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Abstract

The specification of a concurrent program module is a difficult problem. The specifications must be
strong enough to enable reasoning about the intended clients without reference to the underlying module
implementation. We survey a range of verification techniques for specifying concurrent modules, in particular
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1 Introduction

The specification of a concurrent program module is a difficult problem. When

concurrent threads work with shared data, the resulting behaviour can be complex.
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Consequently, the specification of such modules requires effective abstractions for

describing such complex behaviour. The amount of progress that has been made since

the 1970s has been substantial. In this paper, we describe some of the key concepts

that have emerged over the last few decades. We restrict our exposition to those

concepts which we find most important: auxiliary state, interference abstraction,

resource ownership and atomicity.

We use a counter module to highlight the challenges of specifying a concurrent

module. We require a specification to be expressive enough for verifying the intended

clients of the module, such as a ticket lock. We also require that the specification to be

opaque, in that the implementation details do not leak into the specification. Using

the counter as illustration, we look at a range of historical verification techniques

for concurrency:

• Owicki-Gries introduces auxiliary state to abstract internal state of threads;

• rely/guarantee introduces interference abstraction to abstract the interactions

between different threads;

• concurrent separation logic introduces resource ownership to encode interference

abstraction as auxiliary state;

• linearisability introduces atomicity as a way to abstract the effects of an operation.

We show how recent developments enable us to combine these techniques to

provide expressive ways for specifying concurrent modules such as the counter.

2 A Concurrent Counter

We use a concurrent counter as a running example throughout this paper.

2.1 Implementation

Consider the following implementation of a concurrent counter: 6

function read(x) {
r := [x];

return r;

}

function incr(x) {
do {
r := [x];

b := CAS(x, r, r + 1);

} while (b = 0);

return r;

}

function wkincr(x) {
r := [x];

[x] := r + 1;

}

A specification should describe how each operation affects the value of the counter.

Here, the read operation returns the value of the counter, the incr operation

increments the value and returns the old value, and the incr just increments the

value of the counter.

A specification should require the counter to exist as a precondition for each

operation, since operations will not work unless the memory holding the counter

6 We assume that the primitive read, write and compare-and-swap (CAS) memory operations are atomic.
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function lock(x) {
t := incr(x.next);

do {
v := read(x.owner)

} while (v 6= t);

}

function unlock(x) {
wkincr(x.owner);

}

Fig. 1. A ticket lock implementation using the counter module.

is allocated. In this paper, we use the abstract predicate C(x, n) to denote the

existence of a counter at memory location x with the value n.

A specification should also describe the permitted interference from the context

of concurrent operations. Intuitively, the read and incr operations are robust with

respect to concurrent operations that change the value of the counter. By contrast,

the (potentially faster 7 ) wkincr requires that there is no concurrent operation which

changes the value of the counter between the read and increment of the value.

2.2 Ticket Lock Client

The ticket lock algorithm [16] uses the counter module to provide synchronisation.

The code for the lock is given in Fig. 1. The lock uses two counters, next and owner,

which both initially have value 0. A thread acquires the lock by calling the lock

operation. This operation increments the next counter to obtain a notional ticket.

When the value of the owner counter agrees with this ticket, the thread has acquired

the lock. It can then use whatever resources are protected by the lock without

interference from other threads. Control of these resources is relinquished by calling

the unlock operation. This increments the owner counter, passing the lock on to the

next waiting thread. Intuitively, the use of incr for the lock operation is necessary,

since it needs to be robust with respect to concurrent threads taking tickets. The

use of wkincr for the unlock operation is possible since only the thread holding the

lock should release it.

The challenge is to develop a concurrent specification of a counter module that

is strong enough to reason about the ticket lock. This example requires a precise

description of how each operation affects the value of the counter, and a detailed

account of interference to capture the intuitive distinction between incr and wkincr.

The counter and its ticket lock client are realistic examples that illustrate key

difficulties in specifying and reasoning about concurrent modules.

3 Sequential Specification

We can give a sequential specification for the counter module using Hoare triples [11]:

{C(x, n)} read(x) {C(x, n) ∧ ret = n}
{C(x, n)} incr(x) {C(x, n+ 1) ∧ ret = n}
{C(x, n)} wkincr(x) {C(x, n+ 1)}

7 In a quick and dirty experiment, wkincr was around 60% faster than incr.
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With standard Hoare logic, we can use this specification to verify sequential clients

that call the counter operations. However, this specification gives no information

about the behaviour of the operations in a concurrent setting.

