Section 8.4.1 [9], which states that pending jobs (essentially, the
fulfil and reject reactions) are to be added “at the back of the job queue”.

Line-by-Line Closeness. We demonstrate that our implementation follows the ECMAScript
standard line-by-line by appealing to the FulFillPromise function, described in the Section
25.4.1.4 of the standard; we give its implementation, annotated with the corresponding lines
of the standard. The FulFillPromise function is one of the internal functions used by the
function ResolveFun (shown in Figure 5), which, in turn, is used by promise executors to fulfil
their associated promises. The function FulFillPromise receives a promise together with
the value with which it is to be resolved and proceeds as follows: (1) sets the internal state
of the given promise object appropriately; and (2) schedules the promise’s fulfil reactions.

1 function FulfillPromise(promise, value) {
2 // 1. Assert: The value of promise's [[State]] internal slot is "pending".
3 Assert(promise.__State === "pending");
4 // 2. Let reactions be the value of promise's [[FulfillReactions]] internal slot.
5 var reactions = promise.__FulfillReactions;
6 // 3. Set the value of promise's [[Result]] internal slot to value.
7 promise.__Result = value;
8 // 4. Set the value of promise's [[FulfillReactions]] internal slot to undefined.
9 promise.__FulfillReactions = undefined;

10 // 5. Set the value of promise's [[RejectReactions]] internal slot to undefined.
11 promise.__RejectReactions = undefined;
12 // 6. Set the value of promise's [[State]] internal slot to "fulfilled".
13 promise.__State = "fulfilled";
14 // 7. Return TriggerPromiseReactions(reactions, value).
15 return TriggerPromiseReactions (reactions, value)
16 }

4.2 async/await
The async/await APIs are defined in Sections 6.3.1 and 25.7 of the 9th version of the
ECMAScript standard [9]; they are meant to be used together, as it is only possible to use
await inside an asynchronous function. Furthermore, the async/await APIs directly build
on the Promises API in that they make explicit use of JS Promises functions and methods.

In a nutshell, an asynchronous function is a JavaScript function whose execution can yield,
that is, transfer the control to its calling context without having completed its execution. A
call to an asynchronous function is evaluated to a promise that is settled once that function
terminates executing: if the function returns, the promise is fulfilled; if the function throws,
the promise is rejected. Consider, for instance, the following program:

1 async function f () { if (b === true) { return 1 } else { throw 2 } };
2 f().then((v) => { console.log(v) }, (v) => { console.log(v) }) (CS1)

Recall that the method then receives as input two functions which are registered, re-
spectively, as a fulfil reaction and a reject reaction on the this object. Hence, the first
function is executed if the promise is fulfilled, whereas the second one is executed if it is
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rejected. Consequently, in the case of the example, if the global variable b is equal to true,
the program will write 1 to the console, otherwise it will write 2.

As stated above, an asynchronous function can make use of the await expression to
transfer the control to the calling context. Essentially, the expression (await e) evaluates e
to a promise and suspends the computation of the current function until that promise is
settled. Consider, for example, the program below:

1 var p = new Promise(function (resolve, reject) { ... });
2 async function g () { return await p };
3 g().then((v) => { console.log(v) }, (v) => { console.log(v) });

(CS2)

This time, the asynchronous function g awaits on a promise p. If/when p is settled, g
returns the value with which it was settled. Suppose, for instance, that p is resolved with
value 1; in this case, the function g returns 1, meaning that its associated promise will also be
fulfilled with value 1. Alternatively, suppose that p is rejected with value 1; then, g throws
1, meaning that its associated promise will also be rejected with value 1. In both cases, the
program will simply write 1 to the console.

Line-by-line Closeness. For async/await, we depart from our line-by-line closeness ap-
proach. The reason is that this would require JSIL to support first-order execution contexts,
which, in turn, would constitute a considerable engineering effort, including changing the
internal representation of execution contexts and extending JSIL with various primitives for
their manipulation. Instead, we opted for a more lightweight, compilation-based, approach
that still correctly models the async/await behaviour described in the standard.

Compiling async/await to ES5 Strict. As async and await fundamentally change the
control flow behaviour of the language, they cannot be simply implemented as libraries.
Hence, we introduce a pre-compilation step that translates these constructs to ES5 Strict.
Expectedly, the compiled programs use the Promise constructor to create the promise
associated with the execution of the asynchronous function being compiled. The key case of
the compiler, given below, corresponds to the default translation1 of asynchronous functions:
C〈async function(x̄){s}〉 , function(x̄) {

return new Promise(function(resolve, reject) {
try {Ca〈s〉; resolve(undefined)} catch(e) {reject(e)}

})
}

Essentially, an asynchronous function is compiled to a normal ES5 Strict function that simply
creates a promise p and returns it. The body of the original function is run inside the
executor of the promise. Additionally, we make use of an auxiliary compiler Ca to rewrite
return statements inside the body of the original function so that they are replaced by a
call to resolve followed by an empty return. Hence, the function f, given in Code Snippet 1,
is compiled to:

1 function f () {
2 return new Promise (function (resolve, reject) {
3 try { if (b === true) { resolve(1); return } else { throw 2 } }
4 catch (x) { reject(x); return }
5 })
6 }

1 If an asynchronous function can return from a finally block, the settling of its associated promise
must be deferred to that finally block, making the compilation of return statements more complex.



G. Sampaio, J. Fragoso Santos, P. Maksimović, P. Gardner 28:19

The compilation of the await p expression is more involved. Concretely, the compiled
code calls the wrapper function for the Event Semantics await primitive with the argument
getPredicate(p), which corresponds to a function that evaluates to true once the promise p
has been settled. Given the definition of await in §2, this precisely corresponds to the core
behaviour of the JS await. Then, the compiled code checks if the promise was fulfilled: if so,
it continues with the execution normally; if not, it throws the value with which the promise
was rejected. Below, we illustrate the compilation of the function g, given in Code Snippet 2.

1 function g () {
2 return new Promise (function (resolve, reject) {
3 try {
4 __await(getPredicate(p));
5 if(p.__State === "resolved") { resolve(p.__Result) } else { throw p.__Result }
6 } catch (x) { reject(x); return }
7 })
8 }

5 Evaluation

We show that our reference implementations of DOM Core Level 1, DOM UI Events, JS
Promises, and async/await are trustworthy by passing all applicable tests from their official
test suites [46, 50, 6] in JaVerT.Click. In doing so, we discover coverage gaps in the DOM
Core Level 1 and UI Events test suites and create additional tests to complete their coverage.
We demonstrate that JaVerT.Click can reason about real-world JS code by creating a
comprehensive symbolic test suite for the events module of the cash library [55], a widely-
used alternative for jQuery. Our symbolic testing establishes bounded correctness of several
essential properties of the library and reveals two subtle, previously unknown bugs. We also
symbolically test the p−map library [35], which adds an extra layer of functionality on top of
JS promises. We achieve 100% line coverage and discover one bug. All three bugs discovered
by JaVerT.Click in cash and p−map have been reported and have since been fixed.

5.1 Testing the Reference Implementations
To run the test suites, we establish a common testing infrastructure, illustrated below. The
tests for Promises and async/await are written in JS. To run them in JaVerT.Click, we only
need to compile the ECMAScript test harness together with the tests. The tests for DOM
Events, in contrast, are written in HTML and contain JS scripts enclosed by the <script>
tag. Using Python scripts, we first isolate this code into a JS test file, then add to it the
JSON object obtained from the appropriate input XML file using the xml−js parser [58].
Finally, as the DOM Core Level 1 tests are written in XML, we additionally have to first
transform them into HTML tests using XSLT.

We present the results of testing our reference implementations against their appropriate
official test suites. For each implementation, we provide the number of: available tests in
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the test suite; applicable tests; and passing tests. Additionally, for three of the test suites,
we give: its computed line coverage; the number of untested lines in its standard; and the
number of additional tests that we created to complete its coverage. Given that we pass all
of the applicable tests, which have substantial coverage of their respective standards, for all
four APIs, we have strong confidence that our reference implementations are indeed correct.
Interestingly, the test suite repository for DOM Events also provides the testing results for
four browsers: Chrome, Edge, Firefox and Safari [57]. These results show that no single
browser fully passes the test suite, and that, out of the 56 tests that we pass, 12 fail in at
least one of the four browsers.

Core Level 1 Events Promises async/await

Available Tests 527 83 474 86
Applicable Tests 527 56 344 68
Passing Tests 527 56 344 68

Test Suite Line Coverage 98.14% 97.45% 98.76% N/A
Number of Untested Lines 13 8 5 N/A

Additional Tests 5 3 N/A N/A

For three of the test suites, some tests need to be filtered out due to the coverage of
either our reference implementations or JaVerT.Click. For DOM Events, we filter out 1 test
that uses ES6 classes, 5 that use the postMessage API, 2 that use the AJAX API, and 19
that use unsupported CSS features (scrolling and animation). For Promises, most filtered
tests (106/130) are due to ES6 Symbol iteration; once we support this feature, these tests
should pass as similar tests that use Array iteration already pass. We also filter out 21 tests
that use other unsupported ES6 features (classes, reflection, and proxies), and 3 that require
non-strict mode. For async/await, we filter out 14 tests that use ES6 default arguments
and 4 that use ES6 generators.

When it comes to test suite coverage, we observe that it is comprehensive, but incomplete.
We have inspected the filtered tests for DOM Events and JS Promises and believe that they
would not trigger the missing lines. Note that we are not able to perform a proper coverage
analysis for async/await, as we do not follow its description in the standard line-by-line.

Observations. We have found the ECMAScript standard to be written and tested with a
higher degree of rigour than the DOM Living Standard. It is self-contained and precise, with
no implicit assumptions and discrepancies between the standard and the test suite.

The DOM Living Standard, in contrast, uses features from other standards, such as
HTML and the Shadow DOM [26], without providing any intuition. This meant that
we needed to understand multiple standards written in different formats and had to read
substantial additional documentation (e.g., the Mozilla Web Docs [25]) in order to model
the API behaviour correctly. Additionally, the DOM Living Standard interfaces do not
have a well-defined scope. For instance, the standard makes clear that every EventTarget
object has an associated event listener list, but this list is not declared as an attribute of the
EventTarget interface. This can lead to different interpretations by implementors. Finally,
we found a few discrepancies between the DOM Standard and the official test suites that are
likely to cause difficulties for implementors: for example:

In DOM Core Level 1, on setting Attr.value, the standard only states that a Text node
with the unparsed contents of the provided value should be created; the tests additionally
require that this text node be inserted as a child node of the attribute.
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In DOM Events, for Event.isTrusted, the standard defines the isTrusted property
of the Event interface to be a boolean that is used to indicate whether or not the
dispatchEvent function was used; the tests specifically require the isTrusted property
to be an accessor property and to have a dedicated getter.

5.2 Symbolic Testing of the cash Library
The cash library [55] is a jQuery alternative for modern browsers that provides jQuery-style
syntax for manipulating the DOM. Its main goal is to remain as small as possible, while
still staying (mostly) compatible with jQuery and providing its users with a similar set of
features. Moreover, it exhibits better performance than jQuery, as it dominantly relies on
native browser events rather than on a custom event model. It has a growing community of
users, with more than 10K weekly downloads and 735K overall downloads on npm [56], and
more than 4.4K stars on GitHub [55].

We focus our analysis on the events module of cash, which provides a mechanism for
creating and manipulating DOM events, offering additional functionalities and greater level
of control with respect to the native DOM event model. This module has five main and
twelve auxiliary functions. Here, we focus on the main functions, presented below:
.on: ele.on(e, h) registers the handler h for an event e on the element ele;
.off: ele.off(e, h) deregisters the handler h for the event e on the element ele;
.one: ele.one(e, h) behaves the same as .on, except that h can be triggered only once and is

automatically deregistered afterwards;
.ready: ele.ready(f) executes the function f after ensuring that the entire document content

has been loaded successfully;
.trigger: ele.trigger(e) triggers the handlers for an event e on the element ele.

The cash library comes with a concrete test suite, which has 95.52% overall line coverage.
The 18 tests for the events module contain 288 lines of code. Their coverage of .on is 76.92%,
of .trigger is 93.75%, of .ready is 0% and of the main auxiliary function of .on is 81.82%;
the remaining functions have 100% coverage. We complete the coverage of the concrete test
suite for the events module by writing five additional concrete tests.

5.2.1 Bounded Correctness
We create a symbolic test suite for the events module of cash, with two goals in mind:
(1) achieving 100% line coverage for all event-related functions; and (2) establishing bounded
correctness of several essential properties. We achieve both goals using just eight symbolic
tests. In Table 1, we give, for these tests, their execution time (Time, in seconds) and the
number of executed JSIL commands (JSIL Cmds). Each test, additionally, has an overhead
of 4.454 seconds, 9 lines of code, and 899,390 executed commands due to the setup of the
initial heap and auxiliary testing functions. We single out four tests, which capture important
properties that the events module should respect; the remaining ones are grouped together
as other, as they offer little additional insight. These four tests are:

Table 1 Symbolic Test Suite for the events module of cash

Test Name rHand sHand tOne tOff other Total

Time (s) 5.54 144.38 24.35 22.87 42.20 239.34
JSIL Cmds 1,468,907 38,240,506 9,288,337 9,400,471 14,150,893 72,549,114
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rHand : If a handler has been executed, then it must have previously been registered.
sHand : If a single handler has been registered to a given event using .on, then that is the

only handler that can be executed for that event. This test has revealed two bugs in the
events module of cash, discussed in detail in §5.2.2.

tOne : If a single handler has been registered to a given event using .one, then that handler
can be executed for that event only once.

tOff : If a handler registered to an event is deregistered using .off, then that handler can
no longer be executed for that event.