4 Auxiliary State

Owicki and Gries [19] developed the first tractable proof technique for concurrent

programs, identifying the importance of reasoning about interference between threads

and of using auxiliary state. With the Owicki-Gries method, each thread is given a

sequential proof. When the threads are composed, we must check that they do not

interfere with each others’ proofs. This is achieved by extending standard Hoare

logic with the Owicki-Gries rule for parallel composition:

{P1} C1 {Q1} {P2} C2 {Q2} non-interference

{P1 ∧ P2} C1 ‖ C2 {Q1 ∧Q2}

The non-interference side condition constrains the proof derivations for C1 and C2.

It requires that every intermediate assertion between atomic actions in the proof of

C1 must be preserved by every atomic action in the proof of C2, and vice-versa.

An abstract specification for the counter needs to be robust with respect to the

non-interference condition. However, in general, the condition will vary depending

on the concurrent context. Let us assume that the client may invoke any of the

counter operations concurrently, but will not directly interact with the state of the

counter. That is, we will only consider interference caused by the counter operations

themselves. To this end, we can use an invariant — an assertion that is preserved by

each atomic action in the module. For the counter, the invariant ∃n.C(x, n) asserts

that the counter at x is allocated and has some value.

We can give the following specification for the counter module:

{∃n.C(x, n)} read(x) {∃n,m.C(x, n) ∧ ret = m}
{∃n.C(x, n)} incr(x) {∃n,m.C(x, n) ∧ ret = m}

{∃n.C(x, n)} wkincr(x) {∃n.C(x, n)}

However, these specifications are too weak to specify such clients as the ticket lock.

They lose all information about the value of the counter, and give no information

about how the operations change this value. In fact, the read operation could change

the value of the counter and it would still satisfy the specification! Unfortunately,

assertions that describe the precise value of the counter are not invariant.

The Owicki-Gries method is able to provide stronger specifications by using

auxiliary state, which records extra information about the execution history via

auxiliary variables. The code is instrumented with auxiliary code, which updates

the auxiliary variables. Since the auxiliary code only updates auxiliary variables, it

has no effect on the program behaviour, and so can be erased — it is not required

when the program is run.

By way of example, consider two threads that both increment a counter, as in

Fig. 2. The auxiliary variables y and z, with initial values 0, are used to record the

contribution (i.e. the number of increments) of each thread. For each thread, the
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{C(x, 0)}
y := 0; z := 0;

{C(x, 0) ∧ y = 0 ∧ z = 0}
{C(x, y + z) ∧ y = 0}
do {
r := [x];

〈b := CAS(x, r, r + 1);

if (b) y++; 〉
} while (b = 0);

{C(x, y + z) ∧ y = 1}

{C(x, y + z) ∧ z = 0}
do {
r′ := [x];

〈b′ := CAS(x, r′, r′ + 1);

if (b′) z++; 〉
} while (b′ = 0);

{C(x, y + z) ∧ z = 1}
{C(x, 2) ∧ y = 1 ∧ z = 1}

{C(x, 2)}

Fig. 2. Reasoning about concurrent increments using auxiliary state.

code of the incr operation is instrumented with code that updates the auxiliary

variables when the CAS operations succeed. The auxiliary variables must be updated

at the same instant as the counter, so that the counter always holds the sum of the

two contributions — our invariant. This is expressed angle brackets, the 〈 〉, which

indicate that the CAS and auxiliary code should be executed in a single atomic step.

The resulting specification of the two-increment program is strong, with precise

information about the initial and final value of the counter. However, it comes at

the price of modularity.

Firstly, each use of the incr operation requires the underlying implementation

to be extended with auxiliary code to increment the appropriate auxiliary variable.

A modular proof would not modify the module code for each use by the client.

Secondly, the incr operations require different specifications depending on the

client’s use: in our example, the counter predicate C(x, y+z) uses auxiliary variables

y and z; with three threads, the specification requires three auxiliary variables. A

modular proof would give a specification for the module that captures all use cases.

Thirdly and more subtly, the Owicki-Gries method requires the global non-
interference condition. To meet this, we made the implicit assumption that the

client only interacts with the state of the counter through the counter operations. A

modular proof would be explicit about such assumptions about the behaviour of the

client.