The tests establish that these properties hold for all events (strings) up to length 20.
The bound 20 has been chosen as the length of the longest property of the JavaScript initial
heap, propertyIsEnumerable. It can be adjusted in the tests themselves: the running
times will be bound-linear for rHand, tOne, and tOff, which use one symbolic event; and
bound-quadratic for sHand, which uses two.

The obtained results demonstrate that symbolic testing is far superior to concrete testing:
our symbolic test suite has greater coverage, 29% fewer lines of code, and, most importantly,
provides much stronger correctness guarantees that are beyond the limit of concrete testing.

5.2.2 The Discovered Bugs
As part of its effort to remain minimal, the cash library, unlike jQuery, does not implement its
own event model. Instead, it heavily relies on the event model of the browser. However, the
semantics of events in cash differs from that of the browser events. For example, cash enforces
that all user-defined focus-related handlers bubble, by redirecting handler registration (via .on
or .one) and deregistration (via .off) for the 'focus'/'blur' events to 'focusin'/'focusout'
instead. The redirection is implemented as follows: any event that is passed to the .on, .one,
and .off functions is first processed by the getEventTypeBubbling function:
function getEventTypeBubbling(e) { return eventsFocus[e] || e }

which is intended to substitute 'focus' by 'focusin' and 'blur' by 'focusout', while keeping
other events intact, by indexing the eventsFocus object
var eventsFocus = { focus: 'focusin', blur: 'focusout' }.

with the event e. This indexing is meant to return a string, which is then processed using
String.prototype.split. This implementation, however, causes two subtle bugs, discovered
by the sHand test, whose stylised code, with detailed inlined explanations, is given below:

1 var count = 0, ele = $('.event'); // Initialise counter and target element
2

3 function h () { count++ } // Handler counts the number of times it was called
4

5 // Create two symbolic events, e1 and e2, of maximum length 20
6 var e1 = symbStr(20), e2 = symbStr(20);
7

8 // Register the handler for e1 on ele, then trigger e2 on ele
9 ele.on(e1, h); ele.trigger(e2);

10

11 Assert(
12 // Handler was executed only once, if e1 and e2 were equal and non-empty,
13 (count === 1 && e1 === e2 && e1 !== "") ||
14 // and was not executed otherwise.
15 (count === 0 && (e1 !== e2 || e1 === ""))
16 );
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Bug 1: Overlooked Prototype Inheritance. The first set of counter-examples demonstrates
that cash throws a native JavaScript type error when executing ele.on(e1, h) if

e1 ∈ {'constructor', 'hasOwnProperty', 'isPrototypeOf',
'propertyIsEnumerable', 'toLocaleString', 'toString', 'valueOf'}.

Recall that the function getEventTypeBubbling indexes the eventsFocus object to
redirect focus-related events. Indexing objects as key-value maps, however, may return
unexpected values, as shown in [32]: e.g., eventsFocus['valueOf'] returns the function object
found at Object.prototype.valueOf, as the 'valueOf' property is not in the eventsFocus
object itself, but is in its prototype. Then, since that function object has no split property
in its prototype chain, the subsequent call to .split throws a native JavaScript type error.

Bug 2: Unintended Event Triggering. The second set of counter-examples demonstrates
that the final correctness assertion of the sHand test does not hold if

(e1, e2) ∈ {('blur', 'blur'), ('focus', 'focus'), ('blur', 'focusout'), ('focus', 'focusin')}.

In particular, for the first two counter-examples, the handler is not executed even though e1
and e2 are equal, whereas, for the second two, it is executed despite e1 and e2 being different.
This bug is also caused by the redirection done in the getEventTypeBubbling function.
Precisely, this redirection is applied in the .on, .one, and .off functions, but not in the
.trigger function, effectively meaning that user-registered handlers for 'focus' and 'blur'
can respectively be triggered only via 'focusin' and 'focusout' instead. This is admittedly
not intended, and it results from the simplification of the corresponding jQuery mechanisms.

Both bugs have been reported to the developers of cash,2 and have since been fixed. The
first bug also exists in jQuery, where it will be corrected for the upcoming 4.0 version.3

5.3 Symbolic Testing of the p−map Library
The p−map library [35] is a small JavaScript library that extends the functionality of
JavaScript promises with the ability to concurrently map over pending promises. It has more
than 10M weekly downloads and 825M overall downloads on npm [36], and 532 stars on
GitHub [35]. It calls both the JavaScript Promises and JavaScript async/await APIs. We
performed symbolic testing of p−map, where we achieved 100% line coverage and discovered
a bug that allowed the number of concurrently handled promises to go above its declared
maximum due to the library using non-integer numbers. This bug has been reported to
and fixed by the developers of p−map.4 For space reasons, we delay the full account of our
analysis of p−map to a future publication.

6 Related Work

We believe we are the first to provide a general infrastructure for symbolic analysis of
modern event-driven Web applications. There has been prior work on formalising and
analysing specific event-driven Web APIs, such as DOM UI Events [29, 19] and JavaScript

2 https://github.com/kenwheeler/cash/issues/317, 318
3 https://github.com/jquery/jquery/issues/3256
4 https://github.com/sindresorhus/p-map/issues/26
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Promises [22, 1], as well as Node.js events [21, 23]. However, to the best of our knowledge,
there is no prior work on formalising the JavaScript async/await API. Hence, we focus
the discussion on: (1) axiomatic and operational semantics for DOM Core Level 1; (2)
operational semantics for DOM Events; (3) operational semantics for JavaScript Promises;
and (4) symbolic execution for JavaScript programs that interact with the DOM.

Axiomatic/Operational Semantics of DOM Core Level 1. Based on context logic [5],
Smith et al. introduced an axiomatic semantics [15] for a small fragment of DOM Core
Level 1, proving it sound with respect to their operational semantics. In his PhD thesis [34],
Smith extended this axiomatic semantics to all fundamental interfaces of DOM Core Level 1,
including live collections and fine-grained reasoning about various types of DOM nodes,
omitting only a minor part on the extended interfaces. This axiomatic semantics follows the
DOM standard closely, but has not been implemented, and there has been no work on using
this semantics to reason about real-world JavaScript programs that interact with the DOM.

Several operational semantics for different fragments and adaptations of DOM Core
Level 1 were proposed for various types of analysis, such as information flow control [24, 30],
type systems [42] and abstract interpretation [18], targeting JS programs that interact with
the DOM. These papers, however, do not aim to establish a trusted formal representation of
the DOM using which others can build their own program analyses; instead, they provide a
DOM representation specific to their kind of analyses. In contrast, our DOM Core Level 1
JS reference implementation has been designed to be trusted in that it follows the text of the
standard line-by-line and passes all 525 tests of the official test suite [46]. This, combined
with its extensive use in the symbolic testing of the cash library, gives us confidence that
others will be able to use it for their analysis of JS programs calling the DOM.

Operational Semantics for DOM Events. In this context, the work closest to ours is [19],
which presents the first operational model for reasoning about DOM events. This model
consists of a Scheme [38] reference implementation of DOM UI events and is used to
prove meta-properties of the DOM semantics, such as the immutability of the propagation
path during the execution of the Dispatch algorithm. The authors justify their reference
implementation by annotating the paragraphs of the standard with links to the relevant
definitions and reduction rules in their implementation, and by comparing its behaviour with
various browser implementations using randomly generated test cases. The implementation,
however, is not tested against the official DOM Events test suite and does not have a
line-by-line correspondence with the text of the standard.

There are multiple tools for analysing event-driven JavaScript programs based on different
types of program analyses, such as information flow control [29, 45], type systems [28], and
abstract interpretation [27]. Of these tools, only [29] comes with a formal semantics of DOM
events. Concretely, the authors propose a simplified DOM event semantics instrumented
with a sound information-flow monitor, and implement the monitor instrumentation on top
of Webkit [41], the browser engine used by Safari. The proposed semantics is, however, only
intended for illustrative purposes as it does not include a number of event-related features,
such as interaction with shadow trees, slotables, and touch/related targets. In contrast, our
reference implementation of DOM Events does not simplify the standard and passes 56 tests
of the official test suite (100% of the appropriate tests, given our current coverage).

A Core Semantics for JavaScript Promises. Madsen et al. [22] were the first to propose a
formal core calculus for reasoning about JavaScript (JS) promises. Concretely, they introduce



G. Sampaio, J. Fragoso Santos, P. Maksimović, P. Gardner 28:25

λp, an extension of the small core JavaScript calculus, λJS [17], with dedicated syntactic
constructs for promise creation and manipulation. The authors give the formal semantics of
λp and show how it can be used to encode promise operations not directly supported in the
syntax (e.g. catch and then). The paper further introduces the concept of promise graphs,
a program artifact used by the authors to explain promise-related errors. Later, Alimadadi
et al. [1] extend promise graphs to take into account previously unmodelled ES6 features,
such as default reactions, exceptions, race and all. Using the extended promise graphs, the
authors develop PromiseKeeper, a dynamic analysis tool built on top of Jalangi [33] for
finding and explaining promise-related bugs in JS code.

The λJS -calculus [17] was justified by a desugaring function from ES5 that has been tested
against the official Test262 test suite [6]. In contrast, λp does not come with a desugaring
function from ES6 to λp and hence has not been tested against the promises-related part
of Test262. Whilst λp is mainly used to explain buggy behaviours related to the misuse of
JS promises, our goal was to create a trusted reference implementation of JS promises that
models their semantics precisely in order to enable various types of analysis for JS programs
that use promises, including the symbolic testing presented in the paper. For this reason, we
took great care in justifying its correctness.

Symbolic Execution for the DOM. Symbolic reasoning about the DOM in the literature
is mostly focussed on bug-finding and/or automatic concrete test generation. For example,
ConFix [10] uses concolic execution to generate DOM fixtures that allow high-coverage
testing of JavaScript functions that use the DOM; however, it does not support DOM events
and dynamically generated code using eval that interacts with the DOM. V-DOM [59]
creates test suites by analysing both server- and client-side code, but only considers handlers
that were registered statically (via HTML code, e.g. <button onclick="myFunction()"/>)
and does not support dynamic handler registration (via addEventListener()).

There are several tools focussed on finding dependencies between event handlers, such
as SymJS [20] and JSdep [37], which then use this information to automatically generate
tests in the form of event triggering sequences. SymJS identifies handler dependencies by
performing a dynamic write-read analysis. However, its representation of the DOM is not
entirely consistent with the standard: e.g., text inputs and radio boxes are represented
symbolically either as strings or numbers, rather than objects. JSdep implements the first
constraint-based declarative program analysis for computing dependencies between event
handlers. This approach is shown to be effective, but no soundness guarantees are provided.

While the goals of these tools are different from ours, there is room for comparison. In par-
ticular, some of them do not follow the DOM standard (e.g., SymJS relies on HTMLUnit [16],
which provides its own implementation of the DOM event dispatch algorithm) and none
offer a justification with respect to their representation of the DOM. In contrast, we provide
complete, trustworthy reference implementations of DOM Core Level 1 and UI Events that
follow the standard line-by-line and pass all of the applicable official tests. Importantly, these
tools do not appear to be able to reason about events whose type is symbolic. We believe
that this is one of the advantages of our work, as it allows us to write few symbolic tests
to achieve broad coverage. It also enables us to provide bounded correctness guarantees of
library properties, which, to our knowledge, has not been done before, and which is certainly
beyond the reach of either manually- or automatically-generated concrete test suites. On the
other hand, the above-mentioned tools do generate their concrete test suites automatically,
while in JaVerT.Click, the developers have to write symbolic tests themselves.
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7 Conclusions and Future Work

We have introduced a Core Event Semantics that is simple in design, yet expressive enough
to capture the essence of three fundamental, complex event-related APIs, namely DOM UI
Events, JavaScript Promises and async/await. To accompany the Core Event Semantics,
we have created reference implementations of these three APIs, as well as a reference
implementation of DOM Core Level 1, which underpins DOM UI Events. Our reference
implementations are trusted, in the sense that all except that of async/await follow their
respective standards line-by-line, and all are thoroughly tested against their official test
suites. Together, the Core Event Semantics and the reference implementations form a trusted
infrastructure that enables symbolic analysis of modern event-driven Web programs.

We have demonstrated that our infrastructure can be used in practice by implementing
the Core Event Semantics, closely following the theory, on top of JaVerT 2.0, a state-of-the-
art tool for JavaScript symbolic analysis. We have used the resulting tool, JaVerT.Click,
to symbolically test two real-world libraries: cash and p−map, both with with 100% line
coverage, establishing bounded correctness of several important properties and discovering
three bugs in the process. To our knowledge, this is the first time that reasoning about
multiple event-based APIs is supported either in a single formalism or in a single tool.

As part of the overall testing process, we have additionally discovered coverage gaps in
the official test suites of DOM Core Level 1 and DOM UI Events, as well as in the concrete
test suite of cash, and have created appropriate concrete tests that address these gaps.

We plan to extend this work in several directions. First of all, following the methodology
that we have introduced in this paper, we will add support for other event-based APIs,
such as the File [51], postMessage [54], and the Web Workers APIs [52], to the Core Event
Semantics and JaVerT.Click. For each new API, this amounts to providing a trusted reference
implementation in JavaScript, and extending the Event Semantics with any new appropriate
event primitives that may be required. For instance, supporting the Web Workers API
will require the Event Semantics to be extended with basic message-passing facilities. Our
over-arching goal is to create a minimal event model expressive enough to reason about all
widely-used Web APIs natively supported by major browsers.

We also intend to analyse further real-world libraries that are clients of our supported
APIs. For example, PreactJS [39], a fast and light alternative to ReactJS [40], appears to be
an excellent first target, as it is relatively small yet very successful, and is already being used
by several major industrial players.

Another avenue to explore, given our trusted infrastructure, would be how to extend the
full verification facilities of JaVerT.Click in order to be able to prove both meta-properties
of the APIs themselves as well as correctness properties of programs that interact with the
DOM and/or use event-related APIs.

We will also implement the Event Semantics as a layer on top of Gillian [11], our new
multi-language platform for compositional symbolic analysis, by instantiating the Event
Semantics with Gillian’s intermediate language, GIL. There, in addition to JS code, we plan
to reason about WebAssembly and Rust code that interacts with various event-based APIs.

Finally, we plan to design a policy language that would allow the developers to specify
the event sequences of interest, given the programs they would like to analyse. These policies
might play a role in automatically generating tests, as in the discussed related work [20, 37],
but also in the broader context of symbolic analysis, where they would limit the branching
that arises from exploring all possible event sequences triggered by the environment.
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8 Event Semantics

8.1 Concrete Event Semantics
Main Definitions

Values: v ∈ V Event Types: e ∈ E ⊂ V
Function Identifiers: f ∈ F ⊂ V Language Configurations: c ∈ C

Configuration Predicates: p ∈ P : C → B Handler Registers: h ∈ H : E ⇀ F
Continuations: κ ∈ K := (f, v) | (c, p) Continuation Queues: q ∈ Q : K

Event Configurations: ω ∈ Ω : C ×H×Q
Labels: ` ∈ L := addHdlr〈e, f〉 | remHdlr〈e, f〉 | sDispatch〈e, v〉 | aDispatch〈e, v〉

| schedule〈f, v̄〉 | await〈v, p〉 | ·

Auxiliary Functions of the Language Semantics

1. initialConf(c, (f, e, v)) = c′, where c′ has the heap component of c and the control flow/store
components required for starting the execution of the handler f with arguments e and v

2. mergeConfs(c, c′) = c′′, where c′′ has the heap component of c and the control flow/store
components of c′

3. isFinal(c) = true, if c is final; and = false otherwise

4. interrupt(c) = c′, where c′ is the same as c, except that it is marked as final

5. splitReturn(c, v) = (cr, ca), where cr is obtained from c by setting up the control flow
component as if the currently executing function, f , returned the value v and ca is
obtained from c by setting up the control flow component to only contain the remainder
of the execution of f

Auxiliary Functions of the Event Semantics

AH : H× E × F → H
AH(h, e, f) adds the handler f for the

event e to the handler register h.

Add Handler

AH(h, e, f) ,

{
h [e 7→ h(e) ++ [f ]] , if e ∈ dom(h)
h [e 7→ [f ]] , otherwise

RH : H× E × F → H
RH(h, e, f) removes the handler f for
the event e from the handler register h.

Remove Handler

RH(h, e, f) ,

{
h [e 7→ h(e) \ f ] , if e ∈ dom(h)
h, otherwise

FH : H× E → H
FH(h, e) finds all of the handlers for
the event e in the handler register h.

Find Handlers

FH(h, e) ,

{
h(e), if e ∈ dom(h)
[ ], otherwise

CWL : C × K → C
CWL(c, κ) sets up the configuration for
the execution of the continuation κ,
starting from the configuration c.

Continue With - Handler-Continuation
CWL(c, (f, e, v)) , L.initialConf(c, (f, e, v))

Continue With - Yield-Continuation
p(c) = True

CWL(c, (c′, p)) , L.mergeConfs(c, c′)
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Transition System: 〈c, h, q〉;α
E(L) 〈c′, h′, q′〉

Language Transition
c ;L c

′

〈c, h, q〉;E(L) 〈c′, h, q〉

No action is performed—the handler register
and the continuation queue remain unchanged

Add Handler
c ;`

L c
′ ` = addHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,AH(h, e, f), q〉

The new handler for the given event is registered
in the handler register

Remove Handler
c ;`

L c
′ ` = remHdlr〈e, f〉

〈c, h, q〉;E(L) 〈c′,RH(h, e, f), q〉

The given handler is de-registered for the given
event from the handler register

Synchronous Dispatch
c ;`

L c
′ ` = sDispatch〈e, v〉

[fi |n0 ] = FH(h, e) q′ = [(fi, e, v) |ni=0]
c′′ = L.suspend(c′)

〈c, h, q〉;E(L) 〈c′′, h, q′ ++[(c′, (λc.True))]++q〉

The execution of the current UL-configuration
c′ is interrupted; a list of handler-continuations
based on the handlers registered for the dis-
patched event is placed at the front of the
continuation queue, together with a yield-
continuation that unconditionally resumes the
execution of c′

Asynchronous Dispatch
c ;`

L c
′ ` = aDispatch〈e, v〉

[fi |n0 ] = FH(h, e) q′ = [(fi, e, v) |ni=0]
〈c, h, q〉;E(L) 〈c′, h′, q++q′〉

A list of handler-continuations based on the
handlers registered for the dispatched event is
placed at the back of the continuation queue

Schedule
c ;`

L c
′ ` = schedule〈f, v̄〉 q′ = q′++[(f, v̄)]
〈c, h, q〉;E(L) 〈c, h, q′〉

The execution of the function f with parameters
v̄ is placed at the back of the continuation queue

Await
c ;`

L c
′ ` = await〈v, p〉

(cr, ca) = L.splitReturn(c′, v)
〈c, h, q〉;E(L) 〈cr, h, q++[(ca, p)]〉

The execution proceeds with the return config-
uration; the await configuration is placed at the
back of the continuation queue

Environment Dispatch
[fi |n0 ] = FH(h, e)
q′ = [(fi, e, v) |ni=0]

〈c, h, q〉;(e,v)
E(L) 〈c, h, q++q′〉

An environment-dispatched event is essentially
treated in the same way as an asynchronously-
dispatched event.

Continuation - Success
L.isFinal(c) q = κ : q′

〈c, h, q〉;E(L) 〈CWL(c, κ), h, q′〉

The current UL-configuration is final; the con-
figuration at the front of the continuation queue
is set up for execution

Continuation - Failure
L.isFinal(c) q = κ : q′

(c, κ) 6∈ dom(CWL)
〈c, h, q〉;E(L) 〈c, h, q′++[κ]〉

The current UL-configuration is final; the con-
figuration at the front of the continuation queue
cannot be executed and is placed at the back of
the continuation queue
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8.2 Symbolic Event Semantics
Main Definitions

Values: v̂ ∈ V̂ Event Types: ê ∈ Ê ⊂ V̂
Function Identifiers: f ∈ F ⊂ V̂ Path Conditions: π ∈ Π ⊂ V̂

Language Configurations: ĉ ∈ Ĉf Configuration Predicates: p̂ ∈ P̂ : Ĉf → B
Handler Registers: ĥ ∈ Ĥ : Ê ⇀ F Continuations: κ̂ ∈ K̂ := (f, ê, v̂) | (ĉ, p̂)

Continuation Queues: q̂ ∈ Q̂ : K̂ Event Configurations: ω̂ ∈ Ω̂ : Ĉf × Ĥ × Q̂
Labels: ˆ̀∈ L̂ := addHdlr〈ê, f〉 | remHdlr〈ê, f〉 | sDispatch〈ê, v̂〉 | aDispatch〈ê, v̂〉

| schedule〈f, ¯̂v〉 | await〈v̂, p̂〉 | ·

Auxiliary Functions of the Language Semantics

1. initialConf(ĉ, (f, ê, v̂)) = ĉ′, where ĉ′ has the heap component of ĉ and the control flow/store
components required for starting the execution of the handler f with arguments ê and v̂

2. mergeConfs(ĉ, ĉ′) = ĉ′′, where ĉ′′ has the heap component of ĉ and the control flow/store
components of ĉ′

3. isFinal(ĉ) = true, if ĉ is final; and = false otherwise.

4. interrupt(ĉ) = ĉ′, where ĉ′ is the same as ĉ, except that it is marked as final

5. assume(ĉ, π) = ĉ′, where ĉ′ is obtained from ĉ by extending its path condition with the
formula π, if such an extension is satisfiable

6. splitReturn(ĉ, v̂) = (ĉr, ĉa), where ĉr is obtained from c by setting up the control flow
component as if the currently executing function, f , returned the value v̂ and ĉa is
obtained from ĉ by setting up the control flow component to only contain the remainder
of the execution of f

7. pc(ĉ) = π, where π is the path condition computed in the current branch of configuration
ĉ. We leave the computation of the path condition to the underlying language L, meaning
that pc(〈ĉ, ĥ, q̂〉) = pc(ĉ)

Auxiliary Relations of the Event Semantics (In Set-Notation)

AH : Ĥ × Ê × F → ℘(Ĥ ×Π)
AH(ĥ, ê, f) adds the handler f for the

event ê to the handler register ĥ,
branching on all possible values of ê.

Add Handler

AH(ĥ, ê, f) ,

{
(ĥ
[
ê′ 7→ ĥ(ê′) ++ [f ]

]
, ê = ê′) | ê′ ∈ dom(ĥ)

}
∪
{

(h [e 7→ [f ]] , ê′ ∈ dom(ĥ))
}

RH : Ĥ × Ê × F → ℘(Ĥ ×Π)
RH(h, e, f) removes the handler f for
the event ê from the handler register ĥ,
branching on all possible values of ê.

Remove Handler

RH(ĥ, ê, f) ,

{
(ĥ
[
ê′ 7→ ĥ(ê′) \ f

]
, ê = ê′) | ê′ ∈ dom(ĥ)

}
∪
{

(h, ê′ ∈ dom(ĥ))
}

FH : Ĥ × Ê → ℘(Ĥ ×Π)
FH(ĥ, ê) finds all of the handlers for
the event ê in the handler register ĥ,
branching on all possible values of ê.

Find Handlers

FH(ĥ, ê) ,

{
(ĥ(ê), ê = ê′) | ê′ ∈ dom(ĥ)

}
∪
{

([ ], ê′ ∈ dom(ĥ))
}
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CWL : Ĉf × K̂ → Ĉf
CWL(ĉ, κ̂) sets up the configuration for
the execution of the continuation κ̂,
starting from the configuration ĉ.

Continue With - Handler-Continuation
CWL(ĉ, (f, v̂)) , L.initialConf(ĉ, (f, v̂))

Continue With - Yield-Continuation
p̂(ĉ) = True

CWL(ĉ, (ĉ′, p̂)) , L.mergeConfs(ĉ, ĉ′)

Transition System: 〈ĉ, ĥ, q̂〉;α̂
Ê(L) 〈ĉ

′, ĥ′, q̂′〉

The transition rules for the symbolic Event Semantics differ from the concrete ones in that
every time an auxiliary relation is used, the constraint it generates must be added to the
current path condition using the assume function of the UL-semantics. These differences are
highlighted in grey .