Thesis.

The concept of auxiliary state, introduced in the Owicki-Gries method, is impor-

tant in specifying concurrent modules. Auxiliary state abstracts the internal state

of threads. It is more convenient to reason using auxiliary variables than to consider

the program counter and local variables of each thread in describing invariants. This

abstraction is a step towards compositional reasoning. As we shall see, various

subsequent approaches have taken a more modular approach to auxiliary state than

auxiliary variables provide in the Owicki-Gries method.
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5 Interference Abstraction

Jones [13] introduced interference abstraction, providing the rely/guarantee method

as a way to improve the compositionality of the Owicki-Gries approach. To avoid the

global non-interference condition, specifications explicitly constrain the interference

from the concurrent context, and describe the interference that a thread may cause.

To this end, each specification incorporates two relations — the rely and guarantee

relations — that abstract the interference between threads. The rely relation

abstracts the actions of other threads; each assertion in the derivation must be

stable under all of these actions. The guarantee relation abstracts the actions in the

derivation; each atomic update by the thread must be described by the guarantee.

Rely/guarantee specifications have the form R,G ` {P} C {Q}, where R and

G are the rely and guarantee relations respectively. When composing concurrent

threads, the guarantee of each thread must be included in the rely of the other. The

parallel composition rule is therefore adapted to:

R ∪G2, G1 ` {P1} C1 {Q1} R ∪G1, G2 ` {P2} C2 {Q2}
R,G1 ∪G2 ` {P1 ∧ P2} C1 ‖ C2 {Q1 ∧Q2}

The rely/guarantee specifications for the read and incr operations are:

A, ∅ ` {∃n.C(x, n)} read(x) {∃n.C(x, n) ∧ ret ≤ n}
A,A ` {∃n.C(x, n)} incr(x) {∃n.C(x, n) ∧ ret ≤ n}

where A = {C(x, n) C(x, n+ 1) | n ∈ N}. The read specification has an empty

guarantee relation indicating that nothing is changed by the read. It has rely relation

A stating that the other threads can only increment the counter, although they can

do so as many times as they like. The incr relation has the same rely relation. Its

guarantee relation is also A, stating that the increment can increase the value of

the counter. The guarantee must be defined for all values n, because the context

can change the counter value. This means that we cannot express that the incr

operation only does a single increment.

The rely/guarantee specification for the wkincr operation is subtle. Recall that,

intuitively, the wkincr operation is intended to be used when no other threads are

concurrently updating the counter. As a first try, we can give a simple specification

with a rely condition that enforces this constraint:

∅, G ` {C(x, n)} wkincr(x) {C(x, n+ 1)}

where G , {C(x, n) C(x, n+ 1)}. The rely relation is empty, so this specification

cannot be used in a context where concurrent updates may occur. This means that

the guarantee relation can be very precise, consisting of a single action. Effectively,

the increment will appear as a single atomic operation.

Although this specification captures some of the intended behaviour of wkincr,

it is insufficient to reason about the ticket lock. With the ticket lock, it is possible

for two invocations of the wkincr operation to be executing concurrently. Only

one thread can call unlock at any one time, because only one thread can have the
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lock. However, suppose one thread calling unlock has executed the body of wkincr.

Then, a second thread may correctly conclude that it now has the lock and release

it, before the call of the first thread has returned. This results in a concurrent

invocation of wkincr. By ruling out all concurrent updates to the counter with an

empty rely relation, the above specification does not allow this concurrent behaviour.

By changing the rely, it is possible to allow such concurrent updates, but at the

expense of weakening the specification:

R,G `
{
C(x, n)

}
wkincr(x)

{
∃n′ ≥ n+ 1.C(x, n′)

}
where R = {C(x,m) C(x,m+ 1) | m > n} and G is as before. Notice that the rely

states that concurrent increments can only happen when the value of the counter is

above n. Also notice that, in weakening the rely, we must weaken the postcondition

to make it stable.

In summary, this specification is again too weak to reason about the ticket lock. It

is possible to instrument the code with auxiliary variables, as with the Owicki-Gries

method, but this would again lead to a loss of modularity.

Thesis.