Language Transition
ĉ ;L ĉ

′

〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ
′, ĥ, q̂〉

Add Handler
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= addHdlr〈ê, f〉
AH(ĥ, ê, f) ; (ĥ′, π)
ĉ′′ = L.assume(ĉ′, π)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′, ĥ′, q̂〉

Remove Handler
ĉ ;

ˆ̀
L ĉ

′

ˆ̀= remHdlr〈ê, f〉
RH(ĥ, ê, f) ; (ĥ′, π)
ĉ′′ = L.assume(ĉ′, π)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′, ĥ′, q̂〉

Synchronous Dispatch
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= sDispatch〈ê, v̂〉
FH((ĥ, ê)) ; (([fi |n0 ], π))

q̂′ = [(fi, ê, v̂) |ni=0]
ĉ′′ = L.assume(ĉ′, π)
c′′′ = L.suspend(c′′)

〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ
′′′, ĥ, q̂′ ++[(ĉ′′, (λĉ.True))]++q̂〉

Asynchronous Dispatch
ĉ ;

ˆ̀
L ĉ

′

ˆ̀= aDispatch〈ê, v̂〉
FH(ĥ, ê) ; ([fi |n0 ], π)
q̂′ = [(fi, ê, v̂) |ni=0]
ĉ′′ = L.assume(ĉ′, π)
〈ĉ, ĥ, q̂〉;Ê(L) 〈ĉ

′′, ĥ′, q̂′〉

Schedule
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= schedule〈f, ¯̂v〉
q̂′ = q̂′++[(f, ¯̂v)]

〈ĉ, ĥ, q̂〉;E(L) 〈ĉ, ĥ, q̂
′〉

Await
ĉ ;

ˆ̀
L ĉ

′ ˆ̀= await〈v̂, p̂〉
(ĉr, ĉa) = L.splitReturn(ĉ′, v̂)
〈ĉ, ĥ, q̂〉;E(L) 〈ĉr, ĥ, q̂++[(ĉa, p̂)]〉

Environment Dispatch
FH(ĥ, ê) ; ([fi |n0 ], π)

q̂′ = [(fi, ê, v̂) |ni=0] ĉ′ = L.assume(ĉ, π)
〈ĉ, ĥ, q̂〉;(ê,v̂)

Ê(L)
〈ĉ′, ĥ, q̂++q̂′〉

Continuation - Success
L.isFinal(ĉ) q̂ = κ̂ : q̂′

〈ĉ, ĥ, q̂〉;E(L) 〈CWL(ĉ, κ̂), ĥ, q̂′〉

Continuation - Failure
L.isFinal(ĉ) q̂ = κ̂ : q̂′ (ĉ, κ̂) 6∈ dom(CWL)

〈ĉ, ĥ, q̂〉;E(L) 〈ĉ, ĥ, q̂
′++[κ̂]〉
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8.3 Correctness
Type-Preserving Symbolic Environments: ε : X̂ ⇀ V

Interpretations (Iε(v̂)): Iε(x̂) = ε(x̂)

Interpretation of Event Semantics Structures

HR - Empty
Iε(∅) , ∅

HR - Composition
Iε(ĥ1 ] ĥ2) , Iε(ĥ1) ] Iε(ĥ2)

HR - Cell
Iε([ê 7→ f ]) , [Iε(ê) 7→ f ]

CQ - Empty
Iε([]) , []

CQ - Non-Empty
Iε(κ̂ : q̂) , Iε(κ̂) : Iε(q̂)

Cont - Hanlder-Cont
Iε((f, [v̂1, ..., v̂n])) , (f, [Iε(v̂1), ..., Iε(v̂n)])

Cont - Yield-Cont
Iε((ĉ, p̂)) , (Iε(ĉ), Iε(p̂))

Event Label - AH/RH
lab ∈ {addHdlr, remHdlr}
Iε(lab〈ê, f〉) , lab〈Iε(ê), f〉

Event Label - SD/AD
lab ∈ {sDispatch, aDispatch}
Iε(lab〈ê, v̂〉) , lab〈Iε(ê), Iε(v̂)〉

Event Label - Schedule
Iε(schedule〈f, [v̂1, ..., v̂n]〉) , schedule〈f, [Iε(v̂1), ..., Iε(v̂n)]〉

Event Label - Await
Iε(await〈p̂〉) , await〈Iε(p̂)〉

EAction - Event
Iε((ê, v̂)) , (Iε(ê), Iε(v̂))

EAction - UL
Iε(·) , ·

ESemantics Configuration
Iε(〈ĉ, ĥ, q̂〉) , 〈Iε(ĉ), Iε(ĥ), Iε(q̂)〉

Models of Symbolic Event Semantics Structures

L-Configurations
Mπ(ĉ) , {(ε, Iε(ĉ)) | Iε(π) = True}

E-Configurations
Mπ(〈ĉ, ĥ, q̂〉) , {(ε, 〈Iε(ĉ), Iε(ĥ), Iε(q̂))〉 | Iε(π) = True}

Event Labels
Mπ(ˆ̀) , {(ε, Iε(ˆ̀)) | Iε(π) = True}

Environment Actions
Mπ(α̂) , {(ε, Iε(α̂)) | Iε(π) = True}

I Requirements 3 (Interpretations). Interpretations on symbolic values must satisfy the
following properties:
1. Iε(v) = v

2. Iε(l ++l′) = Iε(l) ++Iε(l′)
3. p̂(ĉ) ⇐⇒ (Iε(p̂))(Iε(ĉ))

I Requirements 4 (L-Semantics Interface Functions). The interface functions of the L-
semantics must preserve path conditions, as follows:
1. assume(ĉ, π) = ĉ′ =⇒ pc(ĉ′) = pc(ĉ) ∧ π
2. pc(initialConf(ĉ, (f, v̂)) = pc(ĉ)
3. pc(mergeConfs(ĉ, ĉ′)) = pc(ĉ)
4. splitReturn(ĉ, v̂) = (ĉr, ĉa) =⇒ pc(ĉ) = pc(ĉr) ∧ pc(ĉ) = pc(ĉa)
5. pc(interrupt(ĉ)) =⇒ pc(ĉ)

I Requirements 5 (Interpretation Preservation). The interface functions of the L-semantics
must preserve interpretations, as follows:
1. initialConf(ĉ, (f, v̂)) = ĉ′ =⇒ initialConf(Iε(ĉ), (f, Iε(v̂))) = Iε(ĉ′)
2. mergeConfs(ĉ, ĉ′)) = ĉ′′ =⇒ mergeConfs(Iε(ĉ), Iε(ĉ′)) = Iε(ĉ′′)
3. isFinal(ĉ) ⇐⇒ isFinal(Iε(ĉ))
4. assume(ĉ, πa) = ĉ′ ∧ Iε(pc(ĉ′)) = True =⇒ Iε(ĉ) = Iε(ĉ′)
5. interrupt(ĉ) = ĉ′ =⇒ interrupt(Iε(ĉ)) = Iε(ĉ′)
6. splitReturn(ĉ, v̂) = (ĉr, ĉa) =⇒ splitReturn(Iε(ĉ), Iε(v̂)) = (Iε(ĉr), Iε(ĉa))

ECOOP 2020



28:34 A Trusted Infrastructure for Symbolic Analysis of Event-Driven Web Applications

I Lemma 6 (Configuration Projection - Models).

(ε, 〈c, h, q〉) ∈Mπ(〈ĉ, ĥ, q̂〉) =⇒ (ε, c) ∈Mπ(ĉ)

Proof:
Assume: 1. (ε, 〈c, h, q〉) ∈Mπ(〈ĉ, ĥ, q̂〉)

Prove: c ∈Mπ(ĉ)
1. (ε, 〈c, h, q〉) ∈Mπ(〈ĉ, ĥ, q̂〉) [Assumption 1]
2. (ε, 〈c, h, q〉) ∈ {(ε, Iε(〈c, h, q〉)) | Iε(π) = True} [Definition ofMπ()]
3. 〈c, h, q〉 = Iε(〈ĉ, ĥ, q̂〉) [Set theory and 2]
4. Iε(π) = True [Definition ofMπ()]
5. c = Iε(ĉ) [Equality of Tuples and 4]
6. (ε, c) ∈ {(ε, ĉ) | Iε(π) = True} [Set theory and 5]
7. (ε, c) ∈Mπ(ĉ) [Definition ofMπ() and 6]

I Lemma 7 (Add Handler - Symbolic to Concrete).

AH(ĥ, ê, f) ; (ĥ′, π) ∧ Iε(π) = True =⇒ AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

Proof:
Assume: 1. AH(ĥ, ê, f) ; (ĥ′, π)

2. Iε(π) = True
Prove: AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

The proof proceeds by case analysis on the symbolic rules for AH.
1. Case: [Add Handler: Found]
1.1. ∃ê′ ∈ dom(ĥ) [Add Handler - Found (Symbolic)]
1.2. ĥ′ = ĥ

[
ê′ 7→ ĥ(ê′)++[f ]

]
[Add Handler - Found (Symbolic)]

1.3. π = (ê = ê′) [Add Handler - Found (Symbolic)]
1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]
1.6. Let : h = Iε(ĥ)
1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]
1.8. AH(h, e, f) = h [e 7→ ho(e)++[f ]] [Definition of AH (Concrete)]
1.9. AH(h, e, f) = h [e 7→ h(e)++[f ]] [1.7 and 1.8]
1.10. h [e 7→ h(e)++[f ]] = Iε(ĥ

[
ê′ 7→ ĥ(ê′)++[f ]

]
) [Definition of Iε]

1.11. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [1.2, 1.4 and 1.10]

2. Case: [Add Handler: Not Found]
2.1. ê 6∈ dom(ĥ) [Add Handler - Not Found (Symbolic)]
2.2. ĥ′ = ĥ [ê 7→ [f ]] [Add Handler - Not Found (Symbolic)]
2.3. π = ê 6∈ dom(ĥ) [Add Handler - Not Found (Symbolic)]
2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]
2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]
2.7. AH(h, e, f) = h [e 7→ ho(e)++[f ]] [definition of AH (Concrete)]
2.8. AH(h, e, f) = h [e 7→ [f ]] [2.6 and 2.7]
2.9. h [e 7→ [f ]] = Iε(ĥ [ê 7→ [f ]]) [Definition of Iε]
2.10. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [2.2, 2.4 and 2.9]
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I Lemma 8 (Remove Handler - Symbolic to Concrete).

RH(ĥ, ê, f) ; (ĥ′, π) ∧ Iε(π) = True =⇒ RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

Proof:
Assume: 1. RH(ĥ, ê, f) ; (ĥ′, π)

2. Iε(π) = True
Prove: RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′)

The proof proceeds by case analysis on the symbolic rules for RH.
1. Case: [Remove Handler: Found]
1.1. ∃ê′ ∈ dom(ĥ) [Remove Handler - Found (Symbolic)]
1.2. ĥ′ = ĥ

[
ê′ 7→ ĥ(ê′) \ f

]
[Remove Handler - Found (Symbolic)]

1.3. π = (ê = ê′) [Remove Handler - Found (Symbolic)]
1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]
1.6. Let : h = Iε(ĥ)
1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]
1.8. RH(h, e, f) = h [e 7→ h(e) \ f ] [1.7 and definition of RH]
1.9. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ

[
ê′ 7→ ĥ(ê′) \ f

]
) [1.2 and 1.8]

1.10. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [1.9 and definition of RH]

2. Case: [Remove Handler: Not Found]
2.1. ê 6∈ dom(ĥ) [Remove Handler - Not Found (Symbolic)]
2.2. ĥ′ = ĥ [Remove Handler - Not Found (Symbolic)]
2.3. π = ê 6∈ dom(ĥ) [Remove Handler - Not Found (Symbolic)]
2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]
2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]
2.7. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [Definition of RH, 2.2 and 2.6]

I Lemma 9 (Find Handler - Symbolic to Concrete).

FH(ĥ, ê) ; (f̄, π) ∧ Iε(π) = True =⇒ FH(Iε(ĥ), Iε(ê)) = f̄

Proof:
Assume: 1. FH(ĥ, ê) ; (f̄, π)

2. Iε(π) = True
Prove: FH(Iε(ĥ), Iε(ê)) = f̄

The proof proceeds by case analysis on the symbolic rules for FH.
1. Case: [Find Handler: Found]
1.1. ∃ê′ ∈ dom(ĥ) [Find Handler - Found (Symbolic)]
1.2. f̄ = ĥ(ê′) [Find Handler - Found (Symbolic)]
1.3. π = (ê = ê′) [Find Handler - Found (Symbolic)]
1.4. Let : e = Iε(ê)
1.5. Iε(ê = ê′) = True [Assumption 2 and 1.3]
1.6. Let : h = Iε(ĥ)
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1.7. e ∈ dom(h) [Assumption 1, 1.1 and 1.5]
1.8. FH(h, e) = ho(e) [1.7 and definition of FH]
1.9. FH(h, e) = h(e) [1.2 and 1.8]
1.10. FH(Iε(ĥ), Iε(ê)) = f̄ [1.9 and definition of FH]

2. Case: [Find Handler: Not Found]
2.1. ê 6∈ dom(ĥ) [Find Handler - Not Found (Symbolic)]
2.2. f̄ = [] [Find Handler - Not Found (Symbolic)]
2.3. π = ê 6∈ dom(ĥ) [Find Handler - Not Found (Symbolic)]
2.4. Let : e = Iε(ê)
2.5. Iε(ê 6∈ dom(ĥ)) = True [Assumption 2 and 2.3]
2.6. e 6∈ dom(h) [Assumption 1, 2.1 and 2.5]
2.7. FH(Iε(ĥ), Iε(ê)) = ho(e) = [] [Definition of FH, 2.2 and 2.6]
2.8. FH(Iε(ĥ), Iε(ê)) = f̄ [2.7 and definition of FH]

I Lemma 10 (Mapping Event Semantics and UL Concretely).