The concept of interference abstraction, introduced in the rely/guarantee method,

is important in specifying concurrent modules. By abstracting the interactions

between different threads, specifications can express constraints on their concurrent

contexts. This abstraction leads to more compositional reasoning: since the interfer-

ence is part of the specification, we do not need to examine proofs in order to justify

parallel composition. While they may specify it differently, some form of interference

abstraction is generally present in subsequent concurrency verification approaches.

6 Resource Ownership

In the Owicki-Gries and rely/guarantee approaches, auxiliary variables provide a

mechanism for reasoning about which threads can do what and when. For instance,

auxiliary variables can be used to reason about the contribution of individual threads

to the counter, as we demonstrated in §4, or that one thread can increment a counter

after another. O’Hearn introduced a style of reasoning based on resource ownership,

developing concurrent separation logic [18] which provides an alternative, more

modular approach to such reasoning.

Concurrent separation logic is a Hoare logic, with assertions describing data

(such as heap cells or counter objects) treated as resources. Each operation acts

on specific resources, with the precondition conferring ownership of the resources it

represents. When threads operate on disjoint resources, they do not interfere and

so their effects can be simply combined. This principle is embodied in the disjoint

parallel composition rule:

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}
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where the separating conjunction P1 ∗ P2 describes the disjoint combination of the

resources of P1 and P2.

We can think of ownership as embodying specialised notions of auxiliary state

and interference abstraction. Ownership is a form of auxiliary state: the program

does not explicitly record which threads own what resources, it is an abstraction

that we use for reasoning. Ownership implements a simple interference abstraction:

threads may update the resources that they own, and disjointness of ownership

enforces that they cannot interfere with other threads’ resources.

In the original concurrent separation logic, it was only possible to reason about

shared resource that had been transferred between threads through synchronisation. 8

Subsequent approaches [23,7,6] added support for reasoning about fine-grained

concurrency by incorporating various styles of rely/guarantee reasoning over shared

resources. Building on this work, the concurrent abstract predicates (CAP) [5]

approach introduces abstractions over these shared resources that may be split,

effectively allowing concurrent manipulation at the abstract level.

Treating the abstract predicate C(x, n) as a resource, we could use the original

sequential specification as a concurrent one. However, for multiple threads to use

the counter, they would have to transfer the resource between each other using some

form of synchronisation. Such a specification effectively enforces sequential access to

the counter. This is because the client has no mechanism for dividing the resource:

in particular,

C(x, n) =⇒ C(x, n) ∗ C(x, n)

does not hold.

Following Boyland [2], Bornat et al. [1] introduced permission accounting to

separation logic. This allows shared resources to be divided by associating with them

a fraction in the interval (0, 1]. Shared resources may be subdivided by splitting this

fraction. For instance, we may associate fractions with our counter resource and

declare the logical axiom:

C(x, n, π1 + π2) ⇐⇒ C(x, n, π1) ∗ C(x, n, π2)

for π1 + π2 ≤ 1. We can now modify our counter specification to give concurrent

read access:

{C(x, n, π)} read(x) {C(x, n, π) ∧ ret = n}
{C(x, n, 1)} incr(x) {C(x, n+ 1, 1) ∧ ret = n}
{C(x, n, 1)} wkincr(x) {C(x, n+ 1, 1)}

Notice that we require full permission (the 1) in order to perform either increment

operation. This means that only concurrent reads are permitted; concurrent updates

must be synchronised with all other concurrent accesses (both increments and reads).

If only partial permission were necessary, then the specification for read would be

incorrect, since it could no longer guarantee that the value being read matched the

resource it had.

8 In [18], conditional critical regions provide the synchronisation mechanism.
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{C(x, 0, 1)}
{C(x, 0, 0.5) ∗ C(x, 0, 0.5)}
{C(x, 0, 0.5)}
incr(x)

{C(x, 1, 0.5)}

{C(x, 0, 0.5)}
incr(x)

{C(x, 1, 0.5)}
{C(x, 1, 0.5) ∗ C(x, 1, 0.5)}

{C(x, 2, 1)}

Fig. 3. Ownership-based reasoning for concurrent increments.

It is possible to specify concurrent increments, by changing how we interpret

the counter predicate C(x, n, π). Now the resource C(x, n, π) no longer asserts that

the value of the counter is n, except if π = 1. Instead, it asserts that the thread is

contributing n to the value of the counter; other threads may also have contributions.

We can split this counter resource by declaring the logical axiom:

C(x, n1 + n2, π1 + π2) ⇐⇒ C(x, n1, π1) ∗ C(x, n2, π2)

for n1, n2 ∈ N and π1, π2 ∈ (0, 1]. We then specify our counter operations as:

{C(x, n, π)} read(x) {C(x, n, π) ∧ ret ≥ n}
{C(x, n, 1)} read(x) {C(x, n, 1) ∧ ret = n}
{C(x, n, π)} incr(x) {C(x, n+ 1, π) ∧ ret ≥ n}
{C(x, n, 1)} incr(x) {C(x, n+ 1, 1) ∧ ret = n}
{C(x, n, 1)} wkincr(x) {C(x, n+ 1, 1)}

At last, we have a specification that allows concurrent reads and increments.

Fig. 3 shows how it can be used to verify the example of two concurrent increments.

Whereas in Fig. 2 each thread was instrumented with different auxiliary code, here

the code has not been changed. Rather than each thread having an auxiliary variable

to record its contribution to the counter, the contribution is recorded in auxiliary

resources that are owned by the thread and encapsulated in the C(x, n, π) predicate.

This idea of subjective auxiliary state is at the core of subjective concurrent separation

logic (SCSL) [15] (and the subsequent FCSL [17]).

This specification still has some weaknesses. The wkincr operation must still

be synchronised with the other operations. Also, sequenced reads will never see

decreasing values of the counter (since the contribution is not changed and only

provides the lower bound). It is possible to describe a more elaborate permission

system that allows wkincr in the presence of reads, and to extend the predicate to

record the last known value as a lower bound for reads. This would give us a more

useful, if somewhat cumbersome, specification. However, it would still not handle

the ticket lock.

While a ticket lock has been verified using CAP [5], the proof depends on the

atomicity of the underlying counter operations in order to synchronise access to

shared resources. The proof does work with any of our abstract specifications, since

they simply do not embody the necessary atomicity.
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Thesis.

The concept of resource ownership, developed by concurrent separation logic

and its successors, is important in specifying concurrent modules. The idiom of

ownership can be seen as a form of auxiliary state, which critically embodies a notion

of disjointness and interference abstraction. Various approaches have explored the

power of ownership for reasoning about concurrency [5,15,17,3,14]. While it is an

effective tool, and can be used to give elegant specifications, something more is

required to provide the strong specifications we are seeking.

7 Atomicity

Atomicity is the abstraction that an operation takes effect at a single, discrete instant

in time. The concurrent behaviour of such atomic operations is equivalent to a

sequential interleaving of the operations. A well-known correctness condition for

atomicity, which identifies when the operations of a concurrent module appear to

behave atomically, is linearisability [10]. A client can use such operations as if they

were simple atomic operations.

Using the linearisability approach, each operation is given a sequential specifi-

cation. The operations are then proved to behave atomically with respect to each

other. One way of seeing this is that there is an instant during the invocation of

each operation at which it appears to take effect. This instant is referred to as

the linearisation point. With linearisability, the interference of every operation is

tolerated at all times by any of the other operations. Consequently, the interference

abstraction is deemed to be the module boundary.

Given our sequential specification for the counter in §3, is our implementation

linearisable? If we only consider the read and incr operations, then yes, it is.

However, the addition of the wkincr operation breaks linearisability. The problem

with wkincr is that, for instance, two concurrent calls can result in the counter only

being incremented once. This is not consistent with atomic behaviour.

The essence of the problem is that we only envisage calling wkincr in a concurrent

context where there are no other increments. In such a case, it would appear to behave

atomically. By itself, the sequential specification cannot express this constraint. We

need an interference abstraction that constrains the concurrent context.

Linearisability is related to the notion of contextual refinement. With contextual

refinement, the behaviour of program code is described by (more abstract) speci-

fication code. 9 Contextual refinement asserts that the specification code can be

replaced by the program code in any context, without introducing new observable

behaviours; we say that the program code contextually refines the specification code.

Filipović et al. [8] have shown that, under certain assumptions about a programming

language, linearisability implies contextual refinement for that language. For a

linearisable module, each operation contextually refines the operation itself executed

atomically. For instance, incr(x) contextually refines 〈incr(x)〉.
CaReSL [22] is a logic for proving contextual refinement of concurrent programs.