〈c, h, q〉;α
E(L) ω

′ ∧ α = · ∧ ¬L.isFinal(c) =⇒ ∃`, c′ · c ;`
L c

′

Proof:The proof follows by case analysis on the Event Semantics symbolic rules.
Assume: 1. 〈c, h, q〉;α

E(L) ω
′

2. α = ·
3. ¬L.isFinal(c)
Prove: ∃`, c′ · c ;`

L c
′

1. Case: [Environment Event Dispatch]
1.1. α = (e, v) [Environment Event Dispatch Rule (Concrete)]
1.2. ⊥ [Assumption 2 and 1.1]
This rule is not applicable due to a contradiction.

2. Case: [Continuation - Success]
2.1. L.isFinal(c) [Continuation - Sucess (Concrete)]
2.2. ⊥ [Assumption 3 and 2.1]
This rule is not applicable due to a contradiction.

3. Case: [Continuation - Failure]
3.1. L.isFinal(c) [Continuation - Sucess (Concrete)]
3.2. ⊥ [Assumption 3 and 3.1]
This rule is not applicable due to a contradiction.

For the remaining cases, the proof follows directly from the rule definition. It is always the
case that ∃`, c′ · c ;`

L c
′ holds.



G. Sampaio, J. Fragoso Santos, P. Maksimović, P. Gardner 28:37

I Definition 11 (Correctness Criteria - UL-Symbolic Semantics).

L-Directed-Soundness
ĉ ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′)) ∧ (ε, c) ∈Mπ(ĉ) ∧ c ;`
L c

′

=⇒ (ε, c′) ∈Mπ(ĉ′) ∧ (ε, `) ∈Mπ(ˆ̀)

L-Directed-Completeness
ĉ ;

ˆ̀
L ĉ

′ ∧ (π ⇒ pc(ĉ′)) ∧ (ε, c) ∈Mπ(ĉ) =⇒ ∃ `, c′. c ;`
L c

′

I Theorem 12 (Directed Soundness of the Symbolic Event Semantics).

ω̂ ;α̂
Ê(L) ω̂

′ ∧ (π ⇒ pc(ω̂′)) ∧ (ε, ω) ∈Mπ(ω̂)
∧ (ε, α) ∈Mπ(α̂) ∧ ω ;α

E(L) ω
′

=⇒ (ε, ω′) ∈Mπ(ω̂′)

Proof:
Assume: 1. ω̂ ;α̂

Ê(L) ω̂
′

2. π ⇒ pc(ω̂′)
3. (ε, ω) ∈Mπ(ω̂)
4. (ε, α) ∈Mπ(α̂)
5. ω ;α

E(L) ω
′

Prove: (ε, ω′) ∈Mπ(ω̂′)
The proof follows by case analysis on the symbolic semantics rules.
1. Case: [Language Transition]
1.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
1.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
1.3. α̂ = · [Language Transition Rule - Symbolic]
1.4. ĉ ;ˆ̀

L ĉ
′ [Language Transition Rule - Symbolic]

1.5. ˆ̀= · [Language Transition Rule - Symbolic]
1.6. ω̂′ = 〈ĉ′, ĥ, q̂〉 [Language Transition Rule - Symbolic]
1.7. ω = Iε(ω̂) ∧ Iε(π) = True [by Assumption 3 and definition ofM()]
1.8. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
1.9. α = · [by 1.8 and Definition of Iε]
1.10. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 1.1]
1.11. ¬L.isFinal(ĉ) [by 1.4 and definition of isFinal]
1.12. ¬L.isFinal(c) [by Lemma 5, given 1.10, 1.11 and definition ofMπ()]
1.13. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 1.9 and 1.12]

1.14. π ⇒ pc(ĉ′) [by Assumption 2 and Definition of pc()]
1.15. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 1.4, 1.10, 1.13 and 1.14]
1.16. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 1.4, 1.10, 1.13 and 1.14]
1.17. ` = · [by 1.3, 1.16, definition ofMπ() and definition of Iε]
1.18. ω′ = 〈Iε(ĉ′), Iε(ĥ), Iε(q̂)〉 [by 1.13, 1.17 and the Language Transition Rule - Concrete]
1.19. (ε, ω′) ∈Mπ(ω̂′) [by 1.18 and definition ofM()]

2. Case: [Add Handler]
2.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
2.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
2.3. α̂ = · [Add Handler Rule - Symbolic]
2.4. ĉ ;ˆ̀

L ĉ
′ [Add Handler Rule - Symbolic]
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2.5. ˆ̀= addHdlr〈ê, f〉 [Add Handler Rule - Symbolic]
2.6. AH(ĥ, ê, f) ; (ĥ′, πah) [Add Handler Rule - Symbolic]
2.7. Let : ĉ′′ = L.assume(ĉ′, πah)
2.8. ω̂′ = 〈ĉ′′, ĥ′, q̂〉 [Add Handler Rule - Symbolic]
2.9. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 2.1]
2.10. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
2.11. Iε(π) = True [by 2.10 and Set Theory]
2.12. α = · [by 2.3, 2.10 and definition of Iε]
2.13. ¬L.isFinal(ĉ) [by 2.4 and definition of isFinal]
2.14. ¬L.isFinal(c) [by Lemma 5, given 2.9, 2.13 and definition ofMπ()]
2.15. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 2.2, 2.12 and 2.2]

2.16. π ⇒ pc(ĉ′′) [by Assumption 2, 2.8 and definition of pc()]
2.17. π ⇒ pc(ĉ′) [by Lemma 4, given 2.7 and 2.16]
2.18. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 2.4, 2.9, 2.15 and 2.17]
2.19. c′ = Iε(ĉ′) [by 2.18 and definition ofMπ()]
2.20. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 2.4, 2.9, 2.15 and 2.17]
2.21. Let : e = Iε(ê)
2.22. ` = addHdlr〈e, f〉 [by 2.5, 2.20, 2.21 and definition of Iε(addHdlr〈ê, f〉)]
2.23. Let : h′ = AH(h, e, f)
2.24. ω′ = 〈c′, h′, q〉 [Add Handler Rule - Concrete]
2.25. π ⇒ πah [by Lemma 4, given 2.7 and 2.16]
2.26. Iε(pc(ĉ′′)) = True [by 2.11, 2.16 and definition of Iε]
2.27. c′ = Iε(ĉ′′) [by Lemma 5, given 2.7 and 2.26]
2.28. AH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [by Lemma 7, given 2.6, 2.11 and 2.25]
2.29. Iε(ĥ′) = h′ [by 2.23 and 2.28]
2.30. Iε(q̂) = q [by Assumption 2 and definition ofMπ()]
2.31. Iε(〈ĉ′′, ĥ′, q̂〉) = 〈c′, h′, q〉 [by 2.27, 2.29, 2.30 and definition of Iε]
2.32. ω′ ∈Mπ(ω̂′) [by 2.24, 2.31 and definition ofMπ()]

3. Case: [Remove Handler]
3.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
3.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
3.3. α̂ = · [Remove Handler Rule - Symbolic]
3.4. ĉ ;ˆ̀

L ĉ
′ [Remove Handler Rule - Symbolic]

3.5. ˆ̀= remHdlr〈ê, f〉 [Remove Handler Rule - Symbolic]
3.6. RH(ĥ, ê, f) ; (ĥ′, πrh) [Remove Handler Rule - Symbolic]
3.7. Let : ĉ′′ = L.assume(ĉ′, πrh)
3.8. ω̂′ = 〈ĉ′′, ĥ′, q̂〉 [Remove Handler Rule - Symbolic]
3.9. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 3.1]
3.10. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
3.11. Iε(π) = True [by 3.10 and Set Theory]
3.12. α = · [by 3.3, 3.10 and definition of Iε]
3.13. ¬L.isFinal(ĉ) [by 3.4 and definition of isFinal]
3.14. ¬L.isFinal(c) [by Lemma 5, given 3.9, 3.13 and definition ofMπ()]
3.15. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 3.2, 3.12 and 3.14]

3.16. π ⇒ pc(ĉ′′) [by Assumption 2, 3.8 and definition of pc()]
3.17. π ⇒ pc(ĉ′) [by Lemma 4, given 3.7 and 3.16]
3.18. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 3.4, 3.9, 3.15 and 3.17]
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3.19. c′ = Iε(ĉ′) [3.18 and definition ofMπ()]
3.20. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 3.4, 3.9, 3.15 and 3.17]
3.21. Let : e = Iε(ê)
3.22. ` = remHdlr〈e, f〉 [by 3.5, 3.20, 3.21 and definition of Iε(remHdlr〈ê, f〉)]
3.23. Let : h′ = RH(h, e, f)
3.24. ω′ = 〈c′, h′, q〉 [Remove Handler Rule - Concrete]
3.25. π ⇒ πrh [by Lemma 4, given 3.7 and 3.16]
3.26. Iε(pc(ĉ′′)) = True [by 3.11, 3.17 and definition of Iε]
3.27. c′ = Iε(ĉ′′) [by Lemma 5, given 3.7, 3.11 and 3.26]
3.28. RH(Iε(ĥ), Iε(ê), f) = Iε(ĥ′) [by Lemma 8, given 3.11, 3.25 and 3.27]
3.29. Iε(ĥ′) = h′ [by 3.23 and 3.28]
3.30. Iε(q̂) = q [by Assumption 3 and definition ofMπ()]
3.31. Iε(〈ĉ′′, ĥ′, q̂〉) = 〈c′, h′, q〉 [3.27, 3.29, 3.30 and definition of Iε()]
3.32. ω′ ∈Mπ(ω̂′) [3.24, 3.31 and definition ofMπ()]

4. Case: [Synchronous Dispatch]
4.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
4.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
4.3. α̂ = · [Synchronous Dispatch Rule - Symbolic]
4.4. ĉ ;ˆ̀

L ĉ
′ [Synchronous Dispatch Rule - Symbolic]

4.5. ˆ̀= sDispatch〈ê, v̂〉 [Synchronous Dispatch Rule - Symbolic]
4.6. FH(ĥ, ê) ; ([fi |n0 ], πfh) [Synchronous Dispatch Rule - Symbolic]
4.7. Let : q̂′ = [(fi, ê, v̂) |ni=0]
4.8. Let : ĉ′′ = L.assume(ĉ′, π)
4.9. Let : ĉ′′′ = L.suspend(ĉ′′)
4.10. ω̂′ = 〈ĉ′′′, ĥ, q̂′ ++[(ĉ′′, (λĉ.True))]++q̂〉 [Synchronous Dispatch Rule - Symbolic]
4.11. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 4.1]
4.12. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
4.13. Iε(π) = True [by 4.12 and Set Theory]
4.14. α = · [by 4.3, 4.12 and definition of Iε]
4.15. ¬L.isFinal(ĉ) [by 4.4 and definition of isFinal]
4.16. ¬L.isFinal(c) [by Lemma 5, given 4.11, 4.15 and definition ofMπ()]
4.17. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 4.2, 4.14 and 4.16]

4.18. π ⇒ pc(ĉ′′′) [Assumption 2, 4.10 and definition of pc()]
4.19. π ⇒ pc(L.suspend(ĉ′′)) [by 4.9 and 4.18]
4.20. π ⇒ pc(ĉ′′) [by Lemma 4, given 4.19]
4.21. π ⇒ pc(ĉ′) [by Lemma 4, given 4.8 and 4.20]
4.22. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 4.4, 4.11, 4.17 and 4.21]
4.23. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 4.4, 4.11, 4.17 and 4.21]
4.24. Let : e = Iε(ê)
4.25. Let : v = Iε(v̂)
4.26. ` = sDispatch〈e, v〉 [4.5, 4.23, definition ofMπ() and definition of Iε(sDispatch〈ê, v̂〉)]
4.27. Let : c′′ = L.suspend(c′)
4.28. Let : [fi |n0 ] = FH(h, e)
4.29. Let : q′ = [(fi, [e, v]) |ni=0]
4.30. ω′ = 〈c′′, h, q′ ++[(c′, (λc.True))]++q〉 [Synchronous Dispatch Rule - Concrete]
4.31. π ⇒ πfh [by Lemma 4, given 4.8 and 4.20]
4.32. Iε(pc(ĉ′′)) = True [by 4.13, 4.20 and definition of Iε]
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4.33. c′ = Iε(ĉ′′) [by Lemma 5, given 4.8, 4.13 and 4.32]
4.34. Iε(L.suspend(ĉ′′)) = L.suspend(Iε(ĉ′′)) [by Lemma 5]
4.35. Iε(L.suspend(ĉ′′)) = L.suspend(c′) [by 4.33 and 4.34]
4.36. (ε, c′′) ∈Mπ(ĉ′′′) [by 4.9, 4.35 and definition ofMπ()]
4.37. Iε(ĥ) = h [by Assumption 2 and definition ofMπ()]
4.38. FH(Iε(ĥ), Iε(ê)) = [fi |n0 ] [by Lemma 9, given 4.6, 4.13 and 4.31]
4.39. Iε(q̂′ ++[(ĉ′′, (λĉ.True))]++q̂) = Iε(q̂′) ++Iε([(ĉ′′, (λĉ.True))])++Iε(q̂) [Definition of Iε]
4.40. Iε(q̂′) = Iε([(fi, ê, v̂) |ni=0]) = [(Iε(fi), e, v) |ni=0] = q′ [by definition of Iε, 4.7, 4.29,