CaReSL makes use of auxiliary state, interference abstraction and ownership in its

9 In general, the specification code need not be directly executable, although it does have a semantics.
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proof technique. However, these concepts are not exposed in their specifications.

This means that it is not obvious what a suitable specification of wkincr in CaReSL

should be.

Thesis.

The concept of atomicity, put forward by linearisability, is important in specifying

concurrent modules. Atomicity can be seen as a form of interference abstraction:

it effectively guarantees that the only observable interference from an operation

will occur at a single instant in its execution. This is a powerful abstraction, since

a client need not consider intermediate states of an atomic operation (which, for

non-atomic operations, might violate invariants) but only the overall transformation

it performs.

8 Synthesis

We now examine several approaches that bring together the ideas we have so far

discussed to provide expressive specifications for concurrent modules.

8.1 A Higher-Order Approach

One way of overcoming the non-modularity of the Owicki-Gries method was intro-

duced by Jacobs and Piessens [12]. Their key idea is to give higher-order specifications

for operations, which are parametrised by auxiliary code that is performed when the

abstract atomic operation appears to take effect (the linearisation point). Where

previously we instrumented the code of the incr operation differently for different

call sites, here it is instrumented uniformly; the auxiliary code is a parameter that

is determined at the call site.

Applying this idea to the incr operation we have the following code:

function incr(x, ρ) {
do {
r := [x];

〈b := CAS(x, r, r + 1);

if (b) ρ; 〉

} while (b = 0);

return r;

}

Note that ρ is an auxiliary code parameter of the operation. When the atomic

update to the counter occurs, the auxiliary code is run and can update auxiliary

variables of the client.

The specification of incr is parametrised by the specification of the auxiliary

code. Written as a proof rule, the specification is as follows:

I(x) ∗ S ⇔ ∃n.C(x, n) ∗R(n) ∀n. {R(n) ∗ P} ρ {R(n+ 1) ∗Q(n)}
I(x) ` {S ∗ P} incr(x, ρ) {S ∗Q(ret)}
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{C(x, 0)}
y := 0; z := 0;

{C(x, 0) ∧ y = 0 ∧ z = 0}

in
va

ri
an

t:

C
(x
,y

+
z
) {y = 0 ∧ z = 0}

{y = 0}
incr(x, y++;);

{y = 1}

{z = 0}
incr(x, z++;);

{z = 1}
{y = 1 ∧ z = 1}

{C(x, 2) ∧ y = 1 ∧ z = 1}
{C(x, 2)}

Fig. 4. Reasoning about concurrent increments using parametrised auxiliary code.

In the conclusion of this rule, I(x) is an invariant; it is disjoint from the pre- and

postcondition, and must be preserved by atomic updates of all threads. At the point

where the counter is atomically incremented, the following steps conceptually take

place:

(i) The equivalence from the premiss is used to convert the combination of the

invariant I(x) and the portion of the precondition S into the counter predicate

C(x, n) and R(n) for some value of n.

(ii) The module performs the increment, updating C(x, n) to C(x, n+ 1).

(iii) The auxiliary code ρ is run, updating R(n) ∗ P to R(n+ 1) ∗Q(n).

(iv) Together, C(x, n+ 1) and R(n+ 1) are converted back to recover the invariant

I(x) and S.

This specification now allows us to exploit the expressivity of auxiliary variables

in a modular way. Fig. 4 shows how this technique can be used to prove two

concurrent increments. The proof is very similar to the one shown in Fig. 2. The

new specification allows us to abstract the atomic update performed by the incr

and use the same module implementation for both threads.

In Fig. 4, the invariant I(x) is instantiated as C(x, y + z). The predicate R(n) is

instantiated as n = y + z. The predicate S is True, while P and Q are instantiated

with the pre- and postconditions of incr at each call site.

The read operation can be specified as:

I(x) ∗ S ⇔ ∃n.C(x, n) ∗R(n) ∀n. {R(n) ∗ P} ρ {R(n) ∗Q(n)}
I(x) ` {S ∗ P} read(x, ρ) {S ∗Q(ret)}

Finally, recall that the wkincr operation is intended to be used when there are

no updates from the environment. This can be specified as:

I(x) ∗ P ⇔ C(x, n) ∗R {C(x, n+ 1) ∗R} ρ {I(x) ∗Q}
I(x) ` {P} wkincr(x, ρ) {Q}

A key difference with the wkincr specification is that n is not quantified in each of

the premisses. This is because the value of the counter must be preserved by other

threads before the update.