4.39]
4.41. Iε([(ĉ′′, (λĉ.True))]) = [(c′, (λc.True))] [by 4.33 and definition of Iε]
4.42. Iε(q̂) = q [by Assumption 2 and definition ofMπ()]
4.43. ω′ ∈Mπ(ω̂′) [by 4.35, 4.39, 4.40, 4.41, 4.42 and definition ofMπ()]

5. Case: [Asynchronous Dispatch]
5.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
5.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
5.3. α̂ = · [Asynchronous Dispatch Rule - Symbolic]
5.4. ĉ ;ˆ̀

L ĉ
′ [Asynchronous Dispatch Rule - Symbolic]

5.5. ˆ̀= aDispatch〈ê, v̂〉 [Asynchronous Dispatch Rule - Symbolic]
5.6. FH((ĥ, ê)) ; (([fi |n0 ], πfh)) [Asynchronous Dispatch Rule - Symbolic]
5.7. Let : q̂′ = [(fi, ê, v̂) |ni=0]
5.8. Let : ĉ′′ = L.assume(ĉ′, π)
5.9. ω̂′ = 〈ĉ′′, ĥ, q̂′〉 [Asynchronous Dispatch Rule - Symbolic]
5.10. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 5.1]
5.11. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
5.12. Iε(π) = True [by 5.11 and Set Theory]
5.13. α = · [by 5.3, 5.11 and Definition of Iε]
5.14. ¬L.isFinal(ĉ) [by 5.4 and definition of isFinal]
5.15. ¬L.isFinal(c) [by Lemma 5, given 5.10, 5.14 and definition ofMπ()]
5.16. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 5.2, 5.13 and 5.15]

5.17. π ⇒ pc(ĉ′′) [by Assumption 2, 5.9 and definition of pc()]
5.18. π ⇒ pc(ĉ′) [by Lemma 4, given 5.8 and 5.17]
5.19. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 5.4, 5.10, 5.16 and 5.18]
5.20. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 5.4, 5.10, 5.16 and 5.18]
5.21. Let : e = Iε(ê)
5.22. Let : v = Iε(v̂)
5.23. ` = aDispatch〈e, v〉 [by 5.5, 5.20, definition ofMπ() and definition of Iε(aDispatch〈ê, v̂〉)]
5.24. Let : [fi |n0 ] = FH(h, e)
5.25. Let : q′ = [(fi, [e, v]) |ni=0]
5.26. ω′ = 〈c′, h, q′〉 [Asynchronous Dispatch Rule - Concrete]
5.27. Iε(pc(ĉ′′)) = True [by 5.12, 5.17 and definition of Iε]
5.28. c′ = Iε(ĉ′′) [by Lemma 5, given 5.8 and 5.27]
5.29. π ⇒ πfh [by Lemma 4, given Assumption 2 and 5.8]
5.30. (ε, c′) ∈Mπ(ĉ′′) [by 5.12, 5.28 and definition ofMπ()]
5.31. Iε(ĥ) = h [by Assumption 3, 5.1, 5.2 and definition ofMπ()]
5.32. FH(Iε(ĥ), Iε(ê)) = [fi |n0 ] [by Lemma 9, given 5.6, 5.12 and 5.29]
5.33. Iε(q̂′) = Iε([(fi, [ê, v̂]) |ni=0]) = [(fi, [e, v]) |ni=0] = q′ [by 5.7 and definition of Iε]
5.34. ω′ ∈Mπ(ω̂′) [5.9, 5.26, 5.30, 5.31, 5.33 and definition ofMπ()]
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6. Case: [Environment Dispatch]
6.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
6.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
6.3. FH(ĥ, ê) ; ([fi |n0 ], πfh) [Environment Dispatch Rule - Symbolic]
6.4. Let : q̂′ = [(fi, ê, v̂) |ni=0]
6.5. Let : ĉ′ = L.assume(ĉ, πfh)
6.6. ω̂′ = 〈ĉ′, ĥ, q̂++q̂′〉 [Environment Dispatch Rule - Symbolic]
6.7. α̂ = (ê, v̂) [Environment Dispatch Rule - Symbolic]
6.8. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 6.1]
6.9. Iε(π) = True [by 6.8 and definition ofMπ()]
6.10. Let : e = Iε(ê)
6.11. Let : v = Iε(v̂)
6.12. α = (e, v) [by 6.7, 6.10, 6.11, Assumption 4 and definition ofMπ(α̂)]
6.13. ω′ = 〈c, h, q++q′〉 [Environment Dispatch Rule - Concrete]
6.14. Iε(q̂′) = Iε([(fi, [ê, v̂]) |ni=0]) = [(fi, [e, v]) |ni=0] = q′ [by 6.4 and Definition of Iε]
6.15. Iε(q̂++q̂′) = Iε(q̂)++Iε(q̂′) [by definition of Iε]
6.16. Iε(pc(ĉ′)) = True [by 6.5, 6.9 and definition of Iε]
6.17. c = Iε(ĉ′) [by Lemma 5, given 6.5 and 6.16]
6.18. π ⇒ πfh [by Lemma 4, given Assumption 2 and 6.5]
6.19. FH(Iε(ĥ), e) = [fi |n0 ] [by Lemma 9, given 6.3, 6.9 and 6.18]
6.20. (ε, c) ∈Mπ(ĉ′) [by 6.17 and definition ofMπ()]
6.21. q′ ∈Mπ(q̂′) [by 6.14 and definition ofMπ()]
6.22. Iε(q̂) = q [by Assumption 2, 6.1, 6.2 and definition ofMπ()]
6.23. Iε(ĥ) = h [by Assumption 2, 6.1, 6.2 and definition ofMπ()]
6.24. ω′ ∈Mπ(ω̂′) [by 6.6, 6.8, 6.13, 6.21, 6.22, 6.23 and definition ofMπ()]

7. Case: [Schedule]
7.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
7.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
7.3. α̂ = · [Schedule Rule - Symbolic]
7.4. ĉ ;ˆ̀

L ĉ
′ [Schedule Rule - Symbolic]

7.5. ˆ̀= schedule〈f, v̂〉 [Schedule Rule - Symbolic]
7.6. Let : q̂′ = q̂++[(f, v̂)]
7.7. ω̂′ = 〈ĉ′, ĥ, q̂′〉 [Schedule Rule - Symbolic]
7.8. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 7.1]
7.9. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
7.10. α = · [by 7.3, 7.9 and definition of Iε]
7.11. ¬L.isFinal(ĉ) [by 7.4 and definition of isFinal]
7.12. ¬L.isFinal(c) [by Lemma 5, given 7.8, 7.11 and definition ofMπ()]
7.13. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 7.2, 7.10 and 7.12]

7.14. π ⇒ pc(ĉ′) [by Assumption 2, 7.7, 7.8 and definition of pc()]
7.15. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 7.4, 7.13 and 7.14]
7.16. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 7.4, 7.13 and 7.14]
7.17. Let : v = Iε(v̂)
7.18. ` = schedule〈f, v〉 [by 7.5, 7.16, definition ofMπ() and definition of Iε(schedule〈f, v̂〉)]
7.19. Let : q′ = q++[(f, v)]
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7.20. ω′ = 〈c′, h, q′〉 [by 7.13, 7.17, 7.18 and Schedule Rule - Concrete]
7.21. Iε(ĥ) = h [by Assumption 3, 7.1, 7.2 and definition ofMπ()]
7.22. Iε(q̂′) = Iε(q̂++[(f, v̂)]) = q++[(f, v)] = q′ [by Assumption 3, 7.6, 7.17, 7.19 and

definition of Iε]
7.23. ω′ ∈Mπ(ω̂′) [by 7.7, 7.15, 7.20, 7.21, 7.22 and definition ofMπ()]

8. Case: [Await]
8.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
8.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
8.3. ĉ ;ˆ̀

L ĉ
′ [Await Rule - Symbolic]

8.4. α̂ = · [Await Rule - Symbolic]
8.5. ˆ̀= await〈v̂, p̂〉 [Await Rule - Symbolic]
8.6. Let : (ĉr, ĉa) = L.splitReturn(ĉ′, v̂)
8.7. ω̂′ = 〈ĉr, ĥ, q̂++[(ĉa, p̂)]〉 [Await Rule - Symbolic]
8.8. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 2 and 8.1]
8.9. (ε, α) ∈ {(ε, Iε(α̂)) | Iε(π) = True} [by Assumption 4 and definition ofMπ()]
8.10. α = · [by 8.4, 8.9 and definition of Iε]
8.11. ¬L.isFinal(ĉ) [by 8.3 and definition of isFinal]
8.12. ¬L.isFinal(c) [by Lemma 5, given 8.8, 8.11 and definition ofMπ()]
8.13. ∃`, c′. c ;`

L c
′ [by Lemma 10, given Assumption 5, 8.2, 8.10 and 8.12]

8.14. π ⇒ pc(ĉr) [by Assumption 2, 8.7 and definition ofMπ()]
8.15. π ⇒ pc(ĉ′) [by Lemma 4, given 8.6 and 8.14]
8.16. (ε, c′) ∈Mπ(ĉ′) [by Definition 11, given 8.3, 8.8 and 8.16]
8.17. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 8.3, 8.8 and 8.16]
8.18. Let : v = Iε(v̂)
8.19. Let : p = Iε(p̂)
8.20. ` = await〈v, p〉 [by 8.5, 8.17 8.18 and 8.19 and definition of Iε]
8.21. Let : (cr, ca) = L.splitReturn(c′, v)
8.22. (cr, ca) = (Iε(ĉr), Iε(ĉa)) [by Lemma 5, given 8.6 and 8.21]
8.23. ω′ = 〈cr, h, q++[(ca, p)]〉 [by Await Rule - Concrete, given 8.2, 8.10, 8.13, 8.20 and

8.21]
8.24. Iε(ĉr) = cr [by 8.22 and Equality of Tuples
8.25. Iε(ĥ) = h [by Assumption 3, 8.1, 8.2 and definition ofMπ()]
8.26. Iε(q̂) = q [by Assumption 3, 8.1, 8.2 and definition ofMπ()]
8.27. Iε(q̂++[(ĉa, p̂)]) = Iε(q̂)++Iε([ĉa, p̂]) = q++[ca, p] [by 8.22, 8.26 and definition of Iε]
8.28. ω′ ∈Mπ(ω̂′) [by 8.7, 8.23, 8.24, 8.25, 8.27 and definition ofMπ()]

9. Case: [Continuation - Success]
9.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
9.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
9.3. L.isFinal(ĉ) [Continuation Success Rule (Symbolic)]
9.4. q̂ = κ̂ : q̂′ [Continuation Success Rule (Symbolic)]
9.5. Let : ĉ′′ = CWL(ĉ, κ̂)
9.6. ω̂′ = 〈ĉ′′, ĥ, q̂′〉 [Continuation Success Rule (Symbolic)]
9.7. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 9.1]
9.8. L.isFinal(c) [by Lemma 5, given 9.3, 9.7 and definition ofMπ()]
9.9. Case: κ̂ = (ĉ′, p̂)
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9.9.1. ĉ′′ = L.mergeConfs(ĉ, ĉ′) [by definition of CWL]
9.9.2. Let : c′ = Iε(ĉ′)
9.9.3. Let : q′ = Iε(q̂′)
9.9.4. q = Iε(q̂) [by Assumption 2 and definition ofMπ()]
9.9.5. q = Iε(κ̂ : q̂′) = Iε(κ̂) : Iε(q̂′) [by 9.4, 9.9.4 and definition of Iε]
9.9.6. Let : κ = Iε(κ̂)
9.9.7. Let : p = Iε(p̂)
9.9.8. κ = (c′, p) [by 9.9.2, 9.9.6, 9.9.7 and definition of Iε]
9.9.9. Let : c′′ = CWL(c, κ)
9.9.10. c′′ = L.mergeConfs(c, c′) [by 9.9.7 and definition of CWL]
9.9.11. ω′ = 〈c′′, h, q′〉 [Continuation - Sucess (Concrete)]
9.9.12. Iε(ĉ′′) = c′′ [by Lemma 5, given 9.9.1 9.9.2 and 9.9.10]
9.9.13. Iε(ĥ) = h [by Assumption 3 and definition ofMπ()]
9.9.14. ω′ ∈Mπ(ω̂′) [by 9.6, 9.9.3, 9.9.11, 9.9.12, 9.9.13 and definition ofMπ()]

9.10. Case: κ̂ = (f, v̂)
9.10.1. p̂(ĉ) = True [Continuation Success Rule (Symbolic)]
9.10.2. ĉ′′ = L.initialConf(ĉ, (f, v̂)) [by 9.10.1 and Definition of CWL]
9.10.3. Let : v = Iε(v̂)
9.10.4. Let : q′ = Iε(q̂′)
9.10.5. q = Iε(q̂) [by Assumption 2 and definition ofMπ()]
9.10.6. q = Iε(κ̂ : q̂′) = Iε(κ̂) : Iε(q̂′) [by 9.4, 9.10.5 and definition of Iε]
9.10.7. Let : κ = Iε(κ̂)
9.10.8. Let : p = Iε(p̂)
9.10.9. κ = (f, v) [by 9.10.3, 9.10.7 and definition of Iε]
9.10.10. Let : c′ = CWL(c, κ)
9.10.11. p(c) = True [9.10.1, 9.10.8 and definition of Iε]
9.10.12. c′ = L.initialConf(f, v) [9.10.10, 9.10.11 and definition of CWL]
9.10.13. ω′ = 〈c′, h, q′〉 [Continuation - Sucess (Concrete)]
9.10.14. Iε(ĉ′′) = c′ [by Lemma 5, given 9.10.2 and 9.10.12]
9.10.15. Iε(ĥ) = h [by Assumption 3 and definition ofMπ()]
9.10.16. ω′ ∈Mπ(ω̂′) [9.6, 9.10.4, 9.10.14, 9.10.15 and definition ofMπ()]

10. Case: [Continuation - Failure]
10.1. Let : ω̂ = 〈ĉ, ĥ, q̂〉
10.2. Let : ω = 〈c, h, q〉
10.3. L.isFinal(ĉ) [Continuation Failure Rule (Symbolic)]
10.4. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 1 and 10.1]
10.5. q̂ = κ̂ : q̂′ [Continuation Failure Rule (Symbolic)]
10.6. (ĉ, κ̂) 6∈ dom(CWL) [Continuation Failure Rule (Symbolic)]
10.7. ω̂′ = 〈ĉ, ĥ, q̂′++[κ̂]〉 [Continuation - Failure (Symbolic)]
10.8. L.isFinal(c) [by Lemma 5, given 10.3, 10.4 and definition ofMπ()]
10.9. Let : κ = Iε(κ̂)
10.10. Let : q′ = Iε(q̂′)
10.11. (c, κ) 6∈ dom(CWL) [by 10.6, 10.9, 10.10 and definition of Iε]
10.12. ω′ = 〈c, h, q′++[κ]〉 [Continuation Failure Rule (Concrete)]
10.13. q′++[κ] ∈Mπ(q̂′++[κ̂]) [by 10.9, 10.10 and definition ofMπ()]
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10.14. ω′ ∈Mπ(ω̂′) [by 10.6, 10.7, 10.13 and definition ofMπ()]

I Theorem 13 (Directed Completeness of the Symbolic Event Semantics).

ω̂ ;α̂
Ê(L) ω̂

′ ∧ π ⇒ pc(ω̂′) ∧ (ε, ω) ∈Mπ(ω̂) =⇒ ∃α, ω′. ω ;α
E(L) ω

′

Proof:
Assume: 1. ω̂ ;α̂

Ê(L) ω̂
′

2. π ⇒ pc(ω̂′)
3. (ε, ω) ∈Mπ(ω̂)
Prove: ∃α, ω′. ω ;α

E(L) ω
′

The proof follows by case analysis on the symbolic semantics rules.
1. Case: [Language Transition]
1.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
1.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
1.3. ĉ ;ˆ̀

L ĉ
′ [Language Transition Rule (Symbolic)]

1.4. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 1.1]
1.5. π ⇒ pc(ĉ) [by Assumption 2 and definition of pc()]
1.6. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 1.3, 1.4, 1.5]

1.7. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 1.3, 1.4, 1.5 and 1.6]
1.8. ω ;E(L) 〈c

′, h, q〉 [Language Transition Rule (Concrete)]
1.9. ∃α, ω′. ω ;α

E(L) ω
′ [by 1.8]

2. Case: [Add Handler]
2.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
2.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
2.3. ĉ ;ˆ̀

L ĉ
′ [Add Handler Rule (Symbolic)]

2.4. ˆ̀= addHdlr〈ê, f〉 [Add Handler Rule (Symbolic)]
2.5. AH(ĥ, ê, f) ; (ĥ′, πah) [Add Handler Rule (Symbolic)]
2.6. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 2.1]
2.7. π ⇒ pc(ĉ) [by Assumption 2 and definition of pc()]
2.8. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 2.3, 2.4 and 2.5]

2.9. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 2.3, 2.4, 2.5 and 2.8]
2.10. Let : e = Iε(ê)
2.11. ` = addHdlr〈e, f〉 [by 2.9, 2.10, 2.11 and definition of Iε(addHdlr〈ê, f〉)]
2.12. 〈c, h, q〉;E(L) 〈c

′,AH(h, e, f), q〉 [Add Handler Rule (Concrete)]
2.13. ∃α, ω′. ω ;α

E(L) ω
′ [by 2.12]

3. Case: [Remove Handler]
3.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
3.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
3.3. ĉ ;ˆ̀

L ĉ
′ [Remove Handler Rule (Symbolic)]

3.4. ˆ̀= remHdlr〈ê, f〉 [Remove Handler Rule (Symbolic)]
3.5. RH(ĥ, ê, f) ; (ĥ′, πah) [Remove Handler Rule (Symbolic)]
3.6. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 3.1]
3.7. π ⇒ pc(ĉ) [by Assumption 2 and definition of pc()]
3.8. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 3.3, 3.4 and 3.5]

3.9. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 3.3, 3.4, 3.5 and 3.8]
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3.10. Let : e = Iε(ê)
3.11. ` = remHdlr〈e, f〉 [by 3.9, 3.10, 3.11 and definition of Iε(remHdlr〈ê, f〉)]
3.12. 〈c, h, q〉;E(L) 〈c

′,RH(h, e, f), q〉 [Remove Handler Rule (Concrete)]
3.13. ∃α, ω′. ω ;α

E(L) ω
′ [by 3.12]

4. Case: [Synchronous Dispatch]
4.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
4.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
4.3. ĉ ;ˆ̀

L ĉ
′ [Synchronous Dispatch Rule (Symbolic)]

4.4. ˆ̀= sDispatch〈ê, v̂〉 [Synchronous Dispatch Rule (Symbolic)]
4.5. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 4.1]
4.6. Let : e = Iε(ê)
4.7. Let : v = Iε(v̂)
4.8. π ⇒ pc(ĉ) [by Assumption 3 and definition of pc()]
4.9. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 4.3, 4.5, 4.8]

4.10. (ε, `) ∈Mπ(ˆ̀) [by Definition 11 , given 4.3, 4.5, 4.8 and 4.9]
4.11. ` = sDispatch〈e, v〉 [by 4.4, 4.6, 4.7 and definition of Iε(sDispatch〈ê, v̂〉)]
4.12. Let : [fi |n0 ] = FH(h, e)
4.13. Let : q′ = [(fi, [e, v]) |ni=0]
4.14. Let : c′′ = L.suspend(c′)
4.15. 〈c, h, q〉 ;E(L) 〈c

′′, h, q′ ++[(c′, (λc.True))]++q〉 [Synchronous Dispatch Rule (Con-
crete)]

4.16. ∃α, ω′. ω ;α
E(L) ω

′ [by 4.15]

5. Case: [Asynchronous Dispatch]
5.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
5.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
5.3. ĉ ;ˆ̀

L ĉ
′ [Asynchronous Dispatch Rule (Symbolic)]

5.4. ˆ̀= aDispatch〈ê, v̂〉 [Asynchronous Dispatch Rule (Symbolic)]
5.5. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 5.1]
5.6. π ⇒ pc(ĉ) [Assumption 2 and definition of pc()]
5.7. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 5.3, 5.5 and 5.6]

5.8. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 5.3, 5.5, 5.6 and 5.7]
5.9. Let : e = Iε(ê)
5.10. Let : v = Iε(v̂)
5.11. ` = aDispatch〈e, v〉 [by 5.8, 5.9, 5.10 and definition of Iε(aDispatch〈ê, v̂〉)]
5.12. Let : [fi |n0 ] = FH(h, e)
5.13. Let : q′ = [(fi, [e, v]) |ni=0]
5.14. 〈c, h, q〉;E(L) 〈c

′, h′, q++q′〉 [Asynchronous Dispatch Rule (Concrete)]
5.15. ∃α, ω′. ω ;α

E(L) ω
′ [by 5.14]

6. Case: [Environment Dispatch]
6.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
6.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
6.3. Let : [fi |n0 ] = FH(h, e)
6.4. Let : q′ = [(fi, [e, v]) |ni=0]
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6.5. 〈c, h, q〉;(e,v)
E(L) 〈c, h, q++q′〉 [Environment Dispatch Rule (Concrete)]

6.6. ∃α, ω′. ω ;α
E(L) ω

′ [by 6.5]

7. Case: [Schedule]
7.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
7.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
7.3. ĉ ;ˆ̀

L ĉ
′ [Schedule Rule (Symbolic)]

7.4. ˆ̀= schedule〈f, v̂〉 [Schedule Rule (Symbolic)]
7.5. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 7.1]
7.6. π ⇒ pc(ĉ) [Assumption 3 and definition of pc()]
7.7. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 7.3, 7.5 and 7.6]

7.8. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 7.3, 7.5, 7.6 and 7.7]
7.9. Let : v = Iε(v̂)
7.10. ` = schedule〈f, v〉 [by 7.4, 7.8, 7.9 and definition of Iε(schedule〈f, v̂〉)]
7.11. Let : q′ = q++[(f, v)]
7.12. 〈c, h, q〉;E(L) 〈c

′, h, q′〉 [Schedule Rule (Concrete)]
7.13. ∃α, ω′. ω ;α

E(L) ω
′ [by 7.13]

8. Case: [Await]
8.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
8.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
8.3. ĉ ;ˆ̀

L ĉ
′ [Await Rule (Symbolic)]

8.4. ˆ̀= await〈v̂, p̂〉 [Await Rule (Symbolic)]
8.5. (ε, c) ∈Mπ(ĉ) [by Lemma 6, given Assumption 3 and 8.1]
8.6. π ⇒ pc(ĉ) [Assumption 3 and definition of pc()]
8.7. ∃ `, c′. c ;`

L c
′ [by Definition 11, given 8.3, 8.5, 8.6]

8.8. (ε, `) ∈Mπ(ˆ̀) [by Definition 11, given 8.3, 8.5, 8.6 and 8.8]
8.9. Let : v = Iε(v̂)
8.10. Let : p = Iε(p̂)
8.11. ` = await〈v, p〉 [by 8.4, 8.8, 8.9 and definition of Iε(await〈v̂, p̂〉)]
8.12. Let : (cr, ca) = L.splitReturn(c′, v)
8.13. 〈c, h, q〉;E(L) 〈cr, h, q++[(ca, p)]〉 [Await Rule (Concrete)]
8.14. ∃α, ω′. ω ;α

E(L) ω
′ [by 8.13]

9. Case: [Continuation - Success]
9.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
9.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
9.3. α = · [Continuation - Success Rule (Symbolic)]
9.4. L.isFinal(ĉ) [Continuation - Success Rule (Symbolic)]
9.5. L.isFinal(c) [by Lemma 5, given Assumption 2, 9.4 and definition ofMπ()]
9.6. Let : q = κ : q′

9.7. 〈c, h, q〉;E(L) 〈CWL(c, κ), h, q′〉 [Continuation - Success (Concrete)]
9.8. ∃α, ω′. ω ;α

E(L) ω
′ [by 9.7]

10. Case: [Continuation - Failure]
10.1. ω̂ = 〈ĉ, ĥ, q̂〉 [Definition of symbolic E-configurations]
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10.2. ω = 〈c, h, q〉 [Definition of concrete E-configurations]
10.3. α = · [Continuation - Failure Rule (Symbolic)]
10.4. (ĉ, κ̂) 6∈ dom(CWL) [Continuation - Failure Rule (Symbolic)]
10.5. L.isFinal(ĉ) [Continuation - Failure Rule (Symbolic)]
10.6. L.isFinal(c) [by Lemma 5, given Assumption 2, 10.5 and definition ofMπ()]
10.7. Let : q = κ : q′

10.8. (c, κ) 6∈ dom(CWL) [by Assumption 2, definition ofMπ() and 10.4]
10.9. 〈c, h, q〉;E(L) 〈CWL(c, κ), h, q′〉 [Continuation - Success (Concrete)]
10.10. ∃α, ω′. ω ;α

E(L) ω
′ [10.8]
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9 DOM

9.1 NodeList Interface
The NodeList interface describes the so-called DOM live collections, which are a special kind
of data structure defined in the DOM API that automatically reflect changes that occur in the
document with which they are associated. For instance, the method getElementsByTagName
from the above-mentioned Element interface returns a live collection containing the DOM
nodes that match the tag name given as input. Working with live collections is error-prone
and requires particular attention. To illustrate this, consider the example below. This
program iterates over the initial collection of div nodes in the tree rooted at body. On each
iteration, it creates a new div node and inserts it into the original tree. However, this new
div is also inserted into the live collection divs, whose length automatically increases by
one, causing the program to loop forever.

var divs = body.getElementsByTagName("div");
for (var i = 0; i < divs.length; i++)

{ body.appendChild(document.createElement("div")) }

The NodeList interface defines the field length, for obtaining the size of a node list, and
the method item(i) for accessing its i-th element. We implement node lists lazily, meaning
that we recompute the entire node list every time when it gets inspected. To this end, every
NodeList object internally stores a compute function, used to compute its contents. We
call compute at every invocation of the method item, and associate the length property of
every node list with a JavaScript getter that also calls compute to obtain the length of the
node list. As an optimisation, we cache pre-computed live collections by associating each
node list with a unique identifier and maintaining a global array of pre-computed node lists.
However, whenever there is any update to the DOM tree, all pre-computed live collections
are invalidated and will have to be re-computed the next time they are inspected.