12
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Note that although these specifications are written in the form of proof rules,

they are actually implications. If a client establishes the premisses then it can use

the conclusion. The implementation must show that the conclusion follows from

the premisses. The predicates I, P , Q, R and S, as well as the ghost code ρ, are

universally quantified: the client can instantiate them as necessary.

This higher-order specification approach has been adopted in other higher-order

logics such as HOCAP [21], iCAP [20] and Iris [14]. In these logics, auxiliary state

is not manipulated by auxiliary code, but by view shifts [4]. These view shifts serve

essentially the same purpose — they can update auxiliary state, but have no effect

on the concrete state — but do not involve instrumenting the code.

8.2 A First-Order Approach

An alternative way of providing specifications for concurrent modules was introduced

in the program logic TaDA [3] using atomic triples. Rather than treating atomic

specifications as a higher-order construct, atomic triples build such specifications in

to TaDA as a first-order construct. An atomic triple has the following form:

A

x ∈ X. 〈P (x)〉 C 〈Q(x)〉

Superficially, this can be read as “C atomically updates P (x) to Q(x) (for arbitrary

x ∈ X)”. What it actually means is a bit more subtle.

An implementation of the specification may assume that the assertion P (x0)

holds initially (for some x0 ∈ X). It must tolerate interference from the environment

updating P (x) to P (x′) (for any x, x′ ∈ X). It is at liberty to update the state,

providing that it preserves P (x) (for the current value of x), until it updates it to

Q(x). After this update Q(x) is no longer available to the implementation (another

thread may be using it). Finally, the implementation cannot terminate without

having updated P (x) to Q(x) at some point.

Using the atomic triple, we can specify the counter as:

A

n. 〈C(x, n)〉 read(x) 〈C(x, n) ∧ ret = n〉

A

n. 〈C(x, n)〉 incr(x) 〈C(x, n+ 1) ∧ ret = n〉
〈C(x, n)〉 wkincr(x) 〈C(x, n+ 1)〉

Intuitively, the first two specifications state the value of the counter will be

read and incremented atomically, even in the presence of concurrent updates by the

environment that change the value of the counter — since the value n is bound by

A

. However, the environment must preserve the counter, e.g. it cannot deallocate it.

The last specification means that wkincr(x) will atomically update the counter from

n to n+ 1, as long as the environment guarantees that the shared counter will not

change value before the atomic update — since the value of n is not bound by

A

.

Atomic triples specify operations with respect to an abstraction (e.g. C(x, n)),

which means that each operation can be verified independently. This makes it

possible to extend modules with new operations without having to verify the existing

operations again. Linearisability, by contrast, is a whole module property: adding

new operations (e.g. wkincr) can break the linearisability.

13
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In [3], we introduce a generalised version of the atomic triple that can combine

atomicity with resource transfer. For example, we can specify an operation that

reads the value of the counter into a buffer; the read happens atomically, but the

write to the buffer does not, and so ownership of the buffer is transferred between

the client and implementation. This is not possible with traditional linearisability,

although Gotsman and Yang [9] have proposed an extension of linearisability that

supports ownership transfer.

Evaluation.

The counter specifications shown in this section are strong: a client can derive

the abstract disjoint specifications from them. Moreover, they are strong enough to

support synchronisation: the correctness of the ticket lock can be justified from the

counter specifications. These approaches to specification are expressive enough to

enforce obligations on both the client and the implementation. By contrast, CAP

specifications tend to unduly restrict the client (e.g. a counter specification cannot be

used for synchronisation), while linearisability specifications tend to unduly restrict

the implementation (e.g. a counter cannot provide a wkincr operation).

Atomic triples have been encoded in Iris [14] by interpreting them as specifications

in the Jacobs-Piessens style. This captures the intensional meaning behind atomic

triples — that is, what they can be used for — which in TaDA is expressed through

the proof rules for using atomic triples.

9 Conclusions

We have considered a number of proof methods for verifying concurrent programs:

Owicki-Gries, rely/guarantee, concurrent separation logics and linearisability. In each

method, we have identified a particularly valuable contribution towards specifying

concurrent modules. Finally, we have demonstrated how these ideas can be brought

together to produce specifications that are both expressive and modular.
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