9.2 Dynamic Parsing
Initially, dynamic parsing of XML and HTML documents was not on the scope of this
work. However, in order to be able to analyse real-world projects that manipulate the DOM,
we included the innerHTML feature, which is part of the DOM Parsing and Serialisation
specification.5 This feature is widely used and challenging to implement, as it allows one to
access and change the HTML content of an element dynamically. InnerHTML is as complex
to implement as the eval function in JavaScript, which allows the evaluation of an expression
passed as a String argument.

We give an example of the innerHTML usage in Figure 6. We show the HTML file (left)
and the JavaScript code (right) to be executed after the page is loaded. The HTML file
is pretty simple and has only one div element (with id "olddiv ") inside the body. We
then execute the JavaScript code and change the innerHTML of the body element. As a
consequence, the div with id olddiv is removed from the document, as we replace it by
newdiv.

We illustrate the solution adopted in Figure 7. From the JavaScript reference imple-
mentation, we call functions in JSIL and OCaml. On the following, we explain each step in
detail.

5 http://www.w3.org/TR/DOM-Parsing/

http://www.w3.org/TR/DOM-Parsing/
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<!DOCTYPE html>
<html>

<head>
<title>innerHTML</title>

</head>
<body>

<div id="olddiv"></div>
</body>

</html>

document.body.innerHTML =
"<div id=\"newdiv\">New text</div>"

Figure 6 Example using innerHTML

Figure 7 InnerHTML implementation overview

1. To allow the modification of the innerHTML property, we define a setter (setInnerHTML)
in the HTMLElement interface. Whenever the property is changed, the setter is triggered.

2. We now call a JSIL function (setInnerHTMLJSIL) from our JavaScript setInnerHTML
function. This JSIL function takes the HTML string representing the new value of the
innerHTML property and returns the corresponding DOM object.

3. To convert the HTML string into a DOM object, we first make an external function
call to the ExecuteHTMLParsing OCaml function. Lifting the complexity of the parsing
to the symbolic analysis (implemented in OCaml) level allows us to have more control, as
it is possible, for instance, to execute the parser directly, instead of compiling the entire
parser implementation to JSIL. From the OCaml implementation, we first evaluate the
arguments to obtain the HTML string.

4. We now call NodeJS to parse the HTML string. The parser6 returns a JSON object as
result. We then print the JSON into a text file by calling JSON.Stringify. We then read
the content of the text file and update the JSIL variable in the store (assigned to the call
of ExecuteHTMLParsing) with the resulting string.

5. We still need to convert the string representing the JSON into a JSON object. In order to
perform this task, we make another external function call to the ExecuteEval OCaml

6 https://www.npmjs.com/package/xml-js
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function. This will simply execute the standard JavaScript eval, and return the JSON
object if called with JSON string as parameter.

6. After obtaining the JSON object, we just need to create the DOM object. We then call
the ParseJSON2DOM function, which is defined in JavaScript and pre-compiled to JSIL.
This function reads the JSON and creates the respective DOM hierarchy.

7. The setInnerHTMLJSIL JSIL function returns the DOM object and we execute the final
step, which consists of replacing the new DOM object by the existing one. In order to do
this, we call the DOM JavaScript functions appendChild and removeChild.
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9.3 DOM Events
Dependencies At the core of the UI Events API is the DOM Dispatch algorithm, which
precisely describes the process of collecting and executing event listeners every time a DOM
event gets triggered. The DOM Living standard includes the pseudo-code of the Dispatch
algorithm, detailing all the steps that are performed when dispatching a DOM event. It is a
complex algorithm that relies on a number of auxiliary functions, which, in turn, are also
described operationally and often rely on other auxiliary functions themselves. To illustrate,
in Figure 8, we show a fragment of the call graph of Dispatch, where auxiliary functions
are presented in blue and DOM interfaces are presented in green; for each graph node, the
number on the left represents the section of the standard where the respective definition can
be found, while the number on the right represents the number of lines of pseudo-code.

Figure 8 Fragment of the Call Graph of the DOM Dispatch

Dispatching events We show the DOM Events dispatch algorithm in more detail. In
Figure 9, we show the dispatch function and the specification given in the standard [53].
For each step described in the standard, we add a comment and the corresponding JavaScript
code below. The dispatch function has 56 lines in the standard. To avoid having such an
extensive function, we create more auxiliary functions for modularity purposes, but still
following the standard line-by-line. We first present the main function (dispatch) and
describe the auxiliary functions afterwards.

Auxiliary functions Here we show the implementation of auxiliary functions used in the
event dispatch algorithm.

retarget(): this operation can change the event target. This is necessary, for instance,
not to break encapsulation in the Shadow DOM.
createTouchTargets(): events involving interactions between the user and a touching
surface can have touchTargets. This function returns a list of touch targets retargets
already retargeted.
appendToAnEventPath(): one of the main steps in event dispatching is to obtain the
propagation path consisting of the node list to which the event propagates. This function
is responsible for adding a new element to the event’s path.
getActivationTarget(): mouse click events are also called “activation events". These
events can have an activation behaviour, which is an action to be executed during the
event dispatch.
isSlotable(): according to the standard, slotables are either Element or Text nodes.
Slotables are often used in the context of Shadow DOM, as it allows one to define an
HTML element and reuse it in different places of the HTML code.
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clearTargets(): when the event propagates over the Shadow tree, we need to clear this
information from the event object. This function checks whether or not this is necessary.
updatePropagationPath(): this function traverses the DOM tree and updates the event’s
propagation path, calling appendToAnEventPath for each node found between the target
and the root nodes.
executePhases(): this function executes the three phases of the event dispatch algorithm:
capture, target and bubble. Based on the event’s path, it is possible to check the handlers
registered for each node for that phase and event type. Each applicable handler is then
executed.

The browsers do not follow the DOM Living Standard line-by-line, especially when it
comes to UI Events. We observe, for instance, that the bubbles readonly property is, in fact,
not implemented as readonly in the browsers. Consider the following example in HTML.

<html>
<head>
</head>
<body>

<h1>Introducing Malicious Code</h1>
<div id="dv1">

<button id="bt1">Set bubbles</button>
</div>

<script type="text/javascript">
function h () {

alert ("Malicious code inserted!");
}

var bt1 = document.getElementById("bt1");
function f (ev) {

alert("bubbles initial value: "+ev.bubbles);
Object.defineProperty(ev, "bubbles", { get: h });

}
bt1.addEventListener("click", f);

var dv = document.getElementById("dv1");
function g (ev) {

alert("bubbles new value: "+ev.bubbles);
}
dv.addEventListener("click", g);

</script>
</body>
</html>

We have a button with id bt1 inside a div with id dv1. The handler f is registered for
the click event on button bt1 and g is registered also for the click event on dv1. As the
mouse click event has bubbles set to true by default, both handlers are executed for the
button click event. During the execution of the first handler (f), we are able to redefine the
property and introduce some new code. We then define a getter for the bubbles property
that returns function h. So, after executing the first handler, the dispatch algorithm performs
a getValue on property bubbles and this makes the h function to be executed. We observe
this behaviour for the four main browsers. This is dangerous and can lead to malicious code
injection. We specify the version used for each browser below.

Google Chrome: Version 79.0.3945.117 (Official Build) (64-bit)
Firefox: Version 72.0.1 (64-bit)
Safari: Version 12.0 (14606.1.36.1.9)
Microsoft Edge: Version 79.0.309.60 (Official build) Beta (64-bit)
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10 Promises

Dependencies In Figure 10, we show a fragment of the call graph for Promises designed
according to the standard specification. We include each function defined in the JavaScript
Promises standard as a node of the graph, showing the function name and the respective
section where it is defined in the standard. We do not include parameters for the functions,
only for the Promise constructor (exposed in a different colour), which takes the executor, a
function taking two functions as parameter: resolve and reject.
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11 Evaluation

Table 5 Line Coverage Gaps in the DOM Core Level 1 Test Suite

Function Name Untested Scenario

CreateProcessingInstruction Instructions that contain invalid characters
CreateEntityReference Entity references that contain invalid characters
EntityClone An entity is cloned
NotationClone A notation is cloned
ValidHierarchy Appending a child to a node not allowed to have children

Table 6 Line Coverage Gaps in the DOM Events Test Suite

Context Untested Behaviour

dispatch flags The dispatch function receives its optional flags (cf. §3)
slotable Any use of the slotable feature; this feature allows the user to create an HTML

element and use it multiple times, in the context of the Shadow DOM [26]

Table 7 Line Coverage Gaps in the Promises Test Suite

Context Untested Behaviour

PerformPromiseThen The resultCapability parameter is not passed

Examples of Standard vs. Tests Discrepancies, DOM Core Level 1
for entity references, the standard states: “as with the Entity node, all descendants of
an EntityReference are read-only”, leaving unclear what happens to their attributes;
the tests reveal that an attribute of an element should be read-only if and only if the
respective element is read-only;
on setting Attr.value, the standard only states that a Text node with the unparsed
contents of the provided value should be created; the tests additionally require that this
text node be inserted as a child node of the attribute.

Examples of Standard vs. Tests Discrepancies, DOM Events
addEventListener(type, callback, options): the standard states that options must
be either a boolean or an object; the tests test for other values as well, including, for
example, 2.3, NaN and ”AAAA”, meaning that an explicit coercion to a boolean is required;
addEventListener(type, callback, options): the standard states that if callback is
null, no listener should be added; the tests expect a callback with value null to be
added successfully;
Event.isTrusted: the standard defines the isTrusted property of the Event interface
to be a boolean that is used to indicate whether or not the dispatchEvent function was
used; the tests specifically require the isTrusted property to be an accessor property
and to have a dedicated getter.
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1 function dispatch(event, target, flags){
2 var legacyTargetOverrideFlag = flags ? flags.legacyTargetOverrideFlag : undefined;
3 var legacyOutputDidListenersThrowFlag = flags ? flags.legacyOutputDidListenersThrowFlag : undefined;
4 // 1. set event's dispatch flag
5 event.dispatch = true;
6 // 2. let targetOverride be target, if legacy flag is not given, and target's associated document

otherwise
7 var targetOverride = !legacyTargetOverrideFlag ? target : target.ownerDocument;
8 // 3. let activationTarget be null
9 var activationTarget = null;

10 // 4. let relatedTarget = retargeting event's relatedTarget against target
11 var relatedTarget = retarget(event.relatedTarget, target);
12 // 5. if target is not related target or target is event's related target, then:
13 if(!(target === relatedTarget) || target === event.relatedTarget){
14 // 5.1 and 5.2, setting touch targets
15 var touchTargets = createTouchTargets(event, target);
16 // 5.3 Append to an event path with event, target, targetOverride, relatedTarget, touchTargets and

false
17 appendToAnEventPath(event, target, targetOverride, relatedTarget, touchTargets, false);
18 // 5.4, 5.5
19 var activationTarget = getActivationTarget(event, target);
20 // 5.6 let slotable be target, if target is a slotable and is assigned, and null otherwise
21 var slotable = (isSlotable(target) && target.slot) ? target : null;
22 // 5.7 let slot-in-closed-tree be false
23 var slotInClosedTree = false;
24 // 5.8 let parent be the result of invoking target's get the parent with event
25 var parent = target.getTheParent(event);
26 // 5.9 Updates propagation path
27 updatePropagationPath(target, parent, slotable, relatedTarget, event, touchTargets, activationTarget,

isActivationEvent);
28 // 5.10 Let clearTargetsStruct be the last struct in event’s path whose target is non-null
29 var clearTargetsStruct = event.getTheLastInPath();
30 // 5.11 Let clearTargets be true if clearTargetsStruct's target, clearTargetsStruct's relatedTarget,

or an EventTarget object in clearTargetsStruct's touch target list is a node and its root is a shadow
root, and false otherwise.

31 var clearTargets = clearTargets(clearTargetsStruct);
32 // 5.12 If activationTarget is non-null and activationTarget has legacy-pre-activation behavior, then

run activationTarget’s legacy-pre-activation behavior.
33 if(activationTarget !== null && activationTarget.legacyPreActivationBehavior){
34 activationTarget.legacyPreActivationBehavior();
35 }
36 executePhases(event, target, legacyOutputDidListenersThrowFlag);
37 }
38 // 6 - 10: unsetting event fields
39 clearEventFields(event, clearTargetsEnabled);
40 // 11 - Performing actions depending on activation target
41 checkActivationTarget(activationTarget, event);
42 // 12. Return false if event's canceled flag is set, and true otherwise.
43 return !event.canceled;
44 }

Figure 9 Our JavaScript implementation of the DOM dispatch, with corresponding lines from
the DOM standard in comments
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Figure 10 Fragment of JavaScript Promises Call Graph
